
TI-Nspire™ CAS
Reference Guide

Learn more about TI Technology through the online help at education.ti.com/eguide.

ii

Important Information
Except as otherwise expressly stated in the License that accompanies a program, Texas
Instruments makes no warranty, either express or implied, including but not limited to
any implied warranties of merchantability and fitness for a particular purpose,
regarding any programs or book materials and makes such materials available solely
on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special,
collateral, incidental, or consequential damages in connection with or arising out of the
purchase or use of these materials, and the sole and exclusive liability of Texas
Instruments, regardless of the form of action, shall not exceed the amount set forth in
the license for the program. Moreover, Texas Instruments shall not be liable for any
claim of any kind whatsoever against the use of these materials by any other party.

© 2006 - 2019 Texas Instruments Incorporated

Contents

Expression Templates 1

Alphabetical Listing 8
A 8
B 17
C 20
D 44
E 57
F 67
G 76
I 86
L 95
M 111
N 119
O 128
P 130
Q 139
R 142
S 157
T 182
U 197
V 198
W 199
X 201
Z 202

Symbols 210

Empty (Void) Elements 236

Shortcuts for Entering Math Expressions 238

EOS™ (Equation Operating System) Hierarchy 240

Constants and Values 242

Error Codes and Messages 243

Warning Codes and Messages 251

General Information 253
Online Help 253

iii

iv

Contact TI Support 253
Service and Warranty Information 253

Index 254

Expression Templates
Expression templates give you an easy way to enter math expressions in standard
mathematical notation. When you insert a template, it appears on the entry line with
small blocks at positions where you can enter elements. A cursor shows which element
you can enter.

Position the cursor on each element, and type a value or expression for the element.

Fraction template /p keys

Note: See also / (divide), page 212.

Example:

Exponent template l key

Note: Type the first value, pressl, and
then type the exponent. To return the cursor
to the baseline, press right arrow (¢).

Note: See also ^ (power), page 213.

Example:

Square root template /q keys

Note: See also √() (square root), page
223.

Example:

Nth root template /l keys

Note: See also root(), page 154.

Example:

Expression Templates 1

2 Expression Templates

Nth root template /l keys

e exponent template u keys

Natural exponential e raised to a power

Note: See also e^(), page 57.

Example:

Log template /s key

Calculates log to a specified base. For a
default of base 10, omit the base.

Note: See also log(), page 106.

Example:

Piecewise template (2-piece) Catalog >

Lets you create expressions and conditions
for a two-piece piecewise function. To add
a piece, click in the template and repeat the
template.

Note: See also piecewise(), page 132.

Example:

Piecewise template (N-piece) Catalog >
Lets you create expressions and conditions
for an N-piece piecewise function. Prompts
for N.

Note: See also piecewise(), page 132.

Example:

See the example for Piecewise template (2-
piece).

System of 2 equations template Catalog >

Creates a system of two equations. To add
a row to an existing system, click in the
template and repeat the template.

Note: See also system(), page 181.

Example:

System of N equations template Catalog >
Lets you create a system of N equations.
Prompts for N.

Note: See also system(), page 181.

Example:

See the example for Systemof equations
template (2-equation).

Absolute value template Catalog >

Note: See also abs(), page 8.
Example:

Expression Templates 3

4 Expression Templates

Absolute value template Catalog >

dd°mm’ss.ss’’ template Catalog >

Lets you enter angles in dd°mm’ss.ss’’
format, where dd is the number of decimal
degrees, mm is the number of minutes, and
ss.ss is the number of seconds.

Example:

Matrix template (2 x 2) Catalog >

Creates a 2 x 2 matrix.

Example:

Matrix template (1 x 2) Catalog >

.
Example:

Matrix template (2 x 1) Catalog >
Example:

Matrix template (m x n) Catalog >
The template appears after you are
prompted to specify the number of rows
and columns.

Example:

Matrix template (m x n) Catalog >

Note: If you create a matrix with a large
number of rows and columns, it may take a
few moments to appear.

Sum template (Σ) Catalog >

Note: See also Σ() (sumSeq), page 224.

Example:

Product template (Π) Catalog >

Note: See alsoΠ() (prodSeq), page 223.

Example:

First derivative template Catalog >

The first derivative template can also be
used to calculate first derivative at a point.

Note: See also d() (derivative), page 221.

Example:

Expression Templates 5

6 Expression Templates

Second derivative template Catalog >

The second derivative template can also be
used to calculate second derivative at a
point.

Note: See also d() (derivative), page 221.

Example:

Nth derivative template Catalog >

The nth derivative template can be used to
calculate the nth derivative.

Note: See also d() (derivative), page 221.

Example:

Definite integral template Catalog >

Note: See also∫() integral(), page 221.

Example:

Indefinite integral template Catalog >

Note: See also ∫() integral(), page 221.

Example:

Limit template Catalog >
Example:

Limit template Catalog >
Use − or (−) for left hand limit. Use + for
right hand limit.

Note: See also limit(), page 6.

Expression Templates 7

8 Alphabetical Listing

Alphabetical Listing
Items whose names are not alphabetic (such as +, !, and >) are listed at the end of this
section, page 210. Unless otherwise specified, all examples in this section were
performed in the default reset mode, and all variables are assumed to be undefined.

A

abs() Catalog >
abs(Expr1) ⇒ expression

abs(List1) ⇒ list
abs(Matrix1) ⇒ matrix

Returns the absolute value of the
argument.

Note: See also Absolute value template,
page 3.

If the argument is a complex number,
returns the number’s modulus.

Note: All undefined variables are treated as
real variables.

amortTbl() Catalog >
amortTbl(NPmt,N,I,PV, [Pmt], [FV],
[PpY], [CpY], [PmtAt], [roundValue]) ⇒
matrix

Amortization function that returns a matrix
as an amortization table for a set of TVM
arguments.

NPmt is the number of payments to be
included in the table. The table starts with
the first payment.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt
are described in the table of TVM
arguments, page 195.

• If you omit Pmt, it defaults to
Pmt=tvmPmt
(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt

are the same as for the TVM functions.

amortTbl() Catalog >
roundValue specifies the number of
decimal places for rounding. Default=2.

The columns in the result matrix are in this
order: Payment number, amount paid to
interest, amount paid to principal, and
balance.

The balance displayed in row n is the
balance after payment n.

You can use the output matrix as input for
the other amortization functions ΣInt() and
ΣPrn(), page 225, and bal(), page 17.

and Catalog >
BooleanExpr1 and BooleanExpr2 ⇒
Boolean expression

BooleanList1 and BooleanList2 ⇒
Boolean list

BooleanMatrix1 and BooleanMatrix2 ⇒
Boolean matrix

Returns true or false or a simplified form of
the original entry.

Integer1 andInteger2 ⇒ integer

Compares two real integers bit-by-bit using
an and operation. Internally, both integers
are converted to signed, 64-bit binary
numbers. When corresponding bits are
compared, the result is 1 if both bits are 1;
otherwise, the result is 0. The returned
value represents the bit results, and is
displayed according to the Base mode.

You can enter the integers in any number
base. For a binary or hexadecimal entry, you
must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as
decimal (base 10).

InHex basemode:

Important: Zero, not the letter O.

In Bin basemode:

InDec basemode:

Note: A binary entry canhave up to 64 digits
(not counting the 0bprefix). A hexadecimal
entry canhave up to 16 digits.

Alphabetical Listing 9

10 Alphabetical Listing

angle() Catalog >
angle(Expr1) ⇒ expression

Returns the angle of the argument,
interpreting the argument as a complex
number.

Note: All undefined variables are treated as
real variables.

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

angle(List1) ⇒ list
angle(Matrix1) ⇒ matrix

Returns a list or matrix of angles of the
elements in List1 orMatrix1, interpreting
each element as a complex number that
represents a two-dimensional rectangular
coordinate point.

ANOVA Catalog >
ANOVA List1,List2[,List3,...,List20][,Flag]

Performs a one-way analysis of variance for
comparing the means of two to 20
populations. A summary of results is stored
in the stat.results variable. (page 176)

Flag=0 for Data, Flag=1 for Stats

Output variable Description

stat.F Value of the F statistic

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.df Degrees of freedomof the groups

stat.SS Sumof squares of the groups

stat.MS Mean squares for the groups

Output variable Description

stat.dfError Degrees of freedomof the errors

stat.SSError Sumof squares of the errors

stat.MSError Mean square for the errors

stat.sp Pooled standarddeviation

stat.xbarlist Meanof the input of the lists

stat.CLowerList 95%confidence intervals for themeanof each input list

stat.CUpperList 95%confidence intervals for themeanof each input list

ANOVA2way Catalog >
ANOVA2way List1,List2[,List3,…,List10]
[,levRow]

Computes a two-way analysis of variance for
comparing the means of two to 10
populations. A summary of results is stored
in the stat.results variable. (See page 176.)

LevRow=0 for Block

LevRow=2,3,...,Len-1, for Two Factor,
where Len=length(List1)=length(List2) = …
= length(List10) and Len / LevRow Î
{2,3,…}

Outputs: Block Design

Output variable Description

stat.F F statistic of the column factor

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.df Degrees of freedomof the column factor

stat.SS Sumof squares of the column factor

stat.MS Mean squares for column factor

stat.FBlock F statistic for factor

stat.PValBlock Least probability atwhich the null hypothesis canbe rejected

stat.dfBlock Degrees of freedom for factor

stat.SSBlock Sumof squares for factor

Alphabetical Listing 11

12 Alphabetical Listing

Output variable Description

stat.MSBlock Mean squares for factor

stat.dfError Degrees of freedomof the errors

stat.SSError Sumof squares of the errors

stat.MSError Mean squares for the errors

stat.s Standarddeviationof the error

COLUMN FACTOR Outputs

Output variable Description

stat.Fcol F statistic of the column factor

stat.PValCol Probability value of the column factor

stat.dfCol Degrees of freedomof the column factor

stat.SSCol Sumof squares of the column factor

stat.MSCol Mean squares for column factor

ROW FACTOR Outputs

Output variable Description

stat.FRow F statistic of the row factor

stat.PValRow Probability value of the row factor

stat.dfRow Degrees of freedomof the row factor

stat.SSRow Sumof squares of the row factor

stat.MSRow Mean squares for row factor

INTERACTION Outputs

Output variable Description

stat.FInteract F statistic of the interaction

stat.PValInteract Probability value of the interaction

stat.dfInteract Degrees of freedomof the interaction

stat.SSInteract Sumof squares of the interaction

stat.MSInteract Mean squares for interaction

ERROR Outputs

Output variable Description

stat.dfError Degrees of freedomof the errors

stat.SSError Sumof squares of the errors

stat.MSError Mean squares for the errors

s Standarddeviationof the error

Ans /v keys
Ans ⇒ value

Returns the result of the most recently
evaluated expression.

approx() Catalog >
approx(Expr1) ⇒ expression

Returns the evaluation of the argument as
an expression containing decimal values,
when possible, regardless of the current
Auto or Approximate mode.

This is equivalent to entering the argument
and pressing/·.

approx(List1) ⇒ list
approx(Matrix1) ⇒ matrix

Returns a list or matrix where each
element has been evaluated to a decimal
value, when possible.

►approxFraction() Catalog >
Expr►approxFraction([Tol]) ⇒
expression

List►approxFraction([Tol]) ⇒ list

Matrix►approxFraction([Tol]) ⇒ matrix

Returns the input as a fraction, using a
tolerance of Tol. If Tol is omitted, a
tolerance of 5.E-14 is used.

Alphabetical Listing 13

14 Alphabetical Listing

►approxFraction() Catalog >
Note: You can insert this function from the
computer keyboard by typing
@>approxFraction(...).

approxRational() Catalog >
approxRational(Expr[, Tol]) ⇒ expression

approxRational(List[, Tol]) ⇒ list

approxRational(Matrix[, Tol]) ⇒ matrix

Returns the argument as a fraction using a
tolerance of Tol. If Tol is omitted, a
tolerance of 5.E-14 is used.

arccos() See cos⁻¹(), page 31.

arccosh() See cosh⁻¹(), page 32.

arccot() See cot⁻¹(), page 33.

arccoth() See coth⁻¹(), page 34.

arccsc() See csc⁻¹(), page 37.

arccsch() See csch⁻¹(), page 37.

arcLen() Catalog >
arcLen(Expr1,Var,Start,End) ⇒
expression

Returns the arc length of Expr1 from
Start to End with respect to variable Var.

Arc length is calculated as an integral
assuming a function mode definition.

arcLen(List1,Var,Start,End) ⇒ list

Returns a list of the arc lengths of each
element of List1 from Start to End with
respect to Var.

arcsec() See sec⁻¹(), page 157.

arcsech() See sech⁻¹(), page 158.

arcsin() See sin⁻¹(), page 167.

arcsinh() See sinh⁻¹(), page 168.

arctan() See tan⁻¹(), page 183.

arctanh() See tanh⁻¹(), page 184.

augment() Catalog >
augment(List1, List2) ⇒ list

Alphabetical Listing 15

16 Alphabetical Listing

augment() Catalog >
Returns a new list that is List2 appended to
the end of List1.
augment(Matrix1,Matrix2) ⇒ matrix

Returns a new matrix that is Matrix2
appended toMatrix1. When the “,”
character is used, the matrices must have
equal row dimensions, andMatrix2 is
appended toMatrix1 as new columns.
Does not alterMatrix1 orMatrix2.

avgRC() Catalog >
avgRC(Expr1, Var [=Value] [, Step]) ⇒
expression

avgRC(Expr1, Var [=Value] [, List1]) ⇒
list

avgRC(List1, Var [=Value] [, Step]) ⇒
list

avgRC(Matrix1, Var [=Value] [, Step]) ⇒
matrix

Returns the forward-difference quotient
(average rate of change).

Expr1 can be a user-defined function name
(see Func).

When Value is specified, it overrides any
prior variable assignment or any current “|”
substitution for the variable.

Step is the step value. If Step is omitted, it
defaults to 0.001.

Note that the similar function centralDiff()
uses the central-difference quotient.

B

bal() Catalog >
bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY],
[CpY], [PmtAt], [roundValue]) ⇒ value

bal(NPmt,amortTable) ⇒ value

Amortization function that calculates
schedule balance after a specified payment.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt
are described in the table of TVM
arguments, page 195.

NPmt specifies the payment number after
which you want the data calculated.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt
are described in the table of TVM
arguments, page 195.

• If you omit Pmt, it defaults to
Pmt=tvmPmt
(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt

are the same as for the TVM functions.

roundValue specifies the number of
decimal places for rounding. Default=2.

bal(NPmt,amortTable) calculates the
balance after payment number NPmt,
based on amortization table amortTable.
The amortTable argument must be a
matrix in the form described under
amortTbl(), page 8.

Note: See also ΣInt() and ΣPrn(), page 225.

►Base2 Catalog >
Integer1►Base2⇒ integer

Note: You can insert this operator from the
computer keyboard by typing @>Base2.

Alphabetical Listing 17

18 Alphabetical Listing

►Base2 Catalog >
Converts Integer1 to a binary number.
Binary or hexadecimal numbers always
have a 0b or 0h prefix, respectively. Use a
zero, not the letter O, followed by b or h.

0b binaryNumber
0h hexadecimalNumber
A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integer1 is treated as
decimal (base 10). The result is displayed in
binary, regardless of the Base mode.

Negative numbers are displayed in “two's
complement” form. For example,

⁻1 is displayed as
0hFFFFFFFFFFFFFFFF in Hex base mode
0b111...111 (64 1’s) in Binary base mode

⁻263 is displayed as
0h8000000000000000 in Hex base mode
0b100...000 (63 zeros) in Binary base mode

If you enter a decimal integer that is
outside the range of a signed, 64-bit binary
form, a symmetric modulo operation is
used to bring the value into the appropriate
range. Consider the following examples of
values outside the range.

263 becomes ⁻263 and is displayed as
0h8000000000000000 in Hex base mode
0b100...000 (63 zeros) in Binary base mode

264 becomes 0 and is displayed as
0h0 in Hex base mode
0b0 in Binary base mode

⁻263− 1 becomes 263 − 1 and is displayed
as
0h7FFFFFFFFFFFFFFF in Hex base mode
0b111...111 (64 1’s) in Binary base mode

►Base10 Catalog >
Integer1►Base10⇒ integer

►Base10 Catalog >
Note: You can insert this operator from the
computer keyboard by typing @>Base10.

Converts Integer1 to a decimal (base 10)
number. A binary or hexadecimal entry
must always have a 0b or 0h prefix,
respectively.

0b binaryNumber
0h hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integer1 is treated as
decimal. The result is displayed in decimal,
regardless of the Base mode.

►Base16 Catalog >
Integer1►Base16⇒ integer

Note: You can insert this operator from the
computer keyboard by typing @>Base16.

Converts Integer1 to a hexadecimal
number. Binary or hexadecimal numbers
always have a 0b or 0h prefix, respectively.

0b binaryNumber
0h hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integer1 is treated as
decimal (base 10). The result is displayed in
hexadecimal, regardless of the Base mode.

If you enter a decimal integer that is too
large for a signed, 64-bit binary form, a
symmetric modulo operation is used to
bring the value into the appropriate range.
For more information, see►Base2, page
17.

Alphabetical Listing 19

20 Alphabetical Listing

binomCdf() Catalog >
binomCdf(n,p) ⇒ list

binomCdf(n,p,lowBound,upBound) ⇒
number if lowBound and upBound are
numbers, list if lowBound and upBound are
lists

binomCdf(n,p,upBound)for P(0≤X≤upBound)
⇒ number if upBound is a number, list if
upBound is a list

Computes a cumulative probability for the
discrete binomial distribution with n number
of trials and probability p of success on each
trial.

For P(X ≤ upBound), set lowBound=0

binomPdf() Catalog >
binomPdf(n,p) ⇒ list

binomPdf(n,p,XVal) ⇒ number if XVal is a
number, list if XVal is a list

Computes a probability for the discrete
binomial distribution with n number of trials
and probability p of success on each trial.

C

Catalog >
ceiling(Expr1) ⇒ integer

Returns the nearest integer that is ≥ the
argument.

The argument can be a real or a complex
number.

Note: See also floor().

ceiling(List1) ⇒ list
ceiling(Matrix1) ⇒ matrix

Returns a list or matrix of the ceiling of
each element.

centralDiff() Catalog >
centralDiff(Expr1,Var [=Value][,Step]) ⇒
expression

centralDiff(Expr1,Var [,Step])|Var=Value
⇒ expression

centralDiff(Expr1,Var [=Value][,List]) ⇒
list

centralDiff(List1,Var [=Value][,Step]) ⇒
list

centralDiff(Matrix1,Var [=Value][,Step])
⇒ matrix

Returns the numerical derivative using the
central difference quotient formula.

When Value is specified, it overrides any
prior variable assignment or any current “|”
substitution for the variable.

Step is the step value. If Step is omitted, it
defaults to 0.001.

When using List1 orMatrix1, the operation
gets mapped across the values in the list or
across the matrix elements.

Note: See also avgRC() and d().

cFactor() Catalog >
cFactor(Expr1[,Var]) ⇒ expression
cFactor(List1[,Var]) ⇒ list
cFactor(Matrix1[,Var]) ⇒ matrix

cFactor(Expr1) returns Expr1 factored with
respect to all of its variables over a
common denominator.

Expr1 is factored as much as possible
toward linear rational factors even if this
introduces new non-real numbers. This
alternative is appropriate if you want
factorization with respect to more than one
variable.

Alphabetical Listing 21

22 Alphabetical Listing

cFactor() Catalog >
cFactor(Expr1,Var) returns Expr1 factored
with respect to variable Var.

Expr1 is factored as much as possible
toward factors that are linear in Var, with
perhaps non-real constants, even if it
introduces irrational constants or
subexpressions that are irrational in other
variables.

The factors and their terms are sorted with
Var as the main variable. Similar powers of
Var are collected in each factor. Include
Var if factorization is needed with respect
to only that variable and you are willing to
accept irrational expressions in any other
variables to increase factorization with
respect to Var. There might be some
incidental factoring with respect to other
variables.

For the Auto setting of the Auto or
Approximate mode, including Var also
permits approximation with floating-point
coefficients where irrational coefficients
cannot be explicitly expressed concisely in
terms of the built-in functions. Even when
there is only one variable, including Var
might yield more complete factorization.

Note: See also factor().

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

char() Catalog >
char(Integer) ⇒ character

Returns a character string containing the
character numbered Integer from the
handheld character set. The valid range for
Integer is 0–65535.

charPoly() Catalog >
charPoly(squareMatrix,Var) ⇒
polynomial expression

charPoly(squareMatrix,Expr) ⇒
polynomial expression

charPoly(squareMatrix1,Matrix2) ⇒
polynomial expression

Returns the characteristic polynomial of
squareMatrix. The characteristic
polynomial of n×nmatrix A, denoted by pA(λ), is the polynomial defined by

pA(λ) = det(λ•I−A)

where I denotes the n×n identity matrix.

squareMatrix1 and squareMatrix2must
have the equal dimensions.

χ22way Catalog >
χ22way obsMatrix

chi22way obsMatrix

Computes a χ2 test for association on the
two-way table of counts in the observed
matrix obsMatrix. A summary of results is
stored in the stat.results variable. (page
176)

For information on the effect of empty
elements in a matrix, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.χ2 Chi square stat: sum (observed - expected)2/expected

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.df Degrees of freedom for the chi square statistics

stat.ExpMat Matrix of expectedelemental count table, assuming null hypothesis

stat.CompMat Matrix of elemental chi square statistic contributions

Alphabetical Listing 23

24 Alphabetical Listing

χ2Cdf() Catalog >
χ2Cdf(lowBound,upBound,df) ⇒ number if
lowBound and upBound are numbers, list if
lowBound and upBound are lists

chi2Cdf(lowBound,upBound,df) ⇒ number
if lowBound and upBound are numbers, list
if lowBound and upBound are lists

Computes the χ2 distribution probability
between lowBound and upBound for the
specified degrees of freedom df.

For P(X ≤ upBound), set lowBound = 0.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

χ2GOF Catalog >
χ2GOF obsList,expList,df

chi2GOF obsList,expList,df

Performs a test to confirm that sample data
is from a population that conforms to a
specified distribution. obsList is a list of
counts and must contain integers. A
summary of results is stored in the
stat.results variable. (See page 176.)

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.χ2 Chi square stat: sum((observed - expected)2/expected

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.df Degrees of freedom for the chi square statistics

stat.CompList Elemental chi square statistic contributions

χ2Pdf() Catalog >
χ2Pdf(XVal,df) ⇒ number if XVal is a
number, list if XVal is a list

χ2Pdf() Catalog >
chi2Pdf(XVal,df) ⇒ number if XVal is a
number, list if XVal is a list

Computes the probability density function
(pdf) for the χ2 distribution at a specified
XVal value for the specified degrees of
freedom df.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

ClearAZ Catalog >
ClearAZ

Clears all single-character variables in the
current problem space.

If one or more of the variables are locked,
this command displays an error message
and deletes only the unlocked variables. See
unLock, page 197.

ClrErr Catalog >
ClrErr

Clears the error status and sets system
variable errCode to zero.

The Else clause of the Try...Else...EndTry
block should use ClrErr or PassErr. If the
error is to be processed or ignored, use
ClrErr. If what to do with the error is not
known, use PassErr to send it to the next
error handler. If there are no more pending
Try...Else...EndTry error handlers, the error
dialog box will be displayed as normal.

Note: See also PassErr, page 131, and Try,
page 191.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product guidebook.

For anexample of ClrErr, See Example 2
under the Try command, page 191.

Alphabetical Listing 25

26 Alphabetical Listing

colAugment() Catalog >
colAugment(Matrix1,Matrix2) ⇒ matrix

Returns a new matrix that is Matrix2
appended toMatrix1. The matrices must
have equal column dimensions, and
Matrix2 is appended toMatrix1 as new
rows. Does not alterMatrix1 orMatrix2.

colDim() Catalog >
colDim(Matrix) ⇒ expression

Returns the number of columns contained
inMatrix.

Note: See also rowDim().

colNorm() Catalog >
colNorm(Matrix) ⇒ expression

Returns the maximum of the sums of the
absolute values of the elements in the
columns inMatrix.

Note: Undefined matrix elements are not
allowed. See also rowNorm().

comDenom() Catalog >
comDenom(Expr1[,Var]) ⇒ expression
comDenom(List1[,Var]) ⇒ list
comDenom(Matrix1[,Var]) ⇒ matrix

comDenom(Expr1) returns a reduced ratio
of a fully expanded numerator over a fully
expanded denominator.

comDenom() Catalog >
comDenom(Expr1,Var) returns a reduced
ratio of numerator and denominator
expanded with respect to Var. The terms
and their factors are sorted with Var as the
main variable. Similar powers of Var are
collected. There might be some incidental
factoring of the collected coefficients.
Compared to omitting Var, this often saves
time, memory, and screen space, while
making the expression more
comprehensible. It also makes subsequent
operations on the result faster and less
likely to exhaust memory.

If Var does not occur in Expr1, comDenom
(Expr1,Var) returns a reduced ratio of an
unexpanded numerator over an unexpanded
denominator. Such results usually save even
more time, memory, and screen space.
Such partially factored results also make
subsequent operations on the result much
faster and much less likely to exhaust
memory.

Even when there is no denominator, the
comden function is often a fast way to
achieve partial factorization if factor() is
too slow or if it exhausts memory.

Hint: Enter this comden() function definition
and routinely try it as an alternative to
comDenom() and factor().

completeSquare () Catalog >
completeSquare(ExprOrEqn, Var) ⇒
expression or equation

completeSquare(ExprOrEqn, Var^Power)
⇒ expression or equation

completeSquare(ExprOrEqn, Var1, Var2
[,...]) ⇒ expression or equation

completeSquare(ExprOrEqn, {Var1, Var2
[,...]}) ⇒ expression or equation

Converts a quadratic polynomial expression
of the form a•x2+b•x+c into the form a•(x-h)
2+k

Alphabetical Listing 27

28 Alphabetical Listing

completeSquare () Catalog >
- or -

Converts a quadratic equation of the form
a•x2+b•x+c=d into the form a•(x-h)2=k

The first argument must be a quadratic
expression or equation in standard form
with respect to the second argument.

The Second argument must be a single
univariate term or a single univariate term
raised to a rational power, for example
x, y2, or z(1/3).

The third and fourth syntax attempt to
complete the square with respect to
variables Var1, Var2 [,…]).

conj() Catalog >
conj(Expr1) ⇒ expression

conj(List1) ⇒ list

conj(Matrix1) ⇒ matrix

Returns the complex conjugate of the
argument.

Note: All undefined variables are treated as
real variables.

constructMat() Catalog >
constructMat
(Expr,Var1,Var2,numRows,numCols) ⇒
matrix

Returns a matrix based on the arguments.

Expr is an expression in variables Var1 and
Var2. Elements in the resulting matrix are
formed by evaluating Expr for each
incremented value of Var1 and Var2.

Var1 is automatically incremented from 1
through numRows. Within each row, Var2
is incremented from 1 through numCols.

CopyVar Catalog >
CopyVar Var1, Var2

CopyVar Var1., Var2.

CopyVar Var1, Var2 copies the value of
variable Var1 to variable Var2, creating
Var2 if necessary. Variable Var1must have
a value.

If Var1 is the name of an existing user-
defined function, copies the definition of
that function to function Var2. Function
Var1must be defined.

Var1must meet the variable-naming
requirements or must be an indirection
expression that simplifies to a variable
name meeting the requirements.

CopyVar Var1., Var2. copies all members
of the Var1. variable group to the Var2.
group, creating Var2. if necessary.

Var1. must be the name of an existing
variable group, such as the statistics stat.nn
results, or variables created using the
LibShortcut() function. If Var2. already
exists, this command replaces all members
that are common to both groups and adds
the members that do not already exist. If
one or more members of Var2. are locked,
all members of Var2. are left unchanged.

corrMat() Catalog >
corrMat(List1,List2[,…[,List20]])

Computes the correlation matrix for the
augmented matrix [List1, List2, ..., List20].

►cos Catalog >
Expr►cos

Note: You can insert this operator from the
computer keyboard by typing @>cos.

Represents Expr in terms of cosine. This is
a display conversion operator. It can be
used only at the end of the entry line.

Alphabetical Listing 29

30 Alphabetical Listing

►cos Catalog >
►cos reduces all powers of
 sin(...) modulo 1−cos(...)^2
so that any remaining powers of cos(...)
have exponents in the range (0, 2). Thus,
the result will be free of sin(...) if and only
if sin(...) occurs in the given expression only
to even powers.

Note: This conversion operator is not
supported in Degree or Gradian Angle
modes. Before using it, make sure that the
Angle mode is set to Radians and that Expr
does not contain explicit references to
degree or gradian angles.

cos() µ key
cos(Expr1) ⇒ expression

cos(List1) ⇒ list

cos(Expr1) returns the cosine of the
argument as an expression.

cos(List1) returns a list of the cosines of all
elements in List1.

Note: The argument is interpreted as a
degree, gradian or radian angle, according
to the current angle mode setting. You can
use °, G, or r to override the angle mode
temporarily.

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

cos(squareMatrix1) ⇒ squareMatrix

Returns the matrix cosine of
squareMatrix1. This is not the same as
calculating the cosine of each element.

In Radian anglemode:

cos() µ key
When a scalar function f(A) operates on
squareMatrix1 (A), the result is calculated
by the algorithm:

Compute the eigenvalues (λ
i
) and

eigenvectors (Vi) of A.

squareMatrix1must be diagonalizable.
Also, it cannot have symbolic variables that
have not been assigned a value.

Form the matrices:

Then A = X B X⁻¹ and f(A) = X f(B) X⁻¹. For
example, cos(A) = X cos(B) X⁻¹ where:

cos(B) =

All computations are performed using
floating-point arithmetic.

cos⁻¹() µ key
cos⁻¹(Expr1) ⇒ expression

cos⁻¹(List1) ⇒ list

cos⁻¹(Expr1) returns the angle whose
cosine is Expr1 as an expression.

cos⁻¹(List1) returns a list of the inverse
cosines of each element of List1.

Note: The result is returned as a degree,
gradian or radian angle, according to the
current angle mode setting.

Note: You can insert this function from the
keyboard by typing arccos(...).

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

Alphabetical Listing 31

32 Alphabetical Listing

cos⁻¹() µ key
cos⁻¹(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse cosine of
squareMatrix1. This is not the same as
calculating the inverse cosine of each
element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode andRectangular
Complex Format:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

cosh() Catalog >
cosh(Expr1) ⇒ expression

cosh(List1) ⇒ list

cosh(Expr1) returns the hyperbolic cosine
of the argument as an expression.

cosh(List1) returns a list of the hyperbolic
cosines of each element of List1.

InDegree anglemode:

cosh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic cosine of
squareMatrix1. This is not the same as
calculating the hyperbolic cosine of each
element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode:

cosh⁻¹() Catalog >
cosh⁻¹(Expr1) ⇒ expression

cosh⁻¹(List1) ⇒ list

cosh⁻¹(Expr1) returns the inverse
hyperbolic cosine of the argument as an
expression.

cosh⁻¹() Catalog >
cosh⁻¹(List1) returns a list of the inverse
hyperbolic cosines of each element of
List1.

Note: You can insert this function from the
keyboard by typing arccosh(...).

cosh⁻¹(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse hyperbolic
cosine of squareMatrix1. This is not the
same as calculating the inverse hyperbolic
cosine of each element. For information
about the calculation method, refer to cos
().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode and InRectangular
Complex Format:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

cot() µ key
cot(Expr1) ⇒ expression

cot(List1) ⇒ list

Returns the cotangent of Expr1 or returns a
list of the cotangents of all elements in
List1.

Note: The argument is interpreted as a
degree, gradian or radian angle, according
to the current angle mode setting. You can
use °, G, or r to override the angle mode
temporarily.

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

cot⁻¹() µ key
cot⁻¹(Expr1) ⇒ expression

cot⁻¹(List1) ⇒ list

Returns the angle whose cotangent is
Expr1 or returns a list containing the
inverse cotangents of each element of
List1.

InDegree anglemode:

InGradian anglemode:

Alphabetical Listing 33

34 Alphabetical Listing

cot⁻¹() µ key
Note: The result is returned as a degree,
gradian or radian angle, according to the
current angle mode setting.

Note: You can insert this function from the
keyboard by typing arccot(...).

In Radian anglemode:

coth() Catalog >
coth(Expr1) ⇒ expression

coth(List1) ⇒ list

Returns the hyperbolic cotangent of Expr1
or returns a list of the hyperbolic
cotangents of all elements of List1.

coth⁻¹() Catalog >
coth⁻¹(Expr1) ⇒ expression

coth⁻¹(List1) ⇒ list

Returns the inverse hyperbolic cotangent of
Expr1 or returns a list containing the
inverse hyperbolic cotangents of each
element of List1.

Note: You can insert this function from the
keyboard by typing arccoth(...).

count() Catalog >
count(Value1orList1 [,Value2orList2
[,...]]) ⇒ value

Returns the accumulated count of all
elements in the arguments that evaluate to
numeric values.

Each argument can be an expression, value,
list, or matrix. You can mix data types and
use arguments of various dimensions.

For a list, matrix, or range of cells, each
element is evaluated to determine if it
should be included in the count.

In the last example, only 1/2 and3+4*i are
counted. The remaining arguments,
assuming x is undefined, do not evaluate to
numeric values.

count() Catalog >
Within the Lists & Spreadsheet application,
you can use a range of cells in place of any
argument.

Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

countif() Catalog >
countif(List,Criteria) ⇒ value

Returns the accumulated count of all
elements in List that meet the specified
Criteria.

Criteria can be:

• A value, expression, or string. For
example, 3 counts only those elements in
List that simplify to the value 3.

• A Boolean expression containing the
symbol ? as a placeholder for each
element. For example, ?<5 counts only
those elements in List that are less than
5.

Within the Lists & Spreadsheet application,
you can use a range of cells in place of List.

Empty (void) elements in the list are
ignored. For more information on empty
elements, see page 236.

Note: See also sumIf(), page 180, and
frequency(), page 74.

Counts the number of elements equal to 3.

Counts the number of elements equal to
“def.”

Counts the number of elements equal to x;
this example assumes the variable x is
undefined.

Counts 1 and3.

Counts 3, 5, and7.

Counts 1, 3, 7, and9.

Alphabetical Listing 35

36 Alphabetical Listing

cPolyRoots() Catalog >
cPolyRoots(Poly,Var) ⇒ list

cPolyRoots(ListOfCoeffs) ⇒ list

The first syntax, cPolyRoots(Poly,Var),
returns a list of complex roots of
polynomial Poly with respect to variable
Var.

Poly must be a polynomial in one variable.

The second syntax, cPolyRoots
(ListOfCoeffs), returns a list of complex
roots for the coefficients in ListOfCoeffs.

Note: See also polyRoots(), page 136.

crossP() Catalog >
crossP(List1, List2) ⇒ list

Returns the cross product of List1 and
List2 as a list.

List1 and List2must have equal
dimension, and the dimension must be
either 2 or 3.

crossP(Vector1, Vector2) ⇒ vector

Returns a row or column vector (depending
on the arguments) that is the cross product
of Vector1 and Vector2.

Both Vector1 and Vector2must be row
vectors, or both must be column vectors.
Both vectors must have equal dimension,
and the dimension must be either 2 or 3.

csc() µ key
csc(Expr1) ⇒ expression

csc(List1) ⇒ list

Returns the cosecant of Expr1 or returns a
list containing the cosecants of all elements
in List1.

InDegree anglemode:

InGradian anglemode:

csc() µ key

In Radian anglemode:

csc⁻¹() µ key
csc⁻¹(Expr1) ⇒expression

csc⁻¹(List1) ⇒ list

Returns the angle whose cosecant is Expr1
or returns a list containing the inverse
cosecants of each element of List1.

Note: The result is returned as a degree,
gradian or radian angle, according to the
current angle mode setting.

Note: You can insert this function from the
keyboard by typing arccsc(...).

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

csch() Catalog >
csch(Expr1) ⇒ expression

csch(List1) ⇒ list

Returns the hyperbolic cosecant of Expr1 or
returns a list of the hyperbolic cosecants of
all elements of List1.

csch⁻¹() Catalog >
csch⁻¹(Expr1) ⇒ expression

csch⁻¹(List1) ⇒ list

Returns the inverse hyperbolic cosecant of
Expr1 or returns a list containing the
inverse hyperbolic cosecants of each
element of List1.

Note: You can insert this function from the
keyboard by typing arccsch(...).

Alphabetical Listing 37

38 Alphabetical Listing

cSolve() Catalog >
cSolve(Equation, Var) ⇒ Boolean
expression

cSolve(Equation, Var=Guess) ⇒ Boolean
expression

cSolve(Inequality, Var) ⇒ Boolean
expression

Returns candidate complex solutions of an
equation or inequality for Var. The goal is
to produce candidates for all real and non-
real solutions. Even if Equation is real,
cSolve() allows non-real results in Real
result Complex Format.

Although all undefined variables that do not
end with an underscore (_) are processed
as if they were real, cSolve() can solve
polynomial equations for complex solutions.

cSolve() temporarily sets the domain to
complex during the solution even if the
current domain is real. In the complex
domain, fractional powers having odd
denominators use the principal rather than
the real branch. Consequently, solutions
from solve() to equations involving such
fractional powers are not necessarily a
subset of those from cSolve().

cSolve() starts with exact symbolic
methods. cSolve() also uses iterative
approximate complex polynomial factoring,
if necessary.

Note: See also cZeros(), solve(), and zeros().

InDisplay Digits mode of Fix 2:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

cSolve(Eqn1andEqn2 [and…],
VarOrGuess1, VarOrGuess2 [, …]) ⇒
Boolean expression

cSolve() Catalog >
cSolve(SystemOfEqns, VarOrGuess1,
VarOrGuess2 [, …]) ⇒
Boolean expression

Returns candidate complex solutions to the
simultaneous algebraic equations, where
each varOrGuess specifies a variable that
you want to solve for.

Optionally, you can specify an initial guess
for a variable. Each varOrGuess must have
the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3+i.
If all of the equations are polynomials and
if you do NOT specify any initial guesses,
cSolve() uses the lexical
Gröbner/Buchberger elimination method to
attempt to determine all complex solutions.

Complex solutions can include both real and
non-real solutions, as in the example to the
right.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

Simultaneous polynomial equations can
have extra variables that have no values,
but represent given numeric values that
could be substituted later.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

You can also include solution variables that
do not appear in the equations. These
solutions show how families of solutions
might contain arbitrary constants of the
form ck, where k is an integer suffix from 1
through 255.

Alphabetical Listing 39

40 Alphabetical Listing

cSolve() Catalog >
For polynomial systems, computation time
or memory exhaustion may depend strongly
on the order in which you list solution
variables. If your initial choice exhausts
memory or your patience, try rearranging
the variables in the equations and/or
varOrGuess list.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

If you do not include any guesses and if any
equation is non-polynomial in any variable
but all equations are linear in all solution
variables, cSolve() uses Gaussian
elimination to attempt to determine all
solutions.

If a system is neither polynomial in all of its
variables nor linear in its solution variables,
cSolve() determines at most one solution
using an approximate iterative method. To
do so, the number of solution variables
must equal the number of equations, and
all other variables in the equations must
simplify to numbers.

A non-real guess is often necessary to
determine a non-real solution. For
convergence, a guess might have to be
rather close to a solution.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

CubicReg Catalog >
CubicReg X, Y[, [Freq] [, Category,
Include]]

Computes the cubic polynomial regression
y=a•x3+b•x2+c•x+d on lists X and Y with
frequency Freq. A summary of results is
stored in the stat.results variable. (See page
176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

CubicReg Catalog >
Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regressionequation: a•x3+b•x2+c•x+d

stat.a, stat.b,
stat.c, stat.d

Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

cumulativeSum() Catalog >
cumulativeSum(List1) ⇒ list

Returns a list of the cumulative sums of the
elements in List1, starting at element 1.

Alphabetical Listing 41

42 Alphabetical Listing

cumulativeSum() Catalog >
cumulativeSum(Matrix1) ⇒ matrix

Returns a matrix of the cumulative sums of
the elements inMatrix1. Each element is
the cumulative sum of the column from top
to bottom.

An empty (void) element in List1 or
Matrix1 produces a void element in the
resulting list or matrix. For more
information on empty elements, see page
236.

Cycle Catalog >
Cycle

Transfers control immediately to the next
iteration of the current loop (For, While, or
Loop).

Cycle is not allowed outside the three
looping structures (For, While, or Loop).

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Function listing that sums the integers from1
to 100 skipping 50.

►Cylind Catalog >
Vector►Cylind

Note: You can insert this operator from the
computer keyboard by typing @>Cylind.

Displays the row or column vector in
cylindrical form [r,∠θ, z].

Vector must have exactly three elements.
It can be either a row or a column.

cZeros() Catalog >
cZeros(Expr, Var) ⇒ list

Returns a list of candidate real and non-real
values of Var that make Expr=0. cZeros()
does this by computing
exp►list(cSolve(Expr=0,Var),Var).
Otherwise, cZeros() is similar to zeros().

Note: See also cSolve(), solve(), and zeros().

InDisplay Digits mode of Fix 3:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

cZeros({Expr1, Expr2[, …] },
{VarOrGuess1,VarOrGuess2[, …] })
⇒matrix

Returns candidate positions where the
expressions are zero simultaneously. Each
VarOrGuess specifies an unknown whose
value you seek.

Optionally, you can specify an initial guess
for a variable. Each VarOrGuess must have
the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3+i.
If all of the expressions are polynomials and
you do NOT specify any initial guesses,
cZeros() uses the lexical
Gröbner/Buchberger elimination method to
attempt to determine all complex zeros.

Complex zeros can include both real and
non-real zeros, as in the example to the
right.

Each row of the resulting matrix represents
an alternate zero, with the components
ordered the same as the VarOrGuess list.
To extract a row, index the matrix by [row].

Extract row2:

Alphabetical Listing 43

44 Alphabetical Listing

cZeros() Catalog >
Simultaneous polynomials can have extra
variables that have no values, but represent
given numeric values that could be
substituted later.

You can also include unknown variables that
do not appear in the expressions. These
zeros show how families of zeros might
contain arbitrary constants of the form ck,
where k is an integer suffix from 1 through
255.

For polynomial systems, computation time
or memory exhaustion may depend strongly
on the order in which you list unknowns. If
your initial choice exhausts memory or your
patience, try rearranging the variables in
the expressions and/or VarOrGuess list.
If you do not include any guesses and if any
expression is non-polynomial in any variable
but all expressions are linear in all
unknowns, cZeros() uses Gaussian
elimination to attempt to determine all
zeros.

If a system is neither polynomial in all of its
variables nor linear in its unknowns, cZeros
() determines at most one zero using an
approximate iterative method. To do so, the
number of unknowns must equal the
number of expressions, and all other
variables in the expressions must simplify
to numbers.

A non-real guess is often necessary to
determine a non-real zero. For
convergence, a guess might have to be
rather close to a zero.

D

dbd() Catalog >
dbd(date1,date2) ⇒ value

Returns the number of days between date1
and date2 using the actual-day-count
method.

dbd() Catalog >
date1 and date2 can be numbers or lists of
numbers within the range of the dates on
the standard calendar. If both date1 and
date2 are lists, they must be the same
length.

date1 and date2must be between the
years 1950 through 2049.

You can enter the dates in either of two
formats. The decimal placement
differentiates between the date formats.

MM.DDYY (format used commonly in the
United States)
DDMM.YY (format use commonly in
Europe)

►DD Catalog >
Expr1►DD ⇒ valueList1
►DD ⇒ listMatrix1
►DD ⇒ matrix

Note: You can insert this operator from the
computer keyboard by typing @>DD.

Returns the decimal equivalent of the
argument expressed in degrees. The
argument is a number, list, or matrix that is
interpreted by the Angle mode setting in
gradians, radians or degrees.

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

►Decimal Catalog >
Expression1►Decimal ⇒ expression

List1►Decimal ⇒ expression

Matrix1►Decimal ⇒ expression

Note: You can insert this operator from the
computer keyboard by typing @>Decimal.

Alphabetical Listing 45

46 Alphabetical Listing

►Decimal Catalog >
Displays the argument in decimal form.
This operator can be used only at the end of
the entry line.

Define Catalog >
Define Var = Expression
Define Function(Param1, Param2, ...) =
Expression

Defines the variable Var or the user-
defined function Function.

Parameters, such as Param1, provide
placeholders for passing arguments to the
function. When calling a user-defined
function, you must supply arguments (for
example, values or variables) that
correspond to the parameters. When called,
the function evaluates Expression using
the supplied arguments.

Var and Function cannot be the name of a
system variable or built-in function or
command.

Note: This form of Define is equivalent to
executing the expression: expression→
Function(Param1,Param2).
Define Function(Param1, Param2, ...) =
Func
 Block
EndFunc

Define Program(Param1, Param2, ...) =
Prgm
 Block
EndPrgm

In this form, the user-defined function or
program can execute a block of multiple
statements.

Block can be either a single statement or a
series of statements on separate lines.
Block also can include expressions and
instructions (such as If, Then, Else, and For).

Define Catalog >
Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Note: See also Define LibPriv, page 47, and
Define LibPub, page 47.

Define LibPriv Catalog >
Define LibPriv Var = Expression
Define LibPriv Function(Param1, Param2,
...) = Expression

Define LibPriv Function(Param1, Param2,
...) = Func
 Block
EndFunc

Define LibPriv Program(Param1, Param2,
...) = Prgm
 Block
EndPrgm

Operates the same as Define, except defines
a private library variable, function, or
program. Private functions and programs do
not appear in the Catalog.

Note: See also Define, page 46, and Define
LibPub, page 47.

Define LibPub Catalog >
Define LibPub Var = Expression
Define LibPub Function(Param1, Param2,
...) = Expression

Define LibPub Function(Param1, Param2,
...) = Func
 Block
EndFunc

Alphabetical Listing 47

48 Alphabetical Listing

Define LibPub Catalog >
Define LibPub Program(Param1, Param2,
...) = Prgm
 Block
EndPrgm

Operates the same as Define, except defines
a public library variable, function, or
program. Public functions and programs
appear in the Catalog after the library has
been saved and refreshed.

Note: See also Define, page 46, and Define
LibPriv, page 47.

deltaList() See ΔList(), page 103.

deltaTmpCnv() See ΔtmpCnv(), page 189.

DelVar Catalog >
DelVar Var1[, Var2] [, Var3] ...

DelVar Var.

Deletes the specified variable or variable
group from memory.

If one or more of the variables are locked,
this command displays an error message
and deletes only the unlocked variables. See
unLock, page 197.

DelVar Var. deletes all members of the
Var. variable group (such as the statistics
stat.nn results or variables created using
the LibShortcut() function). The dot (.) in
this form of the DelVar command limits it
to deleting a variable group; the simple
variable Var is not affected.

delVoid() Catalog >
delVoid(List1) ⇒ list

Returns a list that has the contents of List1
with all empty (void) elements removed.

For more information on empty elements,
see page 236.

derivative() See d(), page 221.

deSolve() Catalog >
deSolve(1stOr2ndOrderODE, Var,
depVar) ⇒ a general solution

Returns an equation that explicitly or
implicitly specifies a general solution to the
1st- or 2nd-order ordinary differential
equation (ODE). In the ODE:

• Use a prime symbol (pressº) to denote
the 1st derivative of the dependent
variable with respect to the independent
variable.

• Use two prime symbols to denote the
corresponding second derivative.

The prime symbol is used for derivatives
within deSolve() only. In other cases, use d
().

The general solution of a 1st-order equation
contains an arbitrary constant of the form
ck, where k is an integer suffix from 1
through 255. The solution of a 2nd-order
equation contains two such constants.

Apply solve() to an implicit solution if you
want to try to convert it to one or more
equivalent explicit solutions.

When comparing your results with textbook
or manual solutions, be aware that different
methods introduce arbitrary constants at
different points in the calculation, which
may produce different general solutions.

Alphabetical Listing 49

50 Alphabetical Listing

deSolve() Catalog >
deSolve(1stOrderODE and initCond, Var,
depVar) ⇒ a particular solution

Returns a particular solution that satisfies
1stOrderODE and initCond. This is usually
easier than determining a general solution,
substituting initial values, solving for the
arbitrary constant, and then substituting
that value into the general solution.

initCond is an equation of the form:

depVar (initialIndependentValue) =
initialDependentValue

The initialIndependentValue and
initialDependentValue can be variables
such as x0 and y0 that have no stored
values. Implicit differentiation can help
verify implicit solutions.

deSolve(2ndOrderODE and initCond1 and
initCond2, Var, depVar)
⇒ particular solution

Returns a particular solution that satisfies
2nd Order ODE and has a specified value
of the dependent variable and its first
derivative at one point.

For initCond1, use the form:

depVar (initialIndependentValue) =
initialDependentValue

For initCond2, use the form:

depVar (initialIndependentValue) =
initial1stDerivativeValue
deSolve(2ndOrderODE and bndCond1 and
bndCond2, Var, depVar)
⇒ a particular solution

Returns a particular solution that satisfies
2ndOrderODE and has specified values at
two different points.

deSolve() Catalog >

det() Catalog >
det(squareMatrix[, Tolerance]) ⇒
expression

Returns the determinant of squareMatrix.

Optionally, any matrix element is treated as
zero if its absolute value is less than
Tolerance. This tolerance is used only if the
matrix has floating-point entries and does
not contain any symbolic variables that
have not been assigned a value. Otherwise,
Tolerance is ignored.

• If you use/· or set the Auto or
Approximate mode to Approximate,
computations are done using floating-
point arithmetic.

• If Tolerance is omitted or not used, the
default tolerance is calculated as:
5E⁻14 •max(dim(squareMatrix))
•rowNorm(squareMatrix)

diag() Catalog >
diag(List) ⇒ matrix
diag(rowMatrix) ⇒ matrix
diag(columnMatrix) ⇒ matrix

Returns a matrix with the values in the
argument list or matrix in its main
diagonal.

diag(squareMatrix) ⇒ rowMatrix

Returns a row matrix containing the
elements from the main diagonal of
squareMatrix.

squareMatrix must be square.

Alphabetical Listing 51

52 Alphabetical Listing

dim() Catalog >
dim(List) ⇒ integer

Returns the dimension of List.
dim(Matrix) ⇒ list

Returns the dimensions of matrix as a two-
element list {rows, columns}.

dim(String) ⇒ integer

Returns the number of characters contained
in character string String.

Disp Catalog >
Disp exprOrString1 [, exprOrString2] ...

Displays the arguments in the Calculator
history. The arguments are displayed in
succession, with thin spaces as separators.

Useful mainly in programs and functions to
ensure the display of intermediate
calculations.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

DispAt Catalog >
DispAt int,expr1 [,expr2 ...] ...

DispAt allows you to specify the line
where the specified expression or string
will be displayed on the screen.

The line number can be specified as an
expression.

Please note that the line number is not
for the entire screen but for the area
immediately following the
command/program.

Example

DispAt Catalog >
This command allows dashboard-like
output from programs where the value
of an expression or from a sensor
reading is updated on the same line.

DispAtand Disp can be used within the
same program.

Note: The maximum number is set to 8
since that matches a screen-full of lines
on the handheld screen - as long as the
lines don't have 2D math expressions.
The exact number of lines depends on
the content of the displayed
information. Illustrative examples:

Define z()=
Prgm
For n,1,3
DispAt 1,"N: ",n
Disp "Hello"
EndFor
EndPrgm

Output
z()

Iteration 1:
Line 1: N:1

Line 2: Hello

Iteration 2:
Line 1: N:2

Line 2: Hello
Line 3: Hello

Iteration 3:
Line 1: N:3

Line 2: Hello
Line 3: Hello
Line 4: Hello

Define z1()=
Prgm
For n,1,3
DispAt 1,"N: ",n
EndFor

For n,1,4
Disp "Hello"
EndFor
EndPrgm

z1()
Line 1: N:3

Line 2: Hello
Line 3: Hello
Line 4: Hello
Line 5: Hello

Alphabetical Listing 53

54 Alphabetical Listing

DispAt Catalog >

Error conditions:

Error Message Description
DispAt line number must be between 1 and 8 Expression evaluates the line number

outside the range 1-8 (inclusive)

Too few arguments The function or command is missing one
or more arguments.

No arguments Same as current 'syntax error' dialog

Too many arguments Limit argument. Same error as Disp.

Invalid data type First argument must be a number.

Void: DispAt void "Hello World" Datatype error is thrown
for the void (if the callback is defined)

Conversion operator: DispAt 2_ft @> _m,
"Hello World"

CAS: Datatype Error is thrown (if the
callback is defined)
Numeric: Conversion will be evaluated
and if the result is a valid argument,
DispAt print the string at the result line.

►DMS Catalog >
Expr ►DMS

List ►DMS

Matrix ►DMS

Note: You can insert this operator from the
computer keyboard by typing @>DMS.

Interprets the argument as an angle and
displays the equivalent DMS
(DDDDDD°MM'SS.ss'') number. See °, ', ''
on page 228 for DMS (degree, minutes,
seconds) format.

Note:►DMS will convert from radians to
degrees when used in radian mode. If the
input is followed by a degree symbol ° , no
conversion will occur. You can use►DMS
only at the end of an entry line.

InDegree anglemode:

domain() Catalog >
domain(Expr1, Var) ⇒expression

Returns the domain of Expr1 with respect
to Var.

domain() can be used to examine domains
of functions. It is restricted to real and finite
domain.

This functionality has limitations due to
shortcomings of computer algebra
simplification and solver algorithms.

Certain functions cannot be used as
arguments for domain(), regardless of
whether they appear explicitly or within
user-defined variables and functions. In the
following example, the expression cannot
be simplified because ∫() is a disallowed
function.

dominantTerm() Catalog >
dominantTerm(Expr1, Var [, Point]) ⇒
expression

dominantTerm(Expr1, Var [, Point]) |
Var>Point ⇒ expression

dominantTerm(Expr1, Var [, Point]) |
Var<Point ⇒ expression

Alphabetical Listing 55

56 Alphabetical Listing

dominantTerm() Catalog >
Returns the dominant term of a power
series representation of Expr1 expanded
about Point. The dominant term is the one
whose magnitude grows most rapidly near
Var = Point. The resulting power of (Var −
Point) can have a negative and/or
fractional exponent. The coefficient of this
power can include logarithms of (Var −
Point) and other functions of Var that are
dominated by all powers of (Var − Point)
having the same exponent sign.

Point defaults to 0. Point can be ∞ or −∞,
in which cases the dominant term will be
the term having the largest exponent of
Var rather than the smallest exponent of
Var.

dominantTerm(…) returns “dominantTerm
(…)” if it is unable to determine such a
representation, such as for essential
singularities such as sin(1/z) at z=0, e−1/z
at z=0, or ez at z = ∞ or −∞.

If the series or one of its derivatives has a
jump discontinuity at Point, the result is
likely to contain sub-expressions of the
form sign(…) or abs(…) for a real expansion
variable or (-1)floor(…angle(…)…) for a complex
expansion variable, which is one ending
with “_”. If you intend to use the dominant
term only for values on one side of Point,
then append to dominantTerm(...) the
appropriate one of “| Var > Point”, “| Var
< Point”, “| “Var ≥ Point”, or “Var ≤
Point” to obtain a simpler result.

dominantTerm() distributes over 1st-
argument lists and matrices.

dominantTerm() is useful when you want to
know the simplest possible expression that
is asymptotic to another expression as
Var→Point. dominantTerm() is also useful
when it isn’t obvious what the degree of
the first non-zero term of a series will be,
and you don’t want to iteratively guess
either interactively or by a program loop.

dominantTerm() Catalog >
Note: See also series(), page 161.

dotP() Catalog >
dotP(List1, List2) ⇒ expression

Returns the “dot” product of two lists.

dotP(Vector1, Vector2) ⇒ expression

Returns the “dot” product of two vectors.

Both must be row vectors, or both must be
column vectors.

E

e^() u key
e^(Expr1) ⇒ expression

Returns e raised to the Expr1 power.

Note: See also e exponent template, page
2.

Note: Pressingu to display e^(is different
from pressing the characterE on the
keyboard.

You can enter a complex number in reiθ
polar form. However, use this form in
Radian angle mode only; it causes a
Domain error in Degree or Gradian angle
mode.

e^(List1) ⇒ list

Returns e raised to the power of each
element in List1.
e^(squareMatrix1) ⇒ squareMatrix

Returns the matrix exponential of
squareMatrix1. This is not the same as
calculating e raised to the power of each
element. For information about the
calculation method, refer to cos().

Alphabetical Listing 57

58 Alphabetical Listing

e^() u key
squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

eff() Catalog >
eff(nominalRate,CpY) ⇒ value

Financial function that converts the nominal
interest rate nominalRate to an annual
effective rate, given CpY as the number of
compounding periods per year.

nominalRate must be a real number, and
CpY must be a real number > 0.

Note: See also nom(), page 123.

eigVc() Catalog >
eigVc(squareMatrix) ⇒ matrix

Returns a matrix containing the
eigenvectors for a real or complex
squareMatrix, where each column in the
result corresponds to an eigenvalue. Note
that an eigenvector is not unique; it may be
scaled by any constant factor. The
eigenvectors are normalized, meaning that:

if V = [x1, x2, … , xn]

then x1
2 + x2

2 + … + xn
2 = 1

squareMatrix is first balanced with
similarity transformations until the row and
column norms are as close to the same
value as possible. The squareMatrix is then
reduced to upper Hessenberg form and the
eigenvectors are computed via a Schur
factorization.

In Rectangular Complex Format:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

eigVl() Catalog >
eigVl(squareMatrix) ⇒ list

Returns a list of the eigenvalues of a real or
complex squareMatrix.

In Rectangular complex formatmode:

eigVl() Catalog >
squareMatrix is first balanced with
similarity transformations until the row and
column norms are as close to the same
value as possible. The squareMatrix is then
reduced to upper Hessenberg form and the
eigenvalues are computed from the upper
Hessenberg matrix.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

Else See If, page 86.

ElseIf Catalog >
If BooleanExpr1 Then
 Block1
ElseIf BooleanExpr2 Then
 Block2
⋮
ElseIf BooleanExprN Then
 BlockN
EndIf
⋮

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

EndFor See For, page 72.

EndFunc See Func, page 75.

EndIf See If, page 86.

Alphabetical Listing 59

60 Alphabetical Listing

EndLoop See Loop, page 110.

EndPrgm See Prgm, page 137.

EndTry See Try, page 191.

EndWhile See While, page 201.

euler () Catalog >
euler(Expr, Var, depVar, {Var0, VarMax},
depVar0, VarStep [, eulerStep]) ⇒ matrix

euler(SystemOfExpr, Var, ListOfDepVars,
{Var0, VarMax}, ListOfDepVars0,
VarStep [, eulerStep]) ⇒ matrix

euler(ListOfExpr, Var, ListOfDepVars,
{Var0, VarMax}, ListOfDepVars0,
VarStep [, eulerStep]) ⇒ matrix

Uses the Euler method to solve the system

with depVar(Var0)=depVar0 on the
interval [Var0,VarMax]. Returns a matrix
whose first row defines the Var output
values and whose second row defines the
value of the first solution component at the
corresponding Var values, and so on.

Expr is the right-hand side that defines the
ordinary differential equation (ODE).

SystemOfExpr is the system of right-hand
sides that define the system of ODEs
(corresponds to order of dependent
variables in ListOfDepVars).

Differential equation:
y'=0.001*y*(100-y) and y(0)=10

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

Compare above resultwithCAS exact
solutionobtainedusing deSolve() and
seqGen():

euler () Catalog >
ListOfExpr is a list of right-hand sides that
define the system of ODEs (corresponds to
the order of dependent variables in
ListOfDepVars).

Var is the independent variable.

ListOfDepVars is a list of dependent
variables.

{Var0, VarMax} is a two-element list that
tells the function to integrate from Var0 to
VarMax.

ListOfDepVars0 is a list of initial values
for dependent variables.

VarStep is a nonzero number such that sign
(VarStep) = sign(VarMax-Var0) and
solutions are returned at Var0+i•VarStep
for all i=0,1,2,… such that Var0+i•VarStep
is in [var0,VarMax] (there may not be a
solution value at VarMax).

eulerStep is a positive integer (defaults to
1) that defines the number of euler steps
between output values. The actual step size
used by the euler method is
VarStep ⁄ eulerStep.

Systemof equations:

with y1(0)=2 and y2(0)=5

eval () Hub Menu
eval(Expr) ⇒string

eval() is valid only in the TI-Innovator™ Hub
Command argument of programming
commands Get, GetStr, and Send. The
software evaluates expression Expr and
replaces the eval() statement with the
result as a character string.

The argument Expr must simplify to a real
number.

Set the blue element of the RGB LED to half
intensity.

Reset the blue element to OFF.

eval() argumentmust simplify to a real
number.

Alphabetical Listing 61

62 Alphabetical Listing

eval () Hub Menu
Program to fade-in the redelement

Execute the program.

Although eval() does not display its result,
you can view the resulting Hub command
string after executing the command by
inspecting any of the following special
variables.

iostr.SendAns
iostr.GetAns
iostr.GetStrAns

Note: See also Get (page 77), GetStr (page
84), and Send (page 158).

exact() Catalog >
exact(Expr1 [, Tolerance]) ⇒ expression
exact(List1 [, Tolerance]) ⇒ list
exact(Matrix1 [, Tolerance]) ⇒ matrix

Uses Exact mode arithmetic to return,
when possible, the rational-number
equivalent of the argument.

Tolerance specifies the tolerance for the
conversion; the default is 0 (zero).

Exit Catalog >
Exit

Exits the current For, While, or Loop block.

Function listing:

Exit Catalog >
Exit is not allowed outside the three looping
structures (For, While, or Loop).

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

►exp Catalog >
Expr►exp

Represents Expr in terms of the natural
exponential e. This is a display conversion
operator. It can be used only at the end of
the entry line.

Note: You can insert this operator from the
computer keyboard by typing @>exp.

exp() u key
exp(Expr1) ⇒ expression

Returns e raised to the Expr1 power.

Note: See also e exponent template, page
2.

You can enter a complex number in reiθ
polar form. However, use this form in
Radian angle mode only; it causes a
Domain error in Degree or Gradian angle
mode.

exp(List1) ⇒ list

Returns e raised to the power of each
element in List1.
exp(squareMatrix1) ⇒ squareMatrix

Alphabetical Listing 63

64 Alphabetical Listing

exp() u key
Returns the matrix exponential of
squareMatrix1. This is not the same as
calculating e raised to the power of each
element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

exp►list() Catalog >
exp►list(Expr,Var) ⇒ list

Examines Expr for equations that are
separated by the word “or,” and returns a
list containing the right-hand sides of the
equations of the form Var=Expr. This
gives you an easy way to extract some
solution values embedded in the results of
the solve(), cSolve(), fMin(), and fMax()
functions.

Note: exp►list() is not necessary with the
zeros() and cZeros() functions because they
return a list of solution values directly.

You can insert this function from the
keyboard by typing exp@>list(...).

expand() Catalog >
expand(Expr1 [, Var]) ⇒ expression
expand(List1 [,Var]) ⇒ list
expand(Matrix1 [,Var]) ⇒ matrix

expand(Expr1) returns Expr1 expanded
with respect to all its variables. The
expansion is polynomial expansion for
polynomials and partial fraction expansion
for rational expressions.

The goal of expand() is to transform Expr1
into a sum and/or difference of simple
terms. In contrast, the goal of factor() is to
transform Expr1 into a product and/or
quotient of simple factors.

expand() Catalog >
expand(Expr1,Var) returns Expr1
expanded with respect to Var. Similar
powers of Var are collected. The terms and
their factors are sorted with Var as the
main variable. There might be some
incidental factoring or expansion of the
collected coefficients. Compared to
omitting Var, this often saves time,
memory, and screen space, while making
the expression more comprehensible.

Even when there is only one variable, using
Var might make the denominator
factorization used for partial fraction
expansion more complete.

Hint: For rational expressions, propFrac() is
a faster but less extreme alternative to
expand().

Note: See also comDenom() for an
expanded numerator over an expanded
denominator.

expand(Expr1,[Var]) also distributes
logarithms and fractional powers
regardless of Var. For increased
distribution of logarithms and fractional
powers, inequality constraints might be
necessary to guarantee that some factors
are nonnegative.

expand(Expr1, [Var]) also distributes
absolute values, sign(), and exponentials,
regardless of Var.

Note: See also tExpand() for trigonometric
angle-sum and multiple-angle expansion.

expr() Catalog >
expr(String) ⇒ expression

Returns the character string contained in
String as an expression and immediately
executes it.

Alphabetical Listing 65

66 Alphabetical Listing

ExpReg Catalog >
ExpReg X, Y [, [Freq] [, Category,
Include]]

Computes the exponential regression y = a•
(b)x on lists X and Y with frequency Freq. A
summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regressionequation: a•(b)x

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformeddata

stat.r Correlation coefficient for transformeddata (x, ln(y))

stat.Resid Residuals associatedwith the exponentialmodel

stat.ResidTrans Residuals associatedwith linear fit of transformeddata

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

Output
variable Description

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

F

factor() Catalog >
factor(Expr1[, Var]) ⇒ expression
factor(List1[,Var]) ⇒ list
factor(Matrix1[,Var]) ⇒ matrix

factor(Expr1) returns Expr1 factored with
respect to all of its variables over a
common denominator.

Expr1 is factored as much as possible
toward linear rational factors without
introducing new non-real subexpressions.
This alternative is appropriate if you want
factorization with respect to more than one
variable.

factor(Expr1,Var) returns Expr1 factored
with respect to variable Var.

Expr1 is factored as much as possible
toward real factors that are linear in Var,
even if it introduces irrational constants or
subexpressions that are irrational in other
variables.

The factors and their terms are sorted with
Var as the main variable. Similar powers of
Var are collected in each factor. Include
Var if factorization is needed with respect
to only that variable and you are willing to
accept irrational expressions in any other
variables to increase factorization with
respect to Var. There might be some
incidental factoring with respect to other
variables.

For the Auto setting of the Auto or
Approximate mode, including Var permits
approximation with floating-point
coefficients where irrational coefficients
cannot be explicitly expressed concisely in
terms of the built-in functions. Even when
there is only one variable, including Var
might yield more complete factorization.

Alphabetical Listing 67

68 Alphabetical Listing

factor() Catalog >
Note: See also comDenom() for a fast way
to achieve partial factoring when factor() is
not fast enough or if it exhausts memory.

Note: See also cFactor() for factoring all the
way to complex coefficients in pursuit of
linear factors.

factor(rationalNumber) returns the rational
number factored into primes. For
composite numbers, the computing time
grows exponentially with the number of
digits in the second-largest factor. For
example, factoring a 30-digit integer could
take more than a day, and factoring a 100-
digit number could take more than a
century.

To stop a calculation manually,

• Handheld: Hold down thec key and
press· repeatedly.

• Windows®: Hold down the F12 key and
press Enter repeatedly.

• Macintosh®: Hold down the F5 key and
press Enter repeatedly.

• iPad®: The app displays a prompt. You
can continue waiting or cancel.

If you merely want to determine if a
number is prime, use isPrime() instead. It is
much faster, particularly if rationalNumber
is not prime and if the second-largest factor
has more than five digits.

FCdf() Catalog >
FCdf
(lowBound,upBound,dfNumer,dfDenom) ⇒
number if lowBound and upBound are
numbers, list if lowBound and upBound are
lists

FCdf
(lowBound,upBound,dfNumer,dfDenom) ⇒
number if lowBound and upBound are
numbers, list if lowBound and upBound are
lists

FCdf() Catalog >
Computes the F distribution probability
between lowBound and upBound for the
specified dfNumer (degrees of freedom) and
dfDenom.

For P(X ≤ upBound), set lowBound = 0.

Fill Catalog >
Fill Expr, matrixVar⇒ matrix

Replaces each element in variable
matrixVar with Expr.

matrixVar must already exist.

Fill Expr, listVar⇒ list

Replaces each element in variable listVar
with Expr.

listVar must already exist.

FiveNumSummary Catalog >
FiveNumSummary X[,[Freq]
[,Category,Include]]

Provides an abbreviated version of the 1-
variable statistics on list X. A summary of
results is stored in the stat.results variable.
(See page 176.)

X represents a list containing the data.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1.

Category is a list of numeric category codes
for the corresponding X data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

Alphabetical Listing 69

70 Alphabetical Listing

FiveNumSummary Catalog >
An empty (void) element in any of the lists
X, Freq, or Category results in a void for
the corresponding element of all those lists.
For more information on empty elements,
see page 236.

Output variable Description

stat.MinX Minimumof x values.

stat.Q1X 1stQuartile of x.

stat.MedianX Medianof x.

stat.Q3X 3rdQuartile of x.

stat.MaxX Maximumof x values.

floor() Catalog >
floor(Expr1) ⇒ integer

Returns the greatest integer that is ≤ the
argument. This function is identical to int().

The argument can be a real or a complex
number.

floor(List1) ⇒ list
floor(Matrix1) ⇒ matrix

Returns a list or matrix of the floor of each
element.

Note: See also ceiling() and int().

fMax() Catalog >
fMax(Expr, Var) ⇒ Boolean expression
fMax(Expr, Var,lowBound)

fMax(Expr, Var,lowBound,upBound)

fMax(Expr, Var) |
lowBound≤Var≤upBound

Returns a Boolean expression specifying
candidate values of Var that maximize
Expr or locate its least upper bound.

fMax() Catalog >
You can use the constraint (“|”) operator to
restrict the solution interval and/or specify
other constraints.

For the Approximate setting of the Auto or
Approximate mode, fMax() iteratively
searches for one approximate local
maximum. This is often faster, particularly
if you use the “|” operator to constrain the
search to a relatively small interval that
contains exactly one local maximum.

Note: See also fMin() andmax().

fMin() Catalog >
fMin(Expr, Var) ⇒ Boolean expression

fMin(Expr, Var,lowBound)

fMin(Expr, Var,lowBound,upBound)

fMin(Expr, Var) |
lowBound≤Var≤upBound

Returns a Boolean expression specifying
candidate values of Var that minimize
Expr or locate its greatest lower bound.

You can use the constraint (“|”) operator to
restrict the solution interval and/or specify
other constraints.

For the Approximate setting of the Auto or
Approximate mode, fMin() iteratively
searches for one approximate local
minimum. This is often faster, particularly
if you use the “|” operator to constrain the
search to a relatively small interval that
contains exactly one local minimum.

Note: See also fMax() andmin().

Alphabetical Listing 71

72 Alphabetical Listing

For Catalog >
For Var, Low, High [, Step]
 Block
EndFor

Executes the statements in Block
iteratively for each value of Var, from Low
toHigh, in increments of Step.

Var must not be a system variable.

Step can be positive or negative. The
default value is 1.

Block can be either a single statement or a
series of statements separated with the “:”
character.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

format() Catalog >
format(Expr[, formatString]) ⇒ string

Returns Expr as a character string based on
the format template.

Expr must simplify to a number.

formatString is a string and must be in the
form: “F[n]”, “S[n]”, “E[n]”, “G[n][c]”,
where [] indicate optional portions.

F[n]: Fixed format. n is the number of digits
to display after the decimal point.

S[n]: Scientific format. n is the number of
digits to display after the decimal point.

E[n]: Engineering format. n is the number
of digits after the first significant digit. The
exponent is adjusted to a multiple of three,
and the decimal point is moved to the right
by zero, one, or two digits.

format() Catalog >
G[n][c]: Same as fixed format but also
separates digits to the left of the radix into
groups of three. c specifies the group
separator character and defaults to a
comma. If c is a period, the radix will be
shown as a comma.

[Rc]: Any of the above specifiers may be
suffixed with the Rc radix flag, where c is a
single character that specifies what to
substitute for the radix point.

fPart() Catalog >
fPart(Expr1) ⇒ expression
fPart(List1) ⇒ list
fPart(Matrix1) ⇒ matrix

Returns the fractional part of the argument.

For a list or matrix, returns the fractional
parts of the elements.

The argument can be a real or a complex
number.

FPdf() Catalog >
FPdf(XVal,dfNumer,dfDenom) ⇒ number
if XVal is a number, list if XVal is a list

Computes the F distribution probability at
XVal for the specified dfNumer (degrees of
freedom) and dfDenom.

freqTable►list() Catalog >
freqTable►list(List1,freqIntegerList) ⇒
list

Returns a list containing the elements from
List1 expanded according to the
frequencies in freqIntegerList. This
function can be used for building a
frequency table for the Data & Statistics
application.

List1 can be any valid list.

Alphabetical Listing 73

74 Alphabetical Listing

freqTable►list() Catalog >
freqIntegerList must have the same
dimension as List1 and must contain non-
negative integer elements only. Each
element specifies the number of times the
corresponding List1 element will be
repeated in the result list. A value of zero
excludes the corresponding List1 element.

Note: You can insert this function from the
computer keyboard by typing
freqTable@>list(...).

Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

frequency() Catalog >
frequency(List1,binsList) ⇒ list

Returns a list containing counts of the
elements in List1. The counts are based on
ranges (bins) that you define in binsList.

If binsList is {b(1), b(2), …, b(n)}, the
specified ranges are {?≤b(1), b(1)<?≤b
(2),…,b(n-1)<?≤b(n), b(n)>?}. The resulting
list is one element longer than binsList.

Each element of the result corresponds to
the number of elements from List1 that
are in the range of that bin. Expressed in
terms of the countIf() function, the result is
{ countIf(list, ?≤b(1)), countIf(list, b(1)<?≤b
(2)), …, countIf(list, b(n-1)<?≤b(n)), countIf
(list, b(n)>?)}.

Elements of List1 that cannot be “placed in
a bin” are ignored. Empty (void) elements
are also ignored. For more information on
empty elements, see page 236.

Within the Lists & Spreadsheet application,
you can use a range of cells in place of both
arguments.

Note: See also countIf(), page 35.

Explanationof result:

2 elements fromDatalist are≤2.5

4 elements fromDatalist are >2.5 and≤4.5

3 elements fromDatalist are >4.5

The element “hello” is a string and cannot be
placed in any of the definedbins.

FTest_2Samp Catalog >
FTest_2Samp List1,List2[,Freq1[,Freq2
[,Hypoth]]]

FTest_2Samp List1,List2[,Freq1[,Freq2
[,Hypoth]]]

(Data list input)

FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

(Summary stats input)

Performs a two-sample F test. A summary
of results is stored in the stat.results
variable. (See page 176.)

For H
a
: σ1 > σ2, set Hypoth>0

For H
a
: σ1 ≠ σ2 (default), set Hypoth =0

For H
a
: σ1 < σ2, set Hypoth<0

For information on the effect of empty
elements in a list, see Empty (Void)
Elements, page 236.

Output variable Description

stat.F CalculatedF statistic for the data sequence

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.dfNumer numerator degrees of freedom= n1-1

stat.dfDenom denominator degrees of freedom= n2-1

stat.sx1, stat.sx2 Sample standarddeviations of the data sequences inList 1 andList 2

stat.x1_bar
stat.x2_bar

Samplemeans of the data sequences inList 1 andList 2

stat.n1, stat.n2 Size of the samples

Func Catalog >
Func
 Block
EndFunc

Template for creating a user-defined
function.

Define a piecewise function:

Alphabetical Listing 75

76 Alphabetical Listing

Func Catalog >
Block can be a single statement, a series
of statements separated with the “:”
character, or a series of statements on
separate lines. The function can use the
Return instruction to return a specific result.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Result of graphing g(x)

G

gcd() Catalog >
gcd(Number1, Number2) ⇒ expression

Returns the greatest common divisor of the
two arguments. The gcd of two fractions is
the gcd of their numerators divided by the
lcm of their denominators.

In Auto or Approximate mode, the gcd of
fractional floating-point numbers is 1.0.

gcd(List1, List2) ⇒ list

Returns the greatest common divisors of
the corresponding elements in List1 and
List2.
gcd(Matrix1, Matrix2) ⇒ matrix

Returns the greatest common divisors of
the corresponding elements inMatrix1 and
Matrix2.

geomCdf() Catalog >
geomCdf(p,lowBound,upBound) ⇒ number

geomCdf() Catalog >
if lowBound and upBound are numbers, list
if lowBound and upBound are lists

geomCdf(p,upBound)for P(1≤X≤upBound)
⇒ number if upBound is a number, list if
upBound is a list

Computes a cumulative geometric
probability from lowBound to upBound with
the specified probability of success p.

For P(X ≤ upBound), set lowBound = 1.

geomPdf() Catalog >
geomPdf(p,XVal) ⇒ number if XVal is a
number, list if XVal is a list

Computes a probability at XVal, the number
of the trial on which the first success occurs,
for the discrete geometric distribution with
the specified probability of success p.

Get Hub Menu
Get [promptString,] var[, statusVar]

Get [promptString,] func(arg1, ...argn)
[, statusVar]

Programming command: Retrieves a value
from a connected TI-Innovator™ Hub and
assigns the value to variable var.

The value must be requested:

• In advance, through a Send "READ ..."
command.

— or —

• By embedding a "READ ..." request as
the optional promptString argument.
This method lets you use a single
command to request the value and
retrieve it.

Example: Request the current value of the
hub's built-in light-level sensor. UseGet to
retrieve the value andassign it to variable
lightval.

Embed the READ requestwithin theGet
command.

Alphabetical Listing 77

78 Alphabetical Listing

Get Hub Menu
Implicit simplification takes place. For
example, a received string of "123" is
interpreted as a numeric value. To preserve
the string, use GetStr instead of Get.

If you include the optional argument
statusVar, it is assigned a value based on
the success of the operation. A value of
zero means that no data was received.

In the second syntax, the func() argument
allows a program to store the received
string as a function definition. This syntax
operates as if the program executed the
command:

 Define func(arg1, ...argn) = received
string

The program can then use the defined
function func().

Note: You can use the Get command within
a user-defined program but not within a
function.

Note: See also GetStr, page 84 and Send,
page 158.

getDenom() Catalog >
getDenom(Expr1) ⇒ expression

Transforms the argument into an
expression having a reduced common
denominator, and then returns its
denominator.

getKey() Catalog >
getKey([0|1]) ⇒ returnString

Description:getKey() - allows a TI-Basic
program to get keyboard input -
handheld, desktop and emulator on
desktop.

Example:

Example:

getKey() Catalog >
• keypressed := getKey() will return a

key or an empty string if no key has
been pressed. This call will return
immediately.

• keypressed := getKey(1) will wait till
a key is pressed. This call will pause
execution of the program till a key is
pressed.

Handling of key presses:

Handheld Device/Emulator
Key Desktop Return Value

Esc Esc "esc"

Touchpad - Top click n/a "up"

On n/a "home"

Scratchapps n/a "scratchpad"

Touchpad - Left click n/a "left"

Touchpad - Center click n/a "center"

Touchpad - Right click n/a "right"

Doc n/a "doc"

Tab Tab "tab"

Touchpad - Bottom click Down Arrow "down"

Menu n/a "menu"

Ctrl Ctrl no return

Shift Shift no return

Var n/a "var"

Del n/a "del"

= = "="

trig n/a "trig"

0 through 9 0-9 "0" ... "9"

Alphabetical Listing 79

80 Alphabetical Listing

Handheld Device/Emulator
Key Desktop Return Value

Templates n/a "template"

Catalog n/a "cat"

^ ^ "^"

X^2 n/a "square"

/ (division key) / "/"

* (multiply key) * "*"

e^x n/a "exp"

10^x n/a "10power"

+ + "+"

- - "-"

(("("

)) ")"

. . "."

(-) n/a "-" (negate sign)

Enter Enter "enter"

ee n/a "E" (scientific notation E)

a - z a-z alpha = letter pressed (lower
case)
("a" - "z")

shift a-z shift a-z alpha = letter pressed
"A" - "Z"

Note: ctrl-shift works to lock
caps

?! n/a "?!"

pi n/a "pi"

Flag n/a no return

, , ","

Return n/a "return"

Handheld Device/Emulator
Key Desktop Return Value

Space Space " " (space)

Inaccessible Special Character Keys like
@,!,^, etc.

The character is returned

n/a Function Keys No returned character

n/a Special desktop control keys No returned character

Inaccessible Other desktop keys that are
not available on the
calculator while getkey() is
waiting for a keystroke. ({,
},;, :, ...)

Same character you get in
Notes (not in a math box)

Note: It is important to note that the presence of getKey() in a program changes how
certain events are handled by the system. Some of these are described below.
Terminate program and Handle event - Exactly as if the user were to break out of program
by pressing the ON key
"Support" below means - System works as expected - program continues to run.

Event Device Desktop - TI-Nspire™
Student Software

Quick Poll Terminate program,
handle event

Same as the handheld (TI-
Nspire™ Student Software,
TI-Nspire™ Navigator™ NC
Teacher Software-only)

Remote file mgmt

(Incl. sending 'Exit Press 2
Test' file from another
handheld or desktop-
handheld)

Terminate program,
handle event

Same as the handheld.
(TI-Nspire™ Student
Software, TI-Nspire™
Navigator™ NC Teacher
Software-only)

End Class Terminate program,
handle event

Support
(TI-Nspire™ Student
Software, TI-Nspire™
Navigator™ NC Teacher
Software-only)

Event Device Desktop - TI-Nspire™ All
Versions

TI-Innovator™ Hub
connect/disconnect

Support - Can successfully
issue commands to the TI-
Innovator™ Hub. After you

Same as the handheld

Alphabetical Listing 81

82 Alphabetical Listing

exit the program the TI-
Innovator™ Hub is still
working with the
handheld.

getLangInfo() Catalog >
getLangInfo() ⇒ string

Returns a string that corresponds to the
short name of the currently active
language. You can, for example, use it in a
program or function to determine the
current language.

English = “en”
Danish = “da”
German = “de”
Finnish = “fi”
French = “fr”
Italian = “it”
Dutch = “nl”
Belgian Dutch = “nl_BE”
Norwegian = “no”
Portuguese = “pt”
Spanish = “es”
Swedish = “sv”

getLockInfo() Catalog >
getLockInfo(Var) ⇒ value

Returns the current locked/unlocked state
of variable Var.

value =0: Var is unlocked or does not exist.

value =1: Var is locked and cannot be
modified or deleted.

See Lock, page 106, and unLock, page 197.

getMode() Catalog >
getMode(ModeNameInteger) ⇒ value

getMode(0) ⇒ list

getMode(ModeNameInteger) returns a
value representing the current setting of
theModeNameInteger mode.

getMode(0) returns a list containing
number pairs. Each pair consists of a mode
integer and a setting integer.

For a listing of the modes and their
settings, refer to the table below.

If you save the settings with getMode(0) →
var, you can use setMode(var) in a function
or program to temporarily restore the
settings within the execution of the
function or program only. See setMode(),
page 162.

Mode
Name

Mode
Integer Setting Integers

Display
Digits

1 1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5,
7=Float6, 8=Float7, 9=Float8, 10=Float9, 11=Float10,
12=Float11, 13=Float12, 14=Fix0, 15=Fix1, 16=Fix2,
17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7, 22=Fix8,
23=Fix9, 24=Fix10, 25=Fix11, 26=Fix12

Angle 2 1=Radian, 2=Degree, 3=Gradian

Exponential
Format

3 1=Normal, 2=Scientific, 3=Engineering

Real or
Complex

4 1=Real, 2=Rectangular, 3=Polar

Auto or
Approx.

5 1=Auto, 2=Approximate, 3=Exact

Vector
Format

6 1=Rectangular, 2=Cylindrical, 3=Spherical

Base 7 1=Decimal, 2=Hex, 3=Binary

Unit
system

8 1=SI, 2=Eng/US

Alphabetical Listing 83

84 Alphabetical Listing

getNum() Catalog >
getNum(Expr1) ⇒ expression

Transforms the argument into an
expression having a reduced common
denominator, and then returns its
numerator.

GetStr Hub Menu
GetStr [promptString,] var[, statusVar]

GetStr [promptString,] func(arg1, ...argn)
[, statusVar]

Programming command: Operates
identically to the Get command, except that
the retrieved value is always interpreted as
a string. By contrast, the Get command
interprets the response as an expression
unless it is enclosed in quotation marks ("").

Note: See also Get, page 77 and Send, page
158.

For examples, seeGet.

getType() Catalog >
getType(var) ⇒ string

Returns a string that indicates the data type
of variable var.

If var has not been defined, returns the
string "NONE".

getVarInfo() Catalog >
getVarInfo() ⇒ matrix or string

getVarInfo(LibNameString) ⇒ matrix or
string

getVarInfo() returns a matrix of information
(variable name, type, library accessibility,
and locked/unlocked state) for all variables
and library objects defined in the current
problem.

If no variables are defined, getVarInfo()
returns the string "NONE".

getVarInfo(LibNameString)returns a matrix
of information for all library objects defined
in library LibNameString. LibNameString
must be a string (text enclosed in quotation
marks) or a string variable.

If the library LibNameString does not exist,
an error occurs.

Note the example, in which the result of
getVarInfo() is assigned to variable vs.
Attempting to display row 2 or row 3 of vs
returns an “Invalid list or matrix” error
because at least one of elements in those
rows (variable b, for example) revaluates to
a matrix.

This error could also occur when using Ans
to reevaluate a getVarInfo() result.

The system gives the above error because
the current version of the software does not
support a generalized matrix structure
where an element of a matrix can be either
a matrix or a list.

Alphabetical Listing 85

86 Alphabetical Listing

Goto Catalog >
Goto labelName

Transfers control to the label labelName.

labelName must be defined in the same
function using a Lbl instruction.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

►Grad Catalog >
Expr1►Grad⇒ expression

Converts Expr1 to gradian angle measure.

Note: You can insert this operator from the
computer keyboard by typing @>Grad.

InDegree anglemode:

In Radian anglemode:

I

identity() Catalog >
identity(Integer) ⇒ matrix

Returns the identity matrix with a
dimension of Integer.

Integer must be a positive integer.

If Catalog >
If BooleanExpr

Statement

If BooleanExpr Then
Block

EndIf

If Catalog >
If BooleanExpr evaluates to true, executes
the single statement Statement or the block
of statements Block before continuing
execution.

If BooleanExpr evaluates to false,
continues execution without executing the
statement or block of statements.

Block can be either a single statement or a
sequence of statements separated with the
“:” character.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

If BooleanExpr Then
 Block1
Else
 Block2
EndIf

If BooleanExpr evaluates to true, executes
Block1 and then skips Block2.

If BooleanExpr evaluates to false, skips
Block1 but executes Block2.

Block1 and Block2 can be a single
statement.

If BooleanExpr1 Then
 Block1
ElseIf BooleanExpr2 Then
 Block2
⋮
ElseIf BooleanExprN Then
 BlockN
EndIf

Allows for branching. If BooleanExpr1
evaluates to true, executes Block1. If
BooleanExpr1 evaluates to false, evaluates
BooleanExpr2, and so on.

Alphabetical Listing 87

88 Alphabetical Listing

ifFn() Catalog >
ifFn(BooleanExpr,Value_If_true [,Value_
If_false [,Value_If_unknown]]) ⇒
expression, list, or matrix

Evaluates the boolean expression
BooleanExpr (or each element from
BooleanExpr) and produces a result based
on the following rules:

• BooleanExpr can test a single value, a
list, or a matrix.

• If an element of BooleanExpr evaluates
to true, returns the corresponding
element from Value_If_true.

• If an element of BooleanExpr evaluates
to false, returns the corresponding
element from Value_If_false. If you
omit Value_If_false, returns undef.

• If an element of BooleanExpr is neither
true nor false, returns the corresponding
element Value_If_unknown. If you omit
Value_If_unknown, returns undef.

• If the second, third, or fourth argument
of the ifFn() function is a single
expression, the Boolean test is applied to
every position in BooleanExpr.

Note: If the simplified BooleanExpr
statement involves a list or matrix, all other
list or matrix arguments must have the
same dimension(s), and the result will have
the same dimension(s).

Test value of 1 is less than2.5, so its
corresponding

Value_If_True element of 5 is copied to
the result list.

Test value of 2 is less than2.5, so its
corresponding

Value_If_True element of 6 is copied to
the result list.

Test value of 3 is not less than2.5, so its
corresponding Value_If_False element of
10 is copied to the result list.

Value_If_true is a single value and
corresponds to any selectedposition.

Value_If_false is not specified. Undef is
used.

One element selected fromValue_If_true.
One element selected fromValue_If_
unknown.

imag() Catalog >
imag(Expr1) ⇒ expression

Returns the imaginary part of the
argument.

imag() Catalog >
Note: All undefined variables are treated as
real variables. See also real(), page 146

imag(List1) ⇒ list

Returns a list of the imaginary parts of the
elements.

imag(Matrix1) ⇒ matrix

Returns a matrix of the imaginary parts of
the elements.

impDif() Catalog >
impDif(Equation, Var, dependVar[,Ord])
⇒ expression

where the order Ord defaults to 1.

Computes the implicit derivative for
equations in which one variable is defined
implicitly in terms of another.

Indirection See #(), page 226.

inString() Catalog >
inString(srcString, subString[, Start]) ⇒
integer

Returns the character position in string
srcString at which the first occurrence of
string subString begins.

Start, if included, specifies the character
position within srcString where the search
begins. Default = 1 (the first character of
srcString).

If srcString does not contain subString or
Start is > the length of srcString, returns
zero.

Alphabetical Listing 89

90 Alphabetical Listing

int() Catalog >
int(Expr) ⇒ integer

int(List1) ⇒ list
int(Matrix1) ⇒ matrix

Returns the greatest integer that is less
than or equal to the argument. This
function is identical to floor().

The argument can be a real or a complex
number.

For a list or matrix, returns the greatest
integer of each of the elements.

intDiv() Catalog >
intDiv(Number1, Number2) ⇒ integer
intDiv(List1, List2) ⇒ list
intDiv(Matrix1,Matrix2) ⇒ matrix

Returns the signed integer part of
(Number1 ÷ Number2).

For lists and matrices, returns the signed
integer part of (argument 1 ÷ argument 2)
for each element pair.

integral See ∫(), page 221.

interpolate () Catalog >
interpolate(xValue, xList, yList,
yPrimeList) ⇒ list

This function does the following:

Differential equation:
y'=-3•y+6•t+5 and y(0)=5

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

interpolate () Catalog >
Given xList, yList=f(xList), and
yPrimeList=f'(xList) for some unknown
function f, a cubic interpolant is used to
approximate the function f at xValue. It is
assumed that xList is a list of
monotonically increasing or decreasing
numbers, but this function may return a
value even when it is not. This function
walks through xList looking for an interval
[xList[i], xList[i+1]] that contains xValue.
If it finds such an interval, it returns an
interpolated value for f(xValue); otherwise,
it returns undef.

xList, yList, and yPrimeList must be of
equal dimension ≥ 2 and contain
expressions that simplify to numbers.

xValue can be an undefined variable, a
number, or a list of numbers.

Use the interpolate() function to calculate the
function values for the xvaluelist:

invχ2() Catalog >
invχ2(Area,df)

invChi2(Area,df)

Computes the Inverse cumulative χ2 (chi-
square) probability function specified by
degree of freedom, df for a given Area
under the curve.

invF() Catalog >
invF(Area,dfNumer,dfDenom)

invF(Area,dfNumer,dfDenom)

computes the Inverse cumulative F
distribution function specified by dfNumer
and dfDenom for a given Area under the
curve.

Alphabetical Listing 91

92 Alphabetical Listing

invBinom() Catalog >
invBinom
(CumulativeProb,NumTrials,Prob,
OutputForm)⇒scalar or matrix

Inverse binomial. Given the number of trials
(NumTrials) and the probability of success
of each trial (Prob), this function returns
the minimum number of successes, k, such
that the value, k, is greater than or equal to
the given cumulative probability
(CumulativeProb).

OutputForm=0, displays result as a scalar
(default).

OutputForm=1, displays result as a matrix.

Example: Mary andKevin are playing a dice
game. Mary has to guess themaximum
number of times 6 shows up in 30 rolls. If the
number 6 shows up thatmany times or less,
Mary wins. Furthermore, the smaller the
number that she guesses, the greater her
winnings. What is the smallest number Mary
can guess if shewants the probability of
winning to be greater than77%?

invBinomN() Catalog >
invBinomN(CumulativeProb,Prob,
NumSuccess,OutputForm)⇒scalar or
matrix

Inverse binomial with respect to N. Given
the probability of success of each trial
(Prob), and the number of successes
(NumSuccess), this function returns the
minimum number of trials, N, such that the
value, N, is less than or equal to the given
cumulative probability (CumulativeProb).

OutputForm=0, displays result as a scalar
(default).

OutputForm=1, displays result as a matrix.

Example: Monique is practicing goal shots
for netball. She knows fromexperience that
her chance ofmaking any one shot is 70%.
She plans to practice until she scores 50
goals. Howmany shots must she attempt to
ensure that the probability ofmaking at least
50 goals is more than0.99?

invNorm() Catalog >
invNorm(Area[,μ[,σ]])

Computes the inverse cumulative normal
distribution function for a given Area under
the normal distribution curve specified by μ
and σ.

invt() Catalog >
invt(Area,df)

invt() Catalog >
Computes the inverse cumulative student-t
probability function specified by degree of
freedom, df for a given Area under the
curve.

iPart() Catalog >
iPart(Number) ⇒ integer
iPart(List1) ⇒ list
iPart(Matrix1) ⇒ matrix

Returns the integer part of the argument.

For lists and matrices, returns the integer
part of each element.

The argument can be a real or a complex
number.

irr() Catalog >
irr(CF0,CFList [,CFFreq]) ⇒ value

Financial function that calculates internal
rate of return of an investment.

CF0 is the initial cash flow at time 0; it
must be a real number.

CFList is a list of cash flow amounts after
the initial cash flow CF0.

CFFreq is an optional list in which each
element specifies the frequency of
occurrence for a grouped (consecutive) cash
flow amount, which is the corresponding
element of CFList. The default is 1; if you
enter values, they must be positive integers
< 10,000.

Note: See alsomirr(), page 115.

isPrime() Catalog >
isPrime(Number) ⇒ Boolean constant
expression

Alphabetical Listing 93

94 Alphabetical Listing

isPrime() Catalog >
Returns true or false to indicate if number
is a whole number ≥ 2 that is evenly
divisible only by itself and 1.

If Number exceeds about 306 digits and has
no factors ≤1021, isPrime(Number) displays
an error message.

If you merely want to determine if Number
is prime, use isPrime() instead of factor(). It
is much faster, particularly if Number is not
prime and has a second-largest factor that
exceeds about five digits.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Function to find the next prime after a
specifiednumber:

isVoid() Catalog >
isVoid(Var) ⇒ Boolean constant
expression
isVoid(Expr) ⇒ Boolean constant
expression
isVoid(List) ⇒ list of Boolean constant
expressions

Returns true or false to indicate if the
argument is a void data type.

For more information on void elements, see
page 236.

L

Lbl Catalog >
Lbl labelName

Defines a label with the name labelName
within a function.

You can use a Goto labelName instruction
to transfer control to the instruction
immediately following the label.

labelName must meet the same naming
requirements as a variable name.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

lcm() Catalog >
lcm(Number1, Number2) ⇒ expression
lcm(List1, List2) ⇒ list
lcm(Matrix1,Matrix2) ⇒ matrix

Returns the least common multiple of the
two arguments. The lcm of two fractions is
the lcm of their numerators divided by the
gcd of their denominators. The lcm of
fractional floating-point numbers is their
product.

For two lists or matrices, returns the least
common multiples of the corresponding
elements.

left() Catalog >
left(sourceString[, Num]) ⇒ string

Returns the leftmost Num characters
contained in character string sourceString.

If you omit Num, returns all of
sourceString.
left(List1[, Num]) ⇒ list

Alphabetical Listing 95

96 Alphabetical Listing

left() Catalog >
Returns the leftmost Num elements
contained in List1.

If you omit Num, returns all of List1.
left(Comparison) ⇒ expression

Returns the left-hand side of an equation or
inequality.

libShortcut() Catalog >
libShortcut(LibNameString,
ShortcutNameString
[, LibPrivFlag]) ⇒ list of variables

Creates a variable group in the current
problem that contains references to all the
objects in the specified library document
libNameString. Also adds the group
members to the Variables menu. You can
then refer to each object using its
ShortcutNameString.

Set LibPrivFlag=0 to exclude private
library objects (default)
Set LibPrivFlag=1 to include private
library objects

To copy a variable group, see CopyVar on
page 29.
To delete a variable group, see DelVar on
page 48.

This example assumes a properly stored and
refreshed library document named linalg2
that contains objects definedas clearmat,
gauss1, andgauss2.

limit() or lim() Catalog >
limit(Expr1, Var, Point [,Direction]) ⇒
expression
limit(List1, Var, Point [, Direction]) ⇒
list
limit(Matrix1, Var, Point [, Direction]) ⇒
matrix

Returns the limit requested.

Note: See also Limit template, page 6.

Direction: negative=from left,
positive=from right, otherwise=both. (If
omitted, Direction defaults to both.)

limit() or lim() Catalog >
Limits at positive ∞ and at negative ∞ are
always converted to one-sided limits from
the finite side.

Depending on the circumstances, limit()
returns itself or undef when it cannot
determine a unique limit. This does not
necessarily mean that a unique limit does
not exist. undef means that the result is
either an unknown number with finite or
infinite magnitude, or it is the entire set of
such numbers.

limit() uses methods such as L’Hopital’s
rule, so there are unique limits that it
cannot determine. If Expr1 contains
undefined variables other than Var, you
might have to constrain them to obtain a
more concise result.

Limits can be very sensitive to rounding
error. When possible, avoid the
Approximate setting of the Auto or
Approximate mode and approximate
numbers when computing limits.
Otherwise, limits that should be zero or
have infinite magnitude probably will not,
and limits that should have finite non-zero
magnitude might not.

LinRegBx Catalog >
LinRegBx X,Y[,[Freq][,Category,Include]]

Computes the linear regression y = a+b•x on
lists X and Y with frequency Freq. A
summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

Alphabetical Listing 97

98 Alphabetical Listing

LinRegBx Catalog >
Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regression Equation: a+b•x

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LinRegMx Catalog >
LinRegMx X,Y[,[Freq][,Category,Include]]

Computes the linear regression y = m•x+b on
lists X and Y with frequency Freq. A
summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

LinRegMx Catalog >
X and Y are lists of independent and
dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regression Equation: y =m•x+b

stat.m,
stat.b

Regression coefficients

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LinRegtIntervals Catalog >
LinRegtIntervals X,Y[,F[,0[,CLev]]]

For Slope. Computes a level C confidence
interval for the slope.

LinRegtIntervals X,Y[,F[,1,Xval[,CLev]]]

Alphabetical Listing 99

100 Alphabetical Listing

LinRegtIntervals Catalog >
For Response. Computes a predicted y-value,
a level C prediction interval for a single
observation, and a level C confidence
interval for the mean response.

A summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension.

X and Y are lists of independent and
dependent variables.

F is an optional list of frequency values.
Each element in F specifies the frequency of
occurrence for each corresponding X and Y
data point. The default value is 1. All
elements must be integers ≥ 0.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.RegEqn Regression Equation: a+b•x

stat.a, stat.b Regression coefficients

stat.df Degrees of freedom

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

For Slope type only

Output variable Description

[stat.CLower, stat.CUpper] Confidence interval for the slope

stat.ME Confidence intervalmargin of error

stat.SESlope Standard error of slope

stat.s Standard error about the line

For Response type only

Output variable Description

[stat.CLower, stat.CUpper] Confidence interval for themean response

Output variable Description

stat.ME Confidence intervalmargin of error

stat.SE Standard error ofmean response

[stat.LowerPred,
stat.UpperPred]

Prediction interval for a single observation

stat.MEPred Prediction intervalmargin of error

stat.SEPred Standard error for prediction

stat.y a + b•XVal

LinRegtTest Catalog >
LinRegtTest X,Y[,Freq[,Hypoth]]

Computes a linear regression on the X and Y
lists and a t test on the value of slope β and
the correlation coefficient ρ for the equation
y=α+βx. It tests the null hypothesis H

0
:β=0

(equivalently, ρ=0) against one of three
alternative hypotheses.

All the lists must have equal dimension.

X and Y are lists of independent and
dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Hypoth is an optional value specifying one
of three alternative hypotheses against
which the null hypothesis (H

0
:β=ρ=0) will be

tested.

For H
a
: β≠0 and ρ≠0 (default), set Hypoth=0

For H
a
: β<0 and ρ<0, set Hypoth<0

For H
a
: β>0 and ρ>0, set Hypoth>0

A summary of results is stored in the
stat.results variable. (See page 176.)

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Alphabetical Listing 101

102 Alphabetical Listing

Output variable Description

stat.RegEqn Regressionequation: a + b•x

stat.t t-Statistic for significance test

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.df Degrees of freedom

stat.a, stat.b Regression coefficients

stat.s Standard error about the line

stat.SESlope Standard error of slope

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

linSolve() Catalog >
linSolve(SystemOfLinearEqns, Var1,
Var2, ...) ⇒ list

linSolve(LinearEqn1 and LinearEqn2 and
..., Var1, Var2, ...) ⇒ list

linSolve({LinearEqn1, LinearEqn2, ...},
Var1, Var2, ...) ⇒ list

linSolve(SystemOfLinearEqns, {Var1,
Var2, ...}) ⇒ list

linSolve(LinearEqn1 and LinearEqn2 and
..., {Var1, Var2, ...}) ⇒ list

linSolve({LinearEqn1, LinearEgn2, ...},
{Var1, Var2, ...}) ⇒ list

Returns a list of solutions for the variables
Var1, Var2, ...

The first argument must evaluate to a
system of linear equations or a single linear
equation. Otherwise, an argument error
occurs.

For example, evaluating linSolve(x=1
and x=2,x) produces an “Argument
Error” result.

ΔList() Catalog >
ΔList(List1) ⇒ list

Note: You can insert this function from the
keyboard by typing deltaList(...).

Returns a list containing the differences
between consecutive elements in List1.
Each element of List1 is subtracted from
the next element of List1. The resulting list
is always one element shorter than the
original List1.

list►mat() Catalog >
list►mat(List [, elementsPerRow]) ⇒
matrix

Returns a matrix filled row-by-row with the
elements from List.

elementsPerRow, if included, specifies the
number of elements per row. Default is the
number of elements in List (one row).

If List does not fill the resulting matrix,
zeros are added.

Note: You can insert this function from the
computer keyboard by typing list@>mat
(...).

►ln Catalog >
Expr►ln⇒ expression

Causes the input Expr to be converted to an
expression containing only natural logs (ln).

Note: You can insert this operator from the
computer keyboard by typing @>ln.

ln() /u keys
ln(Expr1) ⇒ expression

ln(List1) ⇒ list
If complex formatmode is Real:

Alphabetical Listing 103

104 Alphabetical Listing

ln() /u keys
Returns the natural logarithm of the
argument.

For a list, returns the natural logarithms of
the elements.

If complex formatmode is Rectangular:

ln(squareMatrix1) ⇒ squareMatrix

Returns the matrix natural logarithm of
squareMatrix1. This is not the same as
calculating the natural logarithm of each
element. For information about the
calculation method, refer to cos() on.

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode andRectangular
complex format:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

LnReg Catalog >
LnReg X, Y[, [Freq] [, Category, Include]]

Computes the logarithmic regression y =
a+b•ln(x) on lists X and Y with frequency
Freq. A summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

LnReg Catalog >
Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regressionequation: a+b•ln(x)

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformeddata

stat.r Correlation coefficient for transformeddata (ln(x), y)

stat.Resid Residuals associatedwith the logarithmicmodel

stat.ResidTrans Residuals associatedwith linear fit of transformeddata

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

Local Catalog >
Local Var1[, Var2] [, Var3] ...

Declares the specified vars as local
variables. Those variables exist only during
evaluation of a function and are deleted
when the function finishes execution.

Note: Local variables save memory because
they only exist temporarily. Also, they do
not disturb any existing global variable
values. Local variables must be used for For
loops and for temporarily saving values in a
multi-line function since modifications on
global variables are not allowed in a
function.

Alphabetical Listing 105

106 Alphabetical Listing

Local Catalog >
Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Lock Catalog >
LockVar1[, Var2] [, Var3] ...
LockVar.

Locks the specified variables or variable
group. Locked variables cannot be modified
or deleted.

You cannot lock or unlock the system
variable Ans, and you cannot lock the
system variable groups stat. or tvm.

Note: The Lock command clears the
Undo/Redo history when applied to
unlocked variables.

See unLock, page 197, and getLockInfo(),
page 82.

log() /s keys
log(Expr1[,Expr2]) ⇒ expression

log(List1[,Expr2]) ⇒ list

Returns the base-Expr2 logarithm of the
first argument.

Note: See also Log template, page 2.

For a list, returns the base-Expr2 logarithm
of the elements.

If the second argument is omitted, 10 is
used as the base.

If complex formatmode is Real:

If complex formatmode is Rectangular:

log() /s keys
log(squareMatrix1[,Expr]) ⇒
squareMatrix

Returns the matrix base-Expr logarithm of
squareMatrix1. This is not the same as
calculating the base-Expr logarithm of
each element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

If the base argument is omitted, 10 is used
as base.

In Radian anglemode andRectangular
complex format:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

►logbase Catalog >
Expr►logbase(Expr1) ⇒ expression

Causes the input Expression to be simplified
to an expression using base Expr1.

Note: You can insert this operator from the
computer keyboard by typing @>logbase
(...).

Logistic Catalog >
Logistic X, Y[, [Freq] [, Category, Include]]

Computes the logistic regression y = (c/
(1+a•e-bx)) on lists X and Y with frequency
Freq. A summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Alphabetical Listing 107

108 Alphabetical Listing

Logistic Catalog >
Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regressionequation: c/(1+a•e-bx)

stat.a,
stat.b, stat.c

Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LogisticD Catalog >
LogisticD X, Y [, [Iterations] , [Freq] [,
Category, Include]]

Computes the logistic regression y = (c/
(1+a•e-bx)+d) on lists X and Y with frequency
Freq, using a specified number of
Iterations. A summary of results is stored in
the stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

LogisticD Catalog >
Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regressionequation: c/(1+a•e-bx)+d)

stat.a, stat.b,
stat.c, stat.d

Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

Alphabetical Listing 109

110 Alphabetical Listing

Loop Catalog >
Loop
 Block
EndLoop

Repeatedly executes the statements in
Block. Note that the loop will be executed
endlessly, unless a Goto or Exit instruction
is executed within Block.

Block is a sequence of statements
separated with the “:” character.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

LU Catalog >
LU Matrix, lMatrix, uMatrix, pMatrix
[,Tol]

Calculates the Doolittle LU (lower-upper)
decomposition of a real or complex matrix.
The lower triangular matrix is stored in
lMatrix, the upper triangular matrix in
uMatrix, and the permutation matrix
(which describes the row swaps done
during the calculation) in pMatrix.

lMatrix•uMatrix = pMatrix•matrix

Optionally, any matrix element is treated as
zero if its absolute value is less than Tol.
This tolerance is used only if the matrix has
floating-point entries and does not contain
any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you use/· or set the Auto or
Approximate mode to Approximate,
computations are done using floating-
point arithmetic.

• If Tol is omitted or not used, the default
tolerance is calculated as:
5E⁻14•max(dim(Matrix))•rowNorm
(Matrix)

LU Catalog >
The LU factorization algorithm uses partial
pivoting with row interchanges.

M

mat►list() Catalog >
mat►list(Matrix) ⇒ list

Returns a list filled with the elements in
Matrix. The elements are copied from
Matrix row by row.

Note: You can insert this function from the
computer keyboard by typing mat@>list
(...).

max() Catalog >
max(Expr1, Expr2) ⇒ expression

max(List1, List2) ⇒ list
max(Matrix1,Matrix2) ⇒ matrix

Returns the maximum of the two
arguments. If the arguments are two lists
or matrices, returns a list or matrix
containing the maximum value of each pair
of corresponding elements.

max(List) ⇒ expression

Returns the maximum element in list.
max(Matrix1) ⇒ matrix

Returns a row vector containing the
maximum element of each column in
Matrix1.

Alphabetical Listing 111

112 Alphabetical Listing

max() Catalog >
Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

Note: See also fMax() and min().

mean() Catalog >
mean(List[, freqList]) ⇒ expression

Returns the mean of the elements in List.

Each freqList element counts the number
of consecutive occurrences of the
corresponding element in List.
mean(Matrix1[, freqMatrix]) ⇒ matrix

Returns a row vector of the means of all
the columns inMatrix1.

Each freqMatrix element counts the
number of consecutive occurrences of the
corresponding element inMatrix1.

Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

In Rectangular vector format:

median() Catalog >
median(List[, freqList]) ⇒ expression

Returns the median of the elements in List.

Each freqList element counts the number
of consecutive occurrences of the
corresponding element in List.
median(Matrix1[, freqMatrix]) ⇒ matrix

Returns a row vector containing the
medians of the columns inMatrix1.

Each freqMatrix element counts the
number of consecutive occurrences of the
corresponding element inMatrix1.

median() Catalog >
Notes:

• All entries in the list or matrix must
simplify to numbers.

• Empty (void) elements in the list or
matrix are ignored. For more information
on empty elements, see page 236.

MedMed Catalog >
MedMed X,Y [, Freq] [, Category, Include]]

Computes the median-median line y =
(m•x+b) on lists X and Y with frequency
Freq. A summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Median-median line equation: m•x+b

stat.m,
stat.b

Model coefficients

Alphabetical Listing 113

114 Alphabetical Listing

Output
variable Description

stat.Resid Residuals from themedian-median line

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

mid() Catalog >
mid(sourceString, Start[, Count]) ⇒
string

Returns Count characters from character
string sourceString, beginning with
character number Start.

If Count is omitted or is greater than the
dimension of sourceString, returns all
characters from sourceString, beginning
with character number Start.

Count must be ≥ 0. If Count = 0, returns an
empty string.

mid(sourceList, Start [, Count]) ⇒ list

Returns Count elements from sourceList,
beginning with element number Start.

If Count is omitted or is greater than the
dimension of sourceList, returns all
elements from sourceList, beginning with
element number Start.

Count must be ≥ 0. If Count = 0, returns an
empty list.

mid(sourceStringList, Start[, Count]) ⇒
list

Returns Count strings from the list of
strings sourceStringList, beginning with
element number Start.

min() Catalog >
min(Expr1, Expr2) ⇒ expression

min(List1, List2) ⇒ list
min(Matrix1, Matrix2) ⇒ matrix

Returns the minimum of the two
arguments. If the arguments are two lists
or matrices, returns a list or matrix
containing the minimum value of each pair
of corresponding elements.

min(List) ⇒ expression

Returns the minimum element of List.
min(Matrix1) ⇒ matrix

Returns a row vector containing the
minimum element of each column in
Matrix1.

Note: See also fMin() and max().

mirr() Catalog >
mirr
(financeRate,reinvestRate,CF0,CFList
[,CFFreq])

Financial function that returns the modified
internal rate of return of an investment.

financeRate is the interest rate that you
pay on the cash flow amounts.

reinvestRate is the interest rate at which
the cash flows are reinvested.

CF0 is the initial cash flow at time 0; it
must be a real number.

CFList is a list of cash flow amounts after
the initial cash flow CF0.

CFFreq is an optional list in which each
element specifies the frequency of
occurrence for a grouped (consecutive) cash
flow amount, which is the corresponding
element of CFList. The default is 1; if you
enter values, they must be positive integers
< 10,000.

Alphabetical Listing 115

116 Alphabetical Listing

mirr() Catalog >
Note: See also irr(), page 93.

mod() Catalog >
mod(Expr1, Expr2) ⇒ expression

mod(List1, List2) ⇒ list
mod(Matrix1,Matrix2) ⇒ matrix

Returns the first argument modulo the
second argument as defined by the
identities:

mod(x,0) = x
mod(x,y) = x − y floor(x/y)

When the second argument is non-zero, the
result is periodic in that argument. The
result is either zero or has the same sign as
the second argument.

If the arguments are two lists or two
matrices, returns a list or matrix containing
the modulo of each pair of corresponding
elements.

Note: See also remain(), page 149

mRow() Catalog >
mRow(Expr,Matrix1, Index) ⇒ matrix

Returns a copy of Matrix1 with each
element in row Index of Matrix1multiplied
by Expr.

mRowAdd() Catalog >
mRowAdd(Expr,Matrix1, Index1, Index2)
⇒ matrix

Returns a copy of Matrix1 with each
element in row Index2 of Matrix1 replaced
with:

Expr • row Index1 + row Index2

MultReg Catalog >
MultReg Y, X1[,X2[,X3,…[,X10]]]

Calculates multiple linear regression of list Y
on lists X1, X2, …, X10. A summary of
results is stored in the stat.results variable.
(See page 176.)

All the lists must have equal dimension.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.RegEqn Regression Equation: b0+b1•x1+b2•x2+ ...

stat.b0, stat.b1, ... Regression coefficients

stat.R2 Coefficient ofmultiple determination

stat.yList yList = b0+b1•x1+ ...

stat.Resid Residuals from the regression

MultRegIntervals Catalog >
MultRegIntervals Y, X1[, X2[, X3,…[,
X10]]], XValList[, CLevel]

Computes a predicted y-value, a level C
prediction interval for a single observation,
and a level C confidence interval for the
mean response.

A summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.RegEqn Regression Equation: b0+b1•x1+b2•x2+ ...

stat.y A point estimate: y = b0 + b1 • xl + ... for XValList

stat.dfError Error degrees of freedom

Alphabetical Listing 117

118 Alphabetical Listing

Output variable Description

stat.CLower, stat.CUpper Confidence interval for a mean response

stat.ME Confidence intervalmargin of error

stat.SE Standard error ofmean response

stat.LowerPred,
stat.UpperrPred

Prediction interval for a single observation

stat.MEPred Prediction intervalmargin of error

stat.SEPred Standard error for prediction

stat.bList List of regression coefficients, {b0,b1,b2,...}

stat.Resid Residuals from the regression

MultRegTests Catalog >
MultRegTests Y, X1[, X2[, X3,…[, X10]]]

Multiple linear regression test computes a
multiple linear regression on the given data
and provides the global F test statistic and t
test statistics for the coefficients.

A summary of results is stored in the
stat.results variable. (See page 176.)

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Outputs

Output
variable Description

stat.RegEqn Regression Equation: b0+b1•x1+b2•x2+ ...

stat.F GlobalF test statistic

stat.PVal P-value associatedwith globalF statistic

stat.R2 Coefficient ofmultiple determination

stat.AdjR2 Adjusted coefficient ofmultiple determination

stat.s Standarddeviationof the error

stat.DW Durbin-Watson statistic; used to determinewhether first-order auto correlation is
present in themodel

Output
variable Description

stat.dfReg Regressiondegrees of freedom

stat.SSReg Regression sumof squares

stat.MSReg Regressionmean square

stat.dfError Error degrees of freedom

stat.SSError Error sumof squares

stat.MSError Error mean square

stat.bList {b0,b1,...} List of coefficients

stat.tList List of t statistics, one for each coefficient in the bList

stat.PList List P-values for each t statistic

stat.SEList List of standard errors for coefficients in bList

stat.yList yList = b0+b1•x1+ . . .

stat.Resid Residuals from the regression

stat.sResid Standardized residuals; obtainedby dividing a residual by its standarddeviation

stat.CookDist Cook’s distance; measure of the influence of anobservationbasedon the residual
and leverage

stat.Leverage Measure of how far the values of the independent variable are from their mean
values

N

nand /= keys
BooleanExpr1 nand BooleanExpr2 returns
Boolean expression
BooleanList1 nand BooleanList2 returns
Boolean list
BooleanMatrix1 nand BooleanMatrix2
returns Boolean matrix

Returns the negation of a logical and
operation on the two arguments. Returns
true, false, or a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

Alphabetical Listing 119

120 Alphabetical Listing

nand /= keys
Integer1 nand Integer2⇒ integer

Compares two real integers bit-by-bit using
a nand operation. Internally, both integers
are converted to signed, 64-bit binary
numbers. When corresponding bits are
compared, the result is 0 if both bits are 1;
otherwise, the result is 1. The returned
value represents the bit results, and is
displayed according to the Base mode.

You can enter the integers in any number
base. For a binary or hexadecimal entry, you
must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as
decimal (base 10).

nCr() Catalog >
nCr(Expr1, Expr2) ⇒ expression

For integer Expr1 and Expr2 with Expr1 ≥
Expr2 ≥ 0, nCr() is the number of
combinations of Expr1 things taken Expr2
at a time. (This is also known as a binomial
coefficient.) Both arguments can be
integers or symbolic expressions.

nCr(Expr, 0) ⇒ 1

nCr(Expr, negInteger) ⇒ 0

nCr(Expr, posInteger) ⇒ Expr•(Expr−1) ...
(Expr−posInteger+1) / posInteger!

nCr(Expr, nonInteger) ⇒ expression! /
((Expr−nonInteger)!•nonInteger!)

nCr(List1, List2) ⇒ list

Returns a list of combinations based on the
corresponding element pairs in the two
lists. The arguments must be the same size
list.

nCr(Matrix1,Matrix2) ⇒ matrix

nCr() Catalog >
Returns a matrix of combinations based on
the corresponding element pairs in the two
matrices. The arguments must be the same
size matrix.

nDerivative() Catalog >
nDerivative(Expr1,Var=Value[,Order])
⇒ value

nDerivative(Expr1,Var[,Order])
|Var=Value⇒ value

Returns the numerical derivative calculated
using auto differentiation methods.

When Value is specified, it overrides any
prior variable assignment or any current “|”
substitution for the variable.

Order of the derivative must be 1 or 2.

newList() Catalog >
newList(numElements) ⇒ list

Returns a list with a dimension of
numElements. Each element is zero.

newMat() Catalog >
newMat(numRows, numColumns) ⇒
matrix

Returns a matrix of zeros with the
dimension numRows by numColumns.

nfMax() Catalog >
nfMax(Expr, Var) ⇒ value
nfMax(Expr, Var, lowBound) ⇒ value
nfMax(Expr, Var, lowBound, upBound) ⇒
value
nfMax(Expr, Var) |
lowBound≤Var≤upBound⇒ value

Alphabetical Listing 121

122 Alphabetical Listing

nfMax() Catalog >
Returns a candidate numerical value of
variable Var where the local maximum of
Expr occurs.

If you supply lowBound and upBound, the
function looks in the closed interval
[lowBound,upBound] for the local
maximum.

Note: See also fMax() and d().

nfMin() Catalog >
nfMin(Expr, Var) ⇒ value
nfMin(Expr, Var, lowBound) ⇒ value
nfMin(Expr, Var, lowBound, upBound) ⇒
value
nfMin(Expr, Var) |
lowBound≤Var≤upBound⇒ value

Returns a candidate numerical value of
variable Var where the local minimum of
Expr occurs.

If you supply lowBound and upBound, the
function looks in the closed interval
[lowBound,upBound] for the local
minimum.

Note: See also fMin() and d().

nInt() Catalog >
nInt(Expr1, Var, Lower, Upper) ⇒
expression

If the integrand Expr1 contains no variable
other than Var, and if Lower andUpper
are constants, positive ∞, or negative ∞,
then nInt() returns an approximation of ∫
(Expr1, Var, Lower, Upper). This
approximation is a weighted average of
some sample values of the integrand in the
interval Lower<Var<Upper.

nInt() Catalog >
The goal is six significant digits. The
adaptive algorithm terminates when it
seems likely that the goal has been
achieved, or when it seems unlikely that
additional samples will yield a worthwhile
improvement.

A warning is displayed (“Questionable
accuracy”) when it seems that the goal has
not been achieved.

Nest nInt() to do multiple numeric
integration. Integration limits can depend
on integration variables outside them.

Note: See also ∫(), page 221.

nom() Catalog >
nom(effectiveRate,CpY) ⇒ value

Financial function that converts the annual
effective interest rate effectiveRate to a
nominal rate, given CpY as the number of
compounding periods per year.

effectiveRate must be a real number, and
CpY must be a real number > 0.

Note: See also eff(), page 58.

nor /= keys
BooleanExpr1 nor BooleanExpr2 returns
Boolean expression
BooleanList1 nor BooleanList2 returns
Boolean list
BooleanMatrix1 nor BooleanMatrix2
returns Boolean matrix

Returns the negation of a logical or
operation on the two arguments. Returns
true, false, or a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

Alphabetical Listing 123

124 Alphabetical Listing

nor /= keys
Integer1 nor Integer2⇒ integer

Compares two real integers bit-by-bit using
a nor operation. Internally, both integers
are converted to signed, 64-bit binary
numbers. When corresponding bits are
compared, the result is 1 if both bits are 1;
otherwise, the result is 0. The returned
value represents the bit results, and is
displayed according to the Base mode.

You can enter the integers in any number
base. For a binary or hexadecimal entry, you
must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as
decimal (base 10).

norm() Catalog >
norm(Matrix) ⇒ expression

norm(Vector) ⇒ expression

Returns the Frobenius norm.

normalLine() Catalog >
normalLine(Expr1,Var,Point) ⇒
expression

normalLine(Expr1,Var=Point) ⇒
expression

Returns the normal line to the curve
represented by Expr1 at the point specified
in Var=Point.

Make sure that the independent variable is
not defined. For example, If f1(x):=5 and
x:=3, then normalLine(f1(x),x,2) returns
“false.”

normCdf() Catalog >
normCdf(lowBound,upBound[,μ[,σ]]) ⇒
number if lowBound and upBound are
numbers, list if lowBound and upBound are
lists

Computes the normal distribution probability
between lowBound and upBound for the
specified μ (default=0) and σ (default=1).

For P(X ≤ upBound), set lowBound = ⁻∞.

normPdf() Catalog >
normPdf(XVal[,μ[,σ]]) ⇒ number if XVal is
a number, list if XVal is a list

Computes the probability density function
for the normal distribution at a specified
XVal value for the specified μ and σ.

not Catalog >
not BooleanExpr⇒ Boolean expression

Returns true, false, or a simplified form of
the argument.

not Integer1⇒ integer

Returns the one’s complement of a real
integer. Internally, Integer1 is converted to
a signed, 64-bit binary number. The value of
each bit is flipped (0 becomes 1, and vice
versa) for the one’s complement. Results
are displayed according to the Base mode.

You can enter the integer in any number
base. For a binary or hexadecimal entry, you
must use the 0b or 0h prefix, respectively.
Without a prefix, the integer is treated as
decimal (base 10).

If you enter a decimal integer that is too
large for a signed, 64-bit binary form, a
symmetric modulo operation is used to
bring the value into the appropriate range.
For more information, see►Base2, page
17.

InHex basemode:

Important: Zero, not the letter O.

In Bin basemode:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

Note: A binary entry canhave up to 64 digits
(not counting the 0bprefix). A hexadecimal
entry canhave up to 16 digits.

Alphabetical Listing 125

126 Alphabetical Listing

nPr() Catalog >
nPr(Expr1, Expr2) ⇒ expression

For integer Expr1 and Expr2 with Expr1 ≥
Expr2 ≥ 0, nPr() is the number of
permutations of Expr1 things taken Expr2
at a time. Both arguments can be integers
or symbolic expressions.

nPr(Expr, 0⇒ 1

nPr(Expr, negInteger) ⇒ 1 / ((Expr+1)•
(Expr+2) ... (expression−negInteger))

nPr(Expr, posInteger) ⇒ Expr•(Expr−1) ...
(Expr−posInteger+1)

nPr(Expr, nonInteger) ⇒ Expr! /
(Expr−nonInteger)!
nPr(List1, List2) ⇒ list

Returns a list of permutations based on the
corresponding element pairs in the two
lists. The arguments must be the same size
list.

nPr(Matrix1,Matrix2) ⇒ matrix

Returns a matrix of permutations based on
the corresponding element pairs in the two
matrices. The arguments must be the same
size matrix.

npv() Catalog >
npv(InterestRate,CFO,CFList[,CFFreq])

Financial function that calculates net
present value; the sum of the present
values for the cash inflows and outflows. A
positive result for npv indicates a profitable
investment.

InterestRate is the rate by which to
discount the cash flows (the cost of money)
over one period.

CF0 is the initial cash flow at time 0; it
must be a real number.

CFList is a list of cash flow amounts after
the initial cash flow CF0.

npv() Catalog >
CFFreq is a list in which each element
specifies the frequency of occurrence for a
grouped (consecutive) cash flow amount,
which is the corresponding element of
CFList. The default is 1; if you enter
values, they must be positive integers <
10,000.

nSolve() Catalog >
nSolve(Equation,Var[=Guess]) ⇒ number
or error_string

nSolve(Equation,Var[=Guess],lowBound)
⇒ number or error_string

nSolve(Equation,Var
[=Guess],lowBound,upBound) ⇒ number
or error_string

nSolve(Equation,Var[=Guess]) |
lowBound≤Var≤upBound⇒ number or
error_string

Iteratively searches for one approximate
real numeric solution to Equation for its
one variable. Specify the variable as:

variable
– or –
variable = real number

For example, x is valid and so is x=3.

Note: If there aremultiple solutions, you can
use a guess to help find a particular solution.

nSolve() is often much faster than solve() or
zeros(), particularly if the “|” operator is
used to constrain the search to a small
interval containing exactly one simple
solution.

nSolve() attempts to determine either one
point where the residual is zero or two
relatively close points where the residual
has opposite signs and the magnitude of
the residual is not excessive. If it cannot
achieve this using a modest number of
sample points, it returns the string “no
solution found.”

Alphabetical Listing 127

128 Alphabetical Listing

nSolve() Catalog >
Note: See also cSolve(), cZeros(), solve(),
and zeros().

O

OneVar Catalog >
OneVar [1,]X[,[Freq][,Category,Include]]

OneVar [n,]X1,X2[X3[,…[,X20]]]

Calculates 1-variable statistics on up to 20
lists. A summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric category codes
for the corresponding X values.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

An empty (void) element in any of the lists
X, Freq, or Category results in a void for
the corresponding element of all those lists.
An empty element in any of the lists X1
through X20 results in a void for the
corresponding element of all those lists. For
more information on empty elements, see
page 236.

Output variable Description

stat.v Meanof x values

stat.Σx Sumof x values

stat.Σx2 Sumof x2 values

Output variable Description

stat.sx Sample standarddeviationof x

stat.σx Population standarddeviationof x

stat.n Number of data points

stat.MinX Minimumof x values

stat.Q1X 1stQuartile of x

stat.MedianX Medianof x

stat.Q3X 3rdQuartile of x

stat.MaxX Maximumof x values

stat.SSX Sumof squares of deviations from themeanof x

or Catalog >
BooleanExpr1 or BooleanExpr2 returns
Boolean expression
BooleanList1 or BooleanList2 returns
Boolean list
BooleanMatrix1 or BooleanMatrix2
returns Boolean matrix

Returns true or false or a simplified form of
the original entry.

Returns true if either or both expressions
simplify to true. Returns false only if both
expressions evaluate to false.

Note: See xor.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Integer1 or Integer2⇒ integer InHex basemode:

Important: Zero, not the letter O.

In Bin basemode:

Alphabetical Listing 129

130 Alphabetical Listing

or Catalog >
Compares two real integers bit-by-bit using
an or operation. Internally, both integers
are converted to signed, 64-bit binary
numbers. When corresponding bits are
compared, the result is 1 if either bit is 1;
the result is 0 only if both bits are 0. The
returned value represents the bit results,
and is displayed according to the Base
mode.

You can enter the integers in any number
base. For a binary or hexadecimal entry, you
must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as
decimal (base 10).

If you enter a decimal integer that is too
large for a signed, 64-bit binary form, a
symmetric modulo operation is used to
bring the value into the appropriate range.
For more information, see►Base2, page
17.

Note: See xor.

Note: A binary entry canhave up to 64 digits
(not counting the 0bprefix). A hexadecimal
entry canhave up to 16 digits.

ord() Catalog >
ord(String) ⇒ integer
ord(List1) ⇒ list

Returns the numeric code of the first
character in character string String, or a list
of the first characters of each list element.

P

P►Rx() Catalog >
P►Rx(rExpr, θExpr) ⇒ expression
P►Rx(rList, θList) ⇒ list
P►Rx(rMatrix, θMatrix) ⇒ matrix

Returns the equivalent x-coordinate of the
(r, θ) pair.

In Radian anglemode:

P►Rx() Catalog >
Note: The θ argument is interpreted as
either a degree, gradian or radian angle,
according to the current angle mode. If the
argument is an expression, you can use °, G,
or r to override the angle mode setting
temporarily.

Note: You can insert this function from the
computer keyboard by typing P@>Rx(...).

P►Ry() Catalog >
P►Ry(rExpr, θExpr) ⇒ expression

P►Ry(rList, θList) ⇒ list
P►Ry(rMatrix, θMatrix) ⇒ matrix

Returns the equivalent y-coordinate of the
(r, θ) pair.

Note: The θ argument is interpreted as
either a degree, radian or gradian angle,
according to the current angle mode. If the
argument is an expression, you can use °, G,
or r to override the angle mode setting
temporarily.

Note: You can insert this function from the
computer keyboard by typing P@>Ry(...).

In Radian anglemode:

PassErr Catalog >
PassErr

Passes an error to the next level.

If system variable errCode is zero, PassErr
does not do anything.

The Else clause of the Try...Else...EndTry
block should use ClrErr or PassErr. If the
error is to be processed or ignored, use
ClrErr. If what to do with the error is not
known, use PassErr to send it to the next
error handler. If there are no more pending
Try...Else...EndTry error handlers, the error
dialog box will be displayed as normal.

For anexample of PassErr, See Example 2
under the Try command, page 191.

Alphabetical Listing 131

132 Alphabetical Listing

PassErr Catalog >
Note: See also ClrErr, page 25, and Try, page
191.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product guidebook.

piecewise() Catalog >
piecewise(Expr1[, Cond1[, Expr2 [, Cond2
[, …]]]])

Returns definitions for a piecewise function
in the form of a list. You can also create
piecewise definitions by using a template.

Note: See also Piecewise template, page 3.

poissCdf() Catalog >
poissCdf(λ,lowBound,upBound) ⇒ number
if lowBound and upBound are numbers, list
if lowBound and upBound are lists

poissCdf(λ,upBound)for P(0≤X≤upBound) ⇒
number if upBound is a number, list if
upBound is a list

Computes a cumulative probability for the
discrete Poisson distribution with specified
mean λ.

For P(X ≤ upBound), set lowBound=0

poissPdf() Catalog >
poissPdf(λ,XVal) ⇒ number if XVal is a
number, list if XVal is a list

Computes a probability for the discrete
Poisson distribution with the specified mean
λ.

►Polar Catalog >
Vector►Polar

Note: You can insert
this operator from the
computer keyboard by
typing @>Polar.

Displays vector in polar
form [r∠θ]. The vector
must be of dimension 2
and can be a row or a
column.

Note:►Polar is a
display-format
instruction, not a
conversion function.
You can use it only at
the end of an entry
line, and it does not
update ans.

Note: See also►Rect,
page 146.

complexValue►Polar

Displays
complexVector in
polar form.

• Degree angle mode
returns (r∠θ).

• Radian angle mode
returns reiθ.

complexValue can
have any complex
form. However, an reiθ
entry causes an error in
Degree angle mode.

Note: You must use the
parentheses for an
(r∠θ) polar entry.

In Radian anglemode:

InGradian anglemode:

InDegree anglemode:

polyCoeffs() Catalog >
polyCoeffs(Poly [,Var]) ⇒ list

Alphabetical Listing 133

134 Alphabetical Listing

polyCoeffs() Catalog >
Returns a list of the coefficients of
polynomial Poly with respect to variable
Var.

Poly must be a polynomial expression in
Var. We recommend that you do not omit
Var unless Poly is an expression in a single
variable.

Expands the polynomial and selects x for the
omittedVar.

polyDegree() Catalog >
polyDegree(Poly [,Var]) ⇒ value

Returns the degree of polynomial
expression Poly with respect to variable
Var. If you omit Var, the polyDegree()
function selects a default from the
variables contained in the polynomial Poly.

Poly must be a polynomial expression in
Var. We recommend that you do not omit
Var unless Poly is an expression in a single
variable.

Constant polynomials

The degree canbe extractedeven though
the coefficients cannot. This is because the
degree canbe extractedwithout expanding
the polynomial.

polyEval() Catalog >
polyEval(List1, Expr1) ⇒ expression
polyEval(List1, List2) ⇒ expression

Interprets the first argument as the
coefficient of a descending-degree
polynomial, and returns the polynomial
evaluated for the value of the second
argument.

polyGcd() Catalog >
polyGcd(Expr1,Expr2) ⇒ expression

Returns greatest common divisor of the
two arguments.

Expr1 and Expr2must be polynomial
expressions.

List, matrix, and Boolean arguments are not
allowed.

polyQuotient() Catalog >
polyQuotient(Poly1,Poly2 [,Var]) ⇒
expression

Returns the quotient of polynomial Poly1
divided by polynomial Poly2 with respect to
the specified variable Var.

Poly1 and Poly2must be polynomial
expressions in Var. We recommend that
you do not omit Var unless Poly1 and
Poly2 are expressions in the same single
variable.

Alphabetical Listing 135

136 Alphabetical Listing

polyRemainder() Catalog >
polyRemainder(Poly1,Poly2 [,Var]) ⇒
expression

Returns the remainder of polynomial Poly1
divided by polynomial Poly2 with respect to
the specified variable Var.

Poly1 and Poly2must be polynomial
expressions in Var. We recommend that
you do not omit Var unless Poly1 and
Poly2 are expressions in the same single
variable.

polyRoots() Catalog >
polyRoots(Poly,Var) ⇒ list

polyRoots(ListOfCoeffs) ⇒ list

The first syntax, polyRoots(Poly,Var),
returns a list of real roots of polynomial
Poly with respect to variable Var. If no real
roots exist, returns an empty list: { }.

Poly must be a polynomial in one variable.

The second syntax, polyRoots
(ListOfCoeffs), returns a list of real roots
for the coefficients in ListOfCoeffs.

Note: See also cPolyRoots(), page 36.

PowerReg Catalog >
PowerReg X,Y[, Freq][, Category, Include]]

Computes the power regressiony = (a•(x)b)
on lists X and Y with frequency Freq. A
summary of results is stored in the
stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

PowerReg Catalog >
Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regressionequation: a•(x)b

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformeddata

stat.r Correlation coefficient for transformeddata (ln(x), ln(y))

stat.Resid Residuals associatedwith the power model

stat.ResidTrans Residuals associatedwith linear fit of transformeddata

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

Prgm Catalog >
Prgm
 Block
EndPrgm

Template for creating a user-defined
program. Must be used with the Define,
Define LibPub, or Define LibPriv command.

Calculate GCDanddisplay intermediate
results.

Alphabetical Listing 137

138 Alphabetical Listing

Prgm Catalog >
Block can be a single statement, a series
of statements separated with the “:”
character, or a series of statements on
separate lines.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

prodSeq() See Π (), page 223.

Product (PI) See Π (), page 223.

product() Catalog >
product(List[, Start[, End]]) ⇒ expression

Returns the product of the elements
contained in List. Start and End are
optional. They specify a range of elements.

product(Matrix1[, Start[, End]]) ⇒ matrix

Returns a row vector containing the
products of the elements in the columns of
Matrix1. Start and end are optional. They
specify a range of rows.

Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

propFrac() Catalog >
propFrac(Expr1[, Var]) ⇒ expression

propFrac(rational_number) returns
rational_number as the sum of an integer
and a fraction having the same sign and a
greater denominator magnitude than
numerator magnitude.

propFrac(rational_expression,Var) returns
the sum of proper ratios and a polynomial
with respect to Var. The degree of Var in
the denominator exceeds the degree of Var
in the numerator in each proper ratio.
Similar powers of Var are collected. The
terms and their factors are sorted with Var
as the main variable.

If Var is omitted, a proper fraction
expansion is done with respect to the most
main variable. The coefficients of the
polynomial part are then made proper with
respect to their most main variable first
and so on.

For rational expressions, propFrac() is a
faster but less extreme alternative to
expand().

You can use the propFrac() function to
represent mixed fractions and demonstrate
addition and subtraction of mixed fractions.

Q

QR Catalog >
QR Matrix, qMatrix, rMatrix[, Tol]

Calculates the Householder QR factorization
of a real or complex matrix. The resulting Q
and R matrices are stored to the specified
Matrix. The Q matrix is unitary. The R
matrix is upper triangular.

The floating-point number (9.) inm1 causes
results to be calculated in floating-point
form.

Alphabetical Listing 139

140 Alphabetical Listing

QR Catalog >
Optionally, any matrix element is treated as
zero if its absolute value is less than Tol.
This tolerance is used only if the matrix has
floating-point entries and does not contain
any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you use/· or set the Auto or
Approximate mode to Approximate,
computations are done using floating-
point arithmetic.

• If Tol is omitted or not used, the default
tolerance is calculated as:
5E−14 •max(dim(Matrix)) •rowNorm
(Matrix)

The QR factorization is computed
numerically using Householder
transformations. The symbolic solution is
computed using Gram-Schmidt. The
columns in qMatName are the orthonormal
basis vectors that span the space defined by
matrix.

QuadReg Catalog >
QuadReg X,Y[, Freq][, Category, Include]]

Computes the quadratic polynomial
regression y=a•x2+b•x+c on lists X and Y
with frequency Freq. A summary of results
is stored in the stat.results variable. (See
page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

QuadReg Catalog >
Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable

Description

stat.RegEqn Regressionequation: a•x2+b•x+c

stat.a,
stat.b, stat.c

Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

QuartReg Catalog >
QuartReg X,Y[, Freq][, Category, Include]]

Computes the quartic polynomial regression
y = a•x4+b•x3+c• x2+d•x+e on lists X and Y
with frequency Freq. A summary of results
is stored in the stat.results variable. (See
page 176.)

All the lists must have equal dimension
except for Include.

Alphabetical Listing 141

142 Alphabetical Listing

QuartReg Catalog >
X and Y are lists of independent and
dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.RegEqn Regressionequation: a•x4+b•x3+c• x2+d•x+e

stat.a, stat.b,
stat.c, stat.d,
stat.e

Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

R

R►Pθ() Catalog >
R►Pθ (xExpr, yExpr) ⇒ expression

R►Pθ (xList, yList) ⇒ list
R►Pθ (xMatrix, yMatrix) ⇒ matrix

InDegree anglemode:

R►Pθ() Catalog >
Returns the equivalent θ-coordinate of the
(x,y) pair arguments.

Note: The result is returned as a degree,
gradian or radian angle, according to the
current angle mode setting.

Note: You can insert this function from the
computer keyboard by typing R@>Ptheta
(...).

InGradian anglemode:

In Radian anglemode:

R►Pr() Catalog >
R►Pr (xExpr, yExpr) ⇒ expression

R►Pr (xList, yList) ⇒ list
R►Pr (xMatrix, yMatrix) ⇒ matrix

Returns the equivalent r-coordinate of the
(x,y) pair arguments.

Note: You can insert this function from the
computer keyboard by typing R@>Pr(...).

In Radian anglemode:

►Rad Catalog >
Expr1►Rad⇒ expression
Converts the argument to radian angle
measure.

Note: You can insert this operator from the
computer keyboard by typing @>Rad.

InDegree anglemode:

InGradian anglemode:

rand() Catalog >
rand() ⇒ expression
rand(#Trials) ⇒ list

Set the random-number seed.

Alphabetical Listing 143

144 Alphabetical Listing

rand() Catalog >
rand() returns a random value between 0
and 1.

rand(#Trials) returns a list containing
#Trials random values between 0 and 1.

randBin() Catalog >
randBin(n, p) ⇒ expression
randBin(n, p, #Trials) ⇒ list

randBin(n, p) returns a random real number
from a specified Binomial distribution.

randBin(n, p, #Trials) returns a list
containing #Trials random real numbers
from a specified Binomial distribution.

randInt() Catalog >
randInt
(lowBound,upBound)
⇒ expression
randInt
(lowBound,upBound
,#Trials) ⇒ list

randInt
(lowBound,upBound)
returns a random
integer within the
range specified by
lowBound and
upBound integer
bounds.

randInt
(lowBound,upBound
,#Trials) returns a
list containing
#Trials random
integers within the
specified range.

randMat() Catalog >
randMat(numRows, numColumns) ⇒
matrix

Returns a matrix of integers between -9
and 9 of the specified dimension.

Both arguments must simplify to integers. Note: The values in this matrix will change
each time youpress·.

randNorm() Catalog >
randNorm(μ, σ) ⇒ expression
randNorm(μ, σ, #Trials) ⇒ list

randNorm(μ, σ) returns a decimal number
from the specified normal distribution. It
could be any real number but will be heavily
concentrated in the interval [μ−3•σ, μ+3•σ].

randNorm(μ, σ, #Trials) returns a list
containing #Trials decimal numbers from
the specified normal distribution.

randPoly() Catalog >
randPoly(Var, Order) ⇒ expression

Returns a polynomial in Var of the
specifiedOrder. The coefficients are
random integers in the range −9 through 9.
The leading coefficient will not be zero.

Order must be 0–99.

randSamp() Catalog >
randSamp(List,#Trials[,noRepl]) ⇒ list

Returns a list containing a random sample
of #Trials trials from List with an option
for sample replacement (noRepl=0), or no
sample replacement (noRepl=1). The
default is with sample replacement.

Alphabetical Listing 145

146 Alphabetical Listing

RandSeed Catalog >
RandSeed Number

If Number = 0, sets the seeds to the factory
defaults for the random-number generator.
If Number ≠ 0, it is used to generate two
seeds, which are stored in system variables
seed1 and seed2.

real() Catalog >
real(Expr1) ⇒ expression

Returns the real part of the argument.

Note: All undefined variables are treated as
real variables. See also imag(), page 88.

real(List1) ⇒ list

Returns the real parts of all elements.

real(Matrix1) ⇒ matrix

Returns the real parts of all elements.

►Rect Catalog >
Vector►Rect

Note: You can insert this operator from the
computer keyboard by typing @>Rect.

Displays Vector in rectangular form [x, y,
z]. The vector must be of dimension 2 or 3
and can be a row or a column.

Note:►Rect is a display-format instruction,
not a conversion function. You can use it
only at the end of an entry line, and it does
not update ans.

Note: See also►Polar, page 133.

complexValue►Rect

Displays complexValue in rectangular form
a+bi. The complexValue can have any
complex form. However, an reiθ entry
causes an error in Degree angle mode.

Note: You must use parentheses for an
(r∠θ) polar entry.

In Radian anglemode:

►Rect Catalog >

InGradian anglemode:

InDegree anglemode:

Note: To type∠ , select it from the symbol
list in the Catalog.

ref() Catalog >
ref(Matrix1[, Tol]) ⇒ matrix

Returns the row echelon form of Matrix1.

Optionally, any matrix element is treated as
zero if its absolute value is less than Tol.
This tolerance is used only if the matrix has
floating-point entries and does not contain
any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you use/· or set the Auto or
Approximate mode to Approximate,
computations are done using floating-
point arithmetic.

• If Tol is omitted or not used, the default
tolerance is calculated as:
5E−14 •max(dim(Matrix1)) •rowNorm
(Matrix1)

Avoid undefined elements inMatrix1. They
can lead to unexpected results.

For example, if a is undefined in the
following expression, a warning message
appears and the result is shown as:

Alphabetical Listing 147

148 Alphabetical Listing

ref() Catalog >
The warning appears because the
generalized element 1/a would not be valid
for a=0.

You can avoid this by storing a value to a
beforehand or by using the constraint (“|”)
operator to substitute a value, as shown in
the following example.

Note: See also rref(), page 156.

RefreshProbeVars Catalog >
RefreshProbeVars

Allows you to access sensor data from all
connected sensor probes in your TI-Basic
program.

StatusVar
Value Status

statusVar
=0

Normal (continue with the
program)

statusVar
=1

The Vernier DataQuest™
application is in data collection
mode.
Note: The Vernier DataQuest™
application must be in meter
mode for this command to work.

statusVar
=2

The Vernier DataQuest™
application is not launched.

statusVar
=3

The Vernier DataQuest™
application is launched, but you
have not connected any probes.

Example

Define temp()=

Prgm

© Check if system is ready

RefreshProbeVars status

If status=0 Then

Disp "ready"

For n,1,50

RefreshProbeVars status

temperature:=meter.temperature

Disp "Temperature:
",temperature

If temperature>30 Then

Disp "Too hot"

EndIf

© Wait for 1 second between
samples

Wait 1

EndFor

RefreshProbeVars Catalog >
Else

Disp "Not ready. Try again
later"

EndIf

EndPrgm

Note: This can also be used with TI-
Innovator™ Hub.

remain() Catalog >
remain(Expr1, Expr2) ⇒ expression

remain(List1, List2) ⇒ list
remain(Matrix1,Matrix2) ⇒ matrix

Returns the remainder of the first
argument with respect to the second
argument as defined by the identities:

remain(x,0) x
remain(x,y) x−y•iPart(x/y)
As a consequence, note that remain(−x,y) −
remain(x,y). The result is either zero or it
has the same sign as the first argument.

Note: See alsomod(), page 116.

Request Catalog >
Request promptString, var[, DispFlag
[, statusVar]]

Request promptString, func(arg1, ...argn)
[, DispFlag [, statusVar]]

Programming command: Pauses the
program and displays a dialog box
containing the message promptString and
an input box for the user’s response.

When the user types a response and clicks
OK, the contents of the input box are
assigned to variable var.

Define a program:

Define request_demo()=Prgm
 Request “Radius: ”,r
 Disp “Area = “,pi*r2
EndPrgm

Run the programand type a response:

request_demo()

Alphabetical Listing 149

150 Alphabetical Listing

Request Catalog >
If the user clicks Cancel, the program
proceeds without accepting any input. The
program uses the previous value of var if
var was already defined.

The optional DispFlag argument can be
any expression.

• IfDispFlag is omitted or evaluates to 1,
the prompt message and user’s response
are displayed in the Calculator history.

• IfDispFlag evaluates to 0, the prompt
and response are not displayed in the
history.

Result after selecting OK:

Radius: 6/2
Area= 28.2743

The optional statusVar argument gives the
program a way to determine how the user
dismissed the dialog box. Note that
statusVar requires the DispFlag argument.

• If the user clicked OK or pressed Enter or
Ctrl+Enter, variable statusVar is set to a
value of 1.

• Otherwise, variable statusVar is set to a
value of 0.

The func() argument allows a program to
store the user’s response as a function
definition. This syntax operates as if the
user executed the command:

 Define func(arg1, ...argn) = user’s
response

The program can then use the defined
function func(). The promptString should
guide the user to enter an appropriate
user’s response that completes the
function definition.

Note: You can use the Request command
within a user-defined program but not
within a function.

To stop a program that contains a Request
command inside an infinite loop:

• Handheld: Hold down thec key and
press· repeatedly.

Define a program:

Define polynomial()=Prgm
 Request "Enter a polynomial in
x:",p(x)
 Disp "Real roots are:",polyRoots
(p(x),x)
EndPrgm

Run the programand type a response:

polynomial()

Result after entering x^3+3x+1 and selecting
OK:

Real roots are: {-0.322185}

Request Catalog >
• Windows®: Hold down the F12 key and

press Enter repeatedly.
• Macintosh®: Hold down the F5 key and

press Enter repeatedly.
• iPad®: The app displays a prompt. You

can continue waiting or cancel.

Note: See also RequestStr, page 151.

RequestStr Catalog >
RequestStr promptString, var[, DispFlag]

Programming command: Operates
identically to the first syntax of the Request
command, except that the user’s response
is always interpreted as a string. By
contrast, the Request command interprets
the response as an expression unless the
user encloses it in quotation marks (““).

Note: You can use the RequestStr command
within a user-defined program but not
within a function.

To stop a program that contains a
RequestStr command inside an infinite loop:

• Handheld: Hold down thec key and
press· repeatedly.

• Windows®: Hold down the F12 key and
press Enter repeatedly.

• Macintosh®: Hold down the F5 key and
press Enter repeatedly.

• iPad®: The app displays a prompt. You
can continue waiting or cancel.

Note: See also Request, page 149.

Define a program:

Define requestStr_demo()=Prgm
 RequestStr “Your name:”,name,0
 Disp “Response has “,dim(name),”
characters.”
EndPrgm

Run the programand type a response:

requestStr_demo()

Result after selecting OK (Note that the
DispFlag argumentof 0 omits the prompt
and response from the history):

requestStr_demo()

Response has 5 characters.

Alphabetical Listing 151

152 Alphabetical Listing

Return Catalog >
Return [Expr]

Returns Expr as the result of the function.
Use within a Func...EndFunc block.

Note: Use Return without an argument
within a Prgm...EndPrgm block to exit a
program.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

right() Catalog >
right(List1[, Num]) ⇒ list

Returns the rightmost Num elements
contained in List1.

If you omit Num, returns all of List1.
right(sourceString[, Num]) ⇒ string

Returns the rightmost Num characters
contained in character string sourceString.

If you omit Num, returns all of
sourceString.
right(Comparison) ⇒ expression

Returns the right side of an equation or
inequality.

rk23 () Catalog >
rk23(Expr, Var, depVar, {Var0, VarMax},
depVar0, VarStep [, diftol]) ⇒ matrix

rk23(SystemOfExpr, Var, ListOfDepVars,
{Var0, VarMax}, ListOfDepVars0,
VarStep[, diftol]) ⇒ matrix

rk23(ListOfExpr, Var, ListOfDepVars,
{Var0, VarMax}, ListOfDepVars0,
VarStep[, diftol]) ⇒ matrix

Differential equation:

y'=0.001*y*(100-y) and y(0)=10

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

rk23 () Catalog >
Uses the Runge-Kutta method to solve the
system

with depVar(Var0)=depVar0 on the
interval [Var0,VarMax]. Returns a matrix
whose first row defines the Var output
values as defined by VarStep. The second
row defines the value of the first solution
component at the corresponding Var
values, and so on.

Expr is the right hand side that defines the
ordinary differential equation (ODE).

SystemOfExpr is a system of right-hand
sides that define the system of ODEs
(corresponds to order of dependent
variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that
define the system of ODEs (corresponds to
order of dependent variables in
ListOfDepVars).

Var is the independent variable.

ListOfDepVars is a list of dependent
variables.

{Var0, VarMax} is a two-element list that
tells the function to integrate from Var0 to
VarMax.

ListOfDepVars0 is a list of initial values
for dependent variables.

If VarStep evaluates to a nonzero number:
sign(VarStep) = sign(VarMax-Var0) and
solutions are returned at Var0+i*VarStep
for all i=0,1,2,… such that Var0+i*VarStep
is in [var0,VarMax] (may not get a solution
value at VarMax).

if VarStep evaluates to zero, solutions are
returned at the "Runge-Kutta" Var values.

diftol is the error tolerance (defaults to
0.001).

Same equationwithdiftol set to 1.E−6

Compare above resultwithCAS exact
solutionobtainedusing deSolve() and
seqGen():

System of equations:

with y1(0)=2 and y2(0)=5

Alphabetical Listing 153

154 Alphabetical Listing

root() Catalog >
root(Expr) ⇒ root
root(Expr1, Expr2) ⇒ root

root(Expr) returns the square root of Expr.

root(Expr1, Expr2) returns the Expr2 root
of Expr1. Expr1 can be a real or complex
floating point constant, an integer or
complex rational constant, or a general
symbolic expression.

Note: See also Nth root template, page 1.

rotate() Catalog >
rotate(Integer1[,#ofRotations]) ⇒ integer

Rotates the bits in a binary integer. You can
enter Integer1 in any number base; it is
converted automatically to a signed, 64-bit
binary form. If the magnitude of Integer1 is
too large for this form, a symmetric modulo
operation brings it within the range. For
more information, see►Base2, page 17.

In Bin basemode:

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

If #ofRotations is positive, the rotation is to
the left. If #ofRotations is negative, the
rotation is to the right. The default is −1
(rotate right one bit).

For example, in a right rotation:

InHex basemode:

Each bit rotates right.

0b00000000000001111010110000110101

Rightmost bit rotates to leftmost.

produces:

0b10000000000000111101011000011010

The result is displayed according to the
Base mode.

Important: To enter a binary or
hexadecimal number, always use the 0bor
0hprefix (zero, not the letter O).

rotate(List1[,#ofRotations]) ⇒ list

Returns a copy of List1 rotated right or left
by #of Rotations elements. Does not alter
List1.

InDec basemode:

rotate() Catalog >
If #ofRotations is positive, the rotation is to
the left. If #of Rotations is negative, the
rotation is to the right. The default is −1
(rotate right one element).

rotate(String1[,#ofRotations]) ⇒ string

Returns a copy of String1 rotated right or
left by #ofRotations characters. Does not
alter String1.

If #ofRotations is positive, the rotation is to
the left. If #ofRotations is negative, the
rotation is to the right. The default is −1
(rotate right one character).

round() Catalog >
round(Expr1[, digits]) ⇒ expression

Returns the argument rounded to the
specified number of digits after the decimal
point.

digits must be an integer in the range 0–
12. If digits is not included, returns the
argument rounded to 12 significant digits.

Note: Display digits mode may affect how
this is displayed.

round(List1[, digits]) ⇒ list

Returns a list of the elements rounded to
the specified number of digits.

round(Matrix1[, digits]) ⇒ matrix

Returns a matrix of the elements rounded
to the specified number of digits.

rowAdd() Catalog >
rowAdd(Matrix1, rIndex1, rIndex2) ⇒
matrix

Returns a copy of Matrix1 with row
rIndex2 replaced by the sum of rows
rIndex1 and rIndex2.

Alphabetical Listing 155

156 Alphabetical Listing

rowDim() Catalog >
rowDim(Matrix) ⇒ expression

Returns the number of rows inMatrix.

Note: See also colDim(), page 26.

rowNorm() Catalog >
rowNorm(Matrix) ⇒ expression

Returns the maximum of the sums of the
absolute values of the elements in the rows
inMatrix.

Note: All matrix elements must simplify to
numbers. See also colNorm(), page 26.

rowSwap() Catalog >
rowSwap(Matrix1, rIndex1, rIndex2) ⇒
matrix

Returns Matrix1 with rows rIndex1 and
rIndex2 exchanged.

rref() Catalog >
rref(Matrix1[, Tol]) ⇒ matrix

Returns the reduced row echelon form of
Matrix1.

Optionally, any matrix element is treated as
zero if its absolute value is less than Tol.
This tolerance is used only if the matrix has
floating-point entries and does not contain
any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you use/· or set the Auto or
Approximate mode to Approximate,
computations are done using floating-
point arithmetic.

rref() Catalog >
• If Tol is omitted or not used, the default

tolerance is calculated as:
5E−14 •max(dim(Matrix1)) •rowNorm
(Matrix1)

Note: See also ref(), page 147.

S

sec() µ key
sec(Expr1) ⇒ expression

sec(List1) ⇒ list

Returns the secant of Expr1 or returns a
list containing the secants of all elements
in List1.

Note: The argument is interpreted as a
degree, gradian or radian angle, according
to the current angle mode setting. You can
use °, G, or r to override the angle mode
temporarily.

InDegree anglemode:

sec⁻¹() µ key
sec⁻¹(Expr1) ⇒ expression

sec⁻¹(List1) ⇒ list

Returns the angle whose secant is Expr1 or
returns a list containing the inverse secants
of each element of List1.

Note: The result is returned as a degree,
gradian, or radian angle, according to the
current angle mode setting.

Note: You can insert this function from the
keyboard by typing arcsec(...).

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

Alphabetical Listing 157

158 Alphabetical Listing

sech() Catalog >
sech(Expr1) ⇒ expression

sech(List1) ⇒ list

Returns the hyperbolic secant of Expr1 or
returns a list containing the hyperbolic
secants of the List1 elements.

sech⁻¹() Catalog >
sech⁻¹(Expr1) ⇒ expression

sech⁻¹(List1) ⇒ list

Returns the inverse hyperbolic secant of
Expr1 or returns a list containing the
inverse hyperbolic secants of each element
of List1.

Note: You can insert this function from the
keyboard by typing arcsech(...).

In Radian angle andRectangular complex
mode:

Send Hub Menu
Send exprOrString1 [, exprOrString2] ...

Programming command: Sends one or
more TI-Innovator™ Hub commands to a
connected hub.

exprOrStringmust be a valid
TI-Innovator™ Hub Command. Typically,
exprOrString contains a "SET ..." command
to control a device or a "READ ..." command
to request data.

The arguments are sent to the hub in
succession.

Note: You can use the Send command
within a user-defined program but not
within a function.

Note: See also Get (page 77), GetStr (page
84), and eval() (page 61).

Example: Turnon the blue element of the
built-in RGB LED for 0.5 seconds.

Example: Request the current value of the
hub's built-in light-level sensor. A Get
command retrieves the value andassigns it
to variable lightval.

Example: Senda calculated frequency to the
hub's built-in speaker. Use special variable
iostr.SendAns to show the hub command
with the expressionevaluated.

Send Hub Menu

seq() Catalog >
seq(Expr, Var, Low, High[, Step]) ⇒ list

Increments Var from Low throughHigh by
an increment of Step, evaluates Expr, and
returns the results as a list. The original
contents of Var are still there after seq() is
completed.

The default value for Step = 1. Note: To force anapproximate result,

Handheld: Press/·.
Windows®: Press Ctrl+Enter.
Macintosh®: Press “+Enter.
iPad®: Holdenter, and select .

seqGen() Catalog >
seqGen(Expr, Var, depVar, {Var0,
VarMax}[, ListOfInitTerms

[, VarStep[, CeilingValue]]]) ⇒ list

Generates a list of terms for sequence
depVar(Var)=Expr as follows: Increments
independent variable Var from Var0
through VarMax by VarStep, evaluates
depVar(Var) for corresponding values of
Var using the Expr formula and
ListOfInitTerms, and returns the results as
a list.

seqGen(ListOrSystemOfExpr, Var,
ListOfDepVars, {Var0, VarMax} [
,MatrixOfInitTerms[, VarStep[,
CeilingValue]]]) ⇒ matrix

Generate the first 5 terms of the sequence u
(n) = u(n-1)2/2, withu(1)=2 andVarStep=1.

Example inwhichVar0=2:

Alphabetical Listing 159

160 Alphabetical Listing

seqGen() Catalog >
Generates a matrix of terms for a system
(or list) of sequences ListOfDepVars(Var)
=ListOrSystemOfExpr as follows:
Increments independent variable Var from
Var0 through VarMax by VarStep,
evaluates ListOfDepVars(Var) for
corresponding values of Var using
ListOrSystemOfExpr formula and
MatrixOfInitTerms, and returns the results
as a matrix.

The original contents of Var are unchanged
after seqGen() is completed.

The default value for VarStep = 1.

Example inwhich initial term is symbolic:

Systemof two sequences:

Note: The Void (_) in the initial termmatrix
above is used to indicate that the initial term
for u1(n) is calculatedusing the explicit
sequence formula u1(n)=1/n.

seqn() Catalog >
seqn(Expr(u, n[, ListOfInitTerms[, nMax[,
CeilingValue]]]) ⇒ list

Generates a list of terms for a sequence u
(n)=Expr(u, n) as follows: Increments n
from 1 through nMax by 1, evaluates u(n)
for corresponding values of n using the
Expr(u, n) formula and ListOfInitTerms,
and returns the results as a list.

seqn(Expr(n[, nMax[, CeilingValue]]) ⇒
list

Generates a list of terms for a non-
recursive sequence u(n)=Expr(n) as
follows: Increments n from 1 through nMax
by 1, evaluates u(n) for corresponding
values of n using the Expr(n) formula, and
returns the results as a list.

If nMax is missing, nMax is set to 2500

If nMax=0, nMax is set to 2500

Note: seqn() calls seqGen() with n0=1 and
nstep =1

Generate the first 6 terms of the sequence u
(n) = u(n-1)/2, withu(1)=2.

series() Catalog >
series(Expr1, Var, Order[, Point]) ⇒
expression

series(Expr1, Var, Order[, Point]) |
Var>Point⇒ expression

series(Expr1, Var, Order[, Point]) |
Var<Point⇒ expression

Returns a generalized truncated power
series representation of Expr1 expanded
about Point through degree Order. Order
can be any rational number. The resulting
powers of (Var − Point) can include
negative and/or fractional exponents. The
coefficients of these powers can include
logarithms of (Var − Point) and other
functions of Var that are dominated by all
powers of (Var − Point) having the same
exponent sign.

Point defaults to 0. Point can be ∞ or −∞,
in which cases the expansion is through
degree Order in 1/(Var − Point).

series(...) returns “series(...)” if it is unable
to determine such a representation, such as
for essential singularities such as sin(1/z)
at z=0, e−1/z at z=0, or ez at z = ∞ or −∞.

If the series or one of its derivatives has a
jump discontinuity at Point, the result is
likely to contain sub-expressions of the
form sign(…) or abs(…) for a real expansion
variable or (-1)floor(…angle(…)…) for a complex
expansion variable, which is one ending
with “_”. If you intend to use the series only
for values on one side of Point, then
append the appropriate one of “| Var >
Point”, “| Var < Point”, “| “Var ≥ Point”,
or “Var ≤ Point” to obtain a simpler result.

series() can provide symbolic
approximations to indefinite integrals and
definite integrals for which symbolic
solutions otherwise can't be obtained.

Alphabetical Listing 161

162 Alphabetical Listing

series() Catalog >
series() distributes over 1st-argument lists
and matrices.

series() is a generalized version of taylor().

As illustrated by the last example to the
right, the display routines downstream of
the result produced by series(...) might
rearrange terms so that the dominant term
is not the leftmost one.

Note: See also dominantTerm(), page 55.

setMode() Catalog >
setMode(modeNameInteger,
settingInteger) ⇒ integer
setMode(list) ⇒ integer list

Valid only within a function or program.

setMode(modeNameInteger,
settingInteger) temporarily sets mode
modeNameInteger to the new setting
settingInteger, and returns an integer
corresponding to the original setting of that
mode. The change is limited to the duration
of the program/function’s execution.

modeNameInteger specifies which mode
you want to set. It must be one of the mode
integers from the table below.

settingInteger specifies the new setting for
the mode. It must be one of the setting
integers listed below for the specific mode
you are setting.

setMode(list) lets you change multiple
settings. list contains pairs of mode
integers and setting integers. setMode(list)
returns a similar list whose integer pairs
represent the original modes and settings.

If you have saved all mode settings with
getMode(0)→var, you can use setMode
(var) to restore those settings until the
function or program exits. See getMode(),
page 83.

Display approximate value of π using the
default setting for Display Digits, and then
display π with a setting of Fix2. Check to see
that the default is restored after the
programexecutes.

setMode() Catalog >
Note: The current mode settings are passed
to called subroutines. If any subroutine
changes a mode setting, the mode change
will be lost when control returns to the
calling routine.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Mode
Name

Mode
Integer Setting Integers

Display
Digits

1 1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5,
7=Float6, 8=Float7, 9=Float8, 10=Float9, 11=Float10,
12=Float11, 13=Float12, 14=Fix0, 15=Fix1, 16=Fix2,
17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7, 22=Fix8,
23=Fix9, 24=Fix10, 25=Fix11, 26=Fix12

Angle 2 1=Radian, 2=Degree, 3=Gradian

Exponential
Format

3 1=Normal, 2=Scientific, 3=Engineering

Real or
Complex

4 1=Real, 2=Rectangular, 3=Polar

Auto or
Approx.

5 1=Auto, 2=Approximate, 3=Exact

Vector
Format

6 1=Rectangular, 2=Cylindrical, 3=Spherical

Base 7 1=Decimal, 2=Hex, 3=Binary

Unit
system

8 1=SI, 2=Eng/US

shift() Catalog >
shift(Integer1[,#ofShifts]) ⇒ integer

Shifts the bits in a binary integer. You can
enter Integer1 in any number base; it is
converted automatically to a signed, 64-bit
binary form. If the magnitude of Integer1 is
too large for this form, a symmetric modulo
operation brings it within the range. For
more information, see►Base2, page 17.

In Bin basemode:

InHex basemode:

Alphabetical Listing 163

164 Alphabetical Listing

shift() Catalog >
If #ofShifts is positive, the shift is to the
left. If #ofShifts is negative, the shift is to
the right. The default is −1 (shift right one
bit).

In a right shift, the rightmost bit is dropped
and 0 or 1 is inserted to match the leftmost
bit. In a left shift, the leftmost bit is
dropped and 0 is inserted as the rightmost
bit.

For example, in a right shift:

Each bit shifts right.

0b0000000000000111101011000011010

Inserts 0 if leftmost bit is 0,
or 1 if leftmost bit is 1.

produces:

0b00000000000000111101011000011010

The result is displayed according to the
Base mode. Leading zeros are not shown.

Important: To enter a binary or
hexadecimal number, always use the 0bor
0hprefix (zero, not the letter O).

shift(List1[,#ofShifts]) ⇒ list

Returns a copy of List1 shifted right or left
by #ofShifts elements. Does not alter List1.

If #ofShifts is positive, the shift is to the
left. If #ofShifts is negative, the shift is to
the right. The default is −1 (shift right one
element).

Elements introduced at the beginning or
end of list by the shift are set to the symbol
“undef”.

InDec basemode:

shift(String1[,#ofShifts]) ⇒ string

Returns a copy of String1 shifted right or
left by #ofShifts characters. Does not alter
String1.

If #ofShifts is positive, the shift is to the
left. If #ofShifts is negative, the shift is to
the right. The default is −1 (shift right one
character).

shift() Catalog >
Characters introduced at the beginning or
end of string by the shift are set to a space.

sign() Catalog >
sign(Expr1) ⇒ expression

sign(List1) ⇒ list
sign(Matrix1) ⇒ matrix

For real and complex Expr1, returns
Expr1/abs(Expr1) when Expr1≠ 0.

Returns 1 if Expr1 is positive. Returns −1 if
Expr1is negative.

sign(0) represents the unit circle in the
complex domain.

For a list or matrix, returns the signs of all
the elements.

If complex formatmode is Real:

simult() Catalog >
simult(coeffMatrix, constVector[, Tol]) ⇒
matrix

Returns a column vector that contains the
solutions to a system of linear equations.

Note: See also linSolve(), page 102.

coeffMatrix must be a square matrix that
contains the coefficients of the equations.

constVector must have the same number
of rows (same dimension) as coeffMatrix
and contain the constants.

Optionally, any matrix element is treated as
zero if its absolute value is less than Tol.
This tolerance is used only if the matrix has
floating-point entries and does not contain
any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you set the Auto or Approximate mode
to Approximate, computations are done
using floating-point arithmetic.

Solve for x and y:
x + 2y = 1
3x + 4y =−1

The solution is x=−3 and y=2.

Solve:
ax + by = 1
cx + dy = 2

Alphabetical Listing 165

166 Alphabetical Listing

simult() Catalog >
• If Tol is omitted or not used, the default

tolerance is calculated as:
5E−14 •max(dim(coeffMatrix))
•rowNorm(coeffMatrix)

simult(coeffMatrix, constMatrix[, Tol]) ⇒
matrix

Solves multiple systems of linear equations,
where each system has the same equation
coefficients but different constants.

Each column in constMatrix must contain
the constants for a system of equations.
Each column in the resulting matrix
contains the solution for the corresponding
system.

Solve:
 x + 2y = 1
3x + 4y =−1

 x + 2y = 2
3x + 4y =−3

For the first system, x=−3 and y=2. For the
second system, x=−7 and y=9/2.

►sin Catalog >
Expr►sin

Note: You can insert this operator from the
computer keyboard by typing @>sin.

Represents Expr in terms of sine. This is a
display conversion operator. It can be used
only at the end of the entry line.

►sin reduces all powers of
 cos(...) modulo 1−sin(...)^2
so that any remaining powers of sin(...)
have exponents in the range (0, 2). Thus,
the result will be free of cos(...) if and only
if cos(...) occurs in the given expression only
to even powers.

Note: This conversion operator is not
supported in Degree or Gradian Angle
modes. Before using it, make sure that the
Angle mode is set to Radians and that Expr
does not contain explicit references to
degree or gradian angles.

sin() µ key
sin(Expr1) ⇒ expression InDegree anglemode:

sin() µ key
sin(List1) ⇒ list

sin(Expr1) returns the sine of the argument
as an expression.

sin(List1) returns a list of the sines of all
elements in List1.

Note: The argument is interpreted as a
degree, gradian or radian angle, according
to the current angle mode. You can use °, g,
or r to override the angle mode setting
temporarily.

InGradian anglemode:

In Radian anglemode:

sin(squareMatrix1) ⇒ squareMatrix

Returns the matrix sine of squareMatrix1.
This is not the same as calculating the sine
of each element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode:

sin⁻¹() µ key
sin⁻¹(Expr1) ⇒ expression

sin⁻¹(List1) ⇒ list

sin⁻¹(Expr1) returns the angle whose sine
is Expr1 as an expression.

sin⁻¹(List1) returns a list of the inverse
sines of each element of List1.

Note: The result is returned as a degree,
gradian or radian angle, according to the
current angle mode setting.

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

Alphabetical Listing 167

168 Alphabetical Listing

sin⁻¹() µ key
Note: You can insert this function from the
keyboard by typing arcsin(...).

sin⁻¹(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse sine of
squareMatrix1. This is not the same as
calculating the inverse sine of each
element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode andRectangular
complex formatmode:

sinh() Catalog >
sinh(Expr1) ⇒ expression

sinh(List1) ⇒ list

sinh (Expr1) returns the hyperbolic sine of
the argument as an expression.

sinh (List1) returns a list of the hyperbolic
sines of each element of List1.
sinh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic sine of
squareMatrix1. This is not the same as
calculating the hyperbolic sine of each
element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode:

sinh⁻¹() Catalog >
sinh⁻¹(Expr1) ⇒ expression

sinh⁻¹(List1) ⇒ list

sinh⁻¹(Expr1) returns the inverse hyperbolic
sine of the argument as an expression.

sinh⁻¹(List1) returns a list of the inverse
hyperbolic sines of each element of List1.

sinh⁻¹() Catalog >
Note: You can insert this function from the
keyboard by typing arcsinh(...).

sinh⁻¹(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse hyperbolic sine
of squareMatrix1. This is not the same as
calculating the inverse hyperbolic sine of
each element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode:

SinReg Catalog >
SinReg X, Y[, [Iterations],[Period][,
Category, Include]]

Computes the sinusoidal regression on lists
X and Y. A summary of results is stored in
the stat.results variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

Iterations is a value that specifies the
maximum number of times (1 through 16) a
solution will be attempted. If omitted, 8 is
used. Typically, larger values result in better
accuracy but longer execution times, and
vice versa.

Period specifies an estimated period. If
omitted, the difference between values in X
should be equal and in sequential order. If
you specify Period, the differences between
x values can be unequal.

Category is a list of category codes for the
corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

Alphabetical Listing 169

170 Alphabetical Listing

SinReg Catalog >
The output of SinReg is always in radians,
regardless of the angle mode setting.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output
variable Description

stat.RegEqn Regression Equation: a•sin(bx+c)+d

stat.a, stat.b,
stat.c, stat.d

Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.YReg List of data points in themodifiedY List actually used in the regressionbasedon
restrictions ofFreq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

solve() Catalog >
solve(Equation, Var) ⇒ Boolean
expression
solve(Equation, Var=Guess) ⇒ Boolean
expression
solve(Inequality, Var) ⇒ Boolean
expression

Returns candidate real solutions of an
equation or an inequality for Var. The goal
is to return candidates for all solutions.
However, there might be equations or
inequalities for which the number of
solutions is infinite.

Solution candidates might not be real finite
solutions for some combinations of values
for undefined variables.

solve() Catalog >
For the Auto setting of the Auto or
Approximate mode, the goal is to produce
exact solutions when they are concise, and
supplemented by iterative searches with
approximate arithmetic when exact
solutions are impractical.

Due to default cancellation of the greatest
common divisor from the numerator and
denominator of ratios, solutions might be
solutions only in the limit from one or both
sides.

For inequalities of types ≥, ≤, <, or >,
explicit solutions are unlikely unless the
inequality is linear and contains only Var.
For the Exact mode, portions that cannot be
solved are returned as an implicit equation
or inequality.

Use the constraint (“|”) operator to restrict
the solution interval and/or other variables
that occur in the equation or inequality.
When you find a solution in one interval,
you can use the inequality operators to
exclude that interval from subsequent
searches.

In Radian anglemode:

false is returned when no real solutions are
found. true is returned if solve() can
determine that any finite real value of Var
satisfies the equation or inequality.

Since solve() always returns a Boolean
result, you can use “and,” “or,” and “not” to
combine results from solve() with each
other or with other Boolean expressions.

Solutions might contain a unique new
undefined constant of the form nj with j
being an integer in the interval 1–255. Such
variables designate an arbitrary integer.

In Radian anglemode:

Alphabetical Listing 171

172 Alphabetical Listing

solve() Catalog >
In Real mode, fractional powers having odd
denominators denote only the real branch.
Otherwise, multiple branched expressions
such as fractional powers, logarithms, and
inverse trigonometric functions denote only
the principal branch. Consequently, solve()
produces only solutions corresponding to
that one real or principal branch.

Note: See also cSolve(), cZeros(), nSolve(),
and zeros().

solve(Eqn1 and Eqn2[and …],
VarOrGuess1, VarOrGuess2[, …])
⇒ Boolean expression

solve(SystemOfEqns, VarOrGuess1,
VarOrGuess2[, …])
⇒ Boolean expression

solve({Eqn1, Eqn2 [,...]}
{VarOrGuess1,VarOrGuess2 [, …]})
⇒ Boolean expression

Returns candidate real solutions to the
simultaneous algebraic equations, where
each VarOrGuess specifies a variable that
you want to solve for.

You can separate the equations with the
and operator, or you can enter a
SystemOfEqns using a template from the
Catalog. The number of VarOrGuess
arguments must match the number of
equations. Optionally, you can specify an
initial guess for a variable. Each
VarOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3.

solve() Catalog >
If all of the equations are polynomials and
if you do NOT specify any initial guesses,
solve() uses the lexical Gröbner/Buchberger
elimination method to attempt to
determine all real solutions.

For example, suppose you have a circle of
radius r at the origin and another circle of
radius r centered where the first circle
crosses the positive x-axis. Use solve() to
find the intersections.

As illustrated by r in the example to the
right, simultaneous polynomial equations
can have extra variables that have no
values, but represent given numeric values
that could be substituted later.

You can also (or instead) include solution
variables that do not appear in the
equations. For example, you can include z
as a solution variable to extend the previous
example to two parallel intersecting
cylinders of radius r.

The cylinder solutions illustrate how
families of solutions might contain arbitrary
constants of the form ck, where k is an
integer suffix from 1 through 255.

For polynomial systems, computation time
or memory exhaustion may depend strongly
on the order in which you list solution
variables. If your initial choice exhausts
memory or your patience, try rearranging
the variables in the equations and/or
varOrGuess list.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

If you do not include any guesses and if any
equation is non-polynomial in any variable
but all equations are linear in the solution
variables, solve() uses Gaussian elimination
to attempt to determine all real solutions.

Alphabetical Listing 173

174 Alphabetical Listing

solve() Catalog >
If a system is neither polynomial in all of its
variables nor linear in its solution variables,
solve() determines at most one solution
using an approximate iterative method. To
do so, the number of solution variables
must equal the number of equations, and
all other variables in the equations must
simplify to numbers.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

Each solution variable starts at its guessed
value if there is one; otherwise, it starts at
0.0.

Use guesses to seek additional solutions
one by one. For convergence, a guess may
have to be rather close to a solution.

SortA Catalog >
SortA List1[, List2] [, List3]...
SortA Vector1[, Vector2] [, Vector3]...

Sorts the elements of the first argument in
ascending order.

If you include additional arguments, sorts
the elements of each so that their new
positions match the new positions of the
elements in the first argument.

All arguments must be names of lists or
vectors. All arguments must have equal
dimensions.

Empty (void) elements within the first
argument move to the bottom. For more
information on empty elements, see page
236.

SortD Catalog >
SortD List1[, List2][, List3]...
SortD Vector1[,Vector2][,Vector3]...

Identical to SortA, except SortD sorts the
elements in descending order.

Empty (void) elements within the first
argument move to the bottom. For more
information on empty elements, see page
236.

►Sphere Catalog >
Vector►Sphere

Note: You can insert this operator from the
computer keyboard by typing @>Sphere.

Displays the row or column vector in
spherical form [ρ∠θ∠φ].

Vector must be of dimension 3 and can be
either a row or a column vector.

Note:►Sphere is a display-format
instruction, not a conversion function. You
can use it only at the end of an entry line.

Note: To force anapproximate result,

Handheld: Press/·.
Windows®: Press Ctrl+Enter.
Macintosh®: Press “+Enter.
iPad®: Holdenter, and select .

Press ·

Alphabetical Listing 175

176 Alphabetical Listing

►Sphere Catalog >

sqrt() Catalog >
sqrt(Expr1) ⇒ expression

sqrt(List1) ⇒ list

Returns the square root of the argument.

For a list, returns the square roots of all the
elements in List1.

Note: See also Square root template, page
1.

stat.results Catalog >
stat.results

Displays results from a statistics
calculation.

The results are displayed as a set of name-
value pairs. The specific names shown are
dependent on the most recently evaluated
statistics function or command.

You can copy a name or value and paste it
into other locations.

Note: Avoid defining variables that use the
same names as those used for statistical
analysis. In some cases, an error condition
could occur. Variable names used for
statistical analysis are listed in the table
below.

stat.a
stat.AdjR²
stat.b
stat.b0
stat.b1
stat.b2
stat.b3
stat.b4
stat.b5
stat.b6
stat.b7
stat.b8
stat.b9
stat.b10
stat.bList
stat.χ²
stat.c
stat.CLower
stat.CLowerList
stat.CompList
stat.CompMatrix
stat.CookDist
stat.CUpper
stat.CUpperList
stat.d

stat.dfDenom
stat.dfBlock
stat.dfCol
stat.dfError
stat.dfInteract
stat.dfReg
stat.dfNumer
stat.dfRow
stat.DW
stat.e
stat.ExpMatrix
stat.F
stat.FBlock
stat.Fcol
stat.FInteract
stat.FreqReg
stat.Frow
stat.Leverage
stat.LowerPred
stat.LowerVal
stat.m
stat.MaxX
stat.MaxY
stat.ME
stat.MedianX

stat.MedianY
stat.MEPred
stat.MinX
stat.MinY
stat.MS
stat.MSBlock
stat.MSCol
stat.MSError
stat.MSInteract
stat.MSReg
stat.MSRow
stat.n
Stat.Ç
stat.Ç1
stat.Ç2
stat.ÇDiff
stat.PList
stat.PVal
stat.PValBlock
stat.PValCol
stat.PValInteract
stat.PValRow
stat.Q1X
stat.Q1Y

stat.Q3X
stat.Q3Y
stat.r
stat.r²
stat.RegEqn
stat.Resid
stat.ResidTrans
stat.σx
stat.σy
stat.σx1
stat.σx2
stat.Σx
stat.Σx²
stat.Σxy
stat.Σy
stat.Σy²
stat.s
stat.SE
stat.SEList
stat.SEPred
stat.sResid
stat.SEslope
stat.sp
stat.SS

stat.SSBlock
stat.SSCol
stat.SSX
stat.SSY
stat.SSError
stat.SSInteract
stat.SSReg
stat.SSRow
stat.tList
stat.UpperPred
stat.UpperVal
stat.v
stat.v1
stat.v2
stat.vDiff
stat.vList
stat.XReg
stat.XVal
stat.XValList
stat.w

stat.y

stat.yList
stat.YReg

Note: Each time the Lists & Spreadsheet application calculates statistical results, it
copies the “stat.” group variables to a “stat#.” group, where # is a number that is
incremented automatically. This lets you maintain previous results while
performing multiple calculations.

stat.values Catalog >
stat.values

Displays a matrix of the values calculated for
the most recently evaluated statistics
function or command.

Unlike stat.results, stat.values omits the
names associated with the values.

You can copy a value and paste it into other
locations.

See the stat.results example.

Alphabetical Listing 177

178 Alphabetical Listing

stDevPop() Catalog >
stDevPop(List [, freqList]) ⇒ expression

Returns the population standard deviation
of the elements in List.

Each freqList element counts the number
of consecutive occurrences of the
corresponding element in List.

Note:List must have at least two elements.
Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

In Radian angle andauto modes:

stDevPop(Matrix1[, freqMatrix]) ⇒
matrix

Returns a row vector of the population
standard deviations of the columns in
Matrix1.

Each freqMatrix element counts the
number of consecutive occurrences of the
corresponding element inMatrix1.

Note:Matrix1must have at least two rows.
Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

stDevSamp() Catalog >
stDevSamp(List[, freqList]) ⇒ expression

Returns the sample standard deviation of
the elements in List.

Each freqList element counts the number
of consecutive occurrences of the
corresponding element in List.

Note:List must have at least two elements.
Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

stDevSamp() Catalog >
stDevSamp(Matrix1[, freqMatrix]) ⇒
matrix

Returns a row vector of the sample
standard deviations of the columns in
Matrix1.

Each freqMatrix element counts the
number of consecutive occurrences of the
corresponding element inMatrix1.

Note:Matrix1must have at least two rows.
Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

Stop Catalog >
Stop

Programming command: Terminates the
program.

Stop is not allowed in functions.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Store See→(store), page 233.

string() Catalog >
string(Expr) ⇒ string

Simplifies Expr and returns the result as a
character string.

Alphabetical Listing 179

180 Alphabetical Listing

subMat() Catalog >
subMat(Matrix1[, startRow][, startCol][,
endRow][, endCol]) ⇒ matrix

Returns the specified submatrix of Matrix1.

Defaults: startRow=1, startCol=1,
endRow=last row, endCol=last column.

Sum (Sigma) See Σ(), page 224.

sum() Catalog >
sum(List[, Start[, End]]) ⇒ expression

Returns the sum of all elements in List.

Start and End are optional. They specify a
range of elements.

Any void argument produces a void result.
Empty (void) elements in List are ignored.
For more information on empty elements,
see page 236.

sum(Matrix1[, Start[, End]]) ⇒ matrix

Returns a row vector containing the sums
of all elements in the columns inMatrix1.

Start and End are optional. They specify a
range of rows.

Any void argument produces a void result.
Empty (void) elements inMatrix1 are
ignored. For more information on empty
elements, see page 236.

sumIf() Catalog >
sumIf(List,Criteria[, SumList]) ⇒ value

Returns the accumulated sum of all
elements in List that meet the specified
Criteria. Optionally, you can specify an
alternate list, sumList, to supply the
elements to accumulate.

sumIf() Catalog >
List can be an expression, list, or matrix.
SumList, if specified, must have the same
dimension(s) as List.

Criteria can be:

• A value, expression, or string. For
example, 34 accumulates only those
elements in List that simplify to the
value 34.

• A Boolean expression containing the
symbol ? as a placeholder for each
element. For example, ?<10 accumulates
only those elements in List that are less
than 10.

When a List element meets the Criteria,
the element is added to the accumulating
sum. If you include sumList, the
corresponding element from sumList is
added to the sum instead.

Within the Lists & Spreadsheet application,
you can use a range of cells in place of List
and sumList.

Empty (void) elements are ignored. For
more information on empty elements, see
page 236.

Note: See also countIf(), page 35.

sumSeq() See Σ(), page 224.

system() Catalog >
system(Eqn1[, Eqn2[, Eqn3[, ...]]])

system(Expr1[, Expr2[, Expr3[, ...]]])

Returns a system of equations, formatted
as a list. You can also create a system by
using a template.

Note: See also System of equations, page 3.

Alphabetical Listing 181

182 Alphabetical Listing

T

T (transpose) Catalog >
Matrix1T ⇒ matrix

Returns the complex conjugate transpose of
Matrix1.

Note: You can insert this operator from the
computer keyboard by typing @t.

tan() µ key
tan(Expr1) ⇒ expression

tan(List1) ⇒ list

tan(Expr1) returns the tangent of the
argument as an expression.

tan(List1) returns a list of the tangents of
all elements in List1.

Note: The argument is interpreted as a
degree, gradian or radian angle, according
to the current angle mode. You can use °, g
or r to override the angle mode setting
temporarily.

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

tan(squareMatrix1) ⇒ squareMatrix

Returns the matrix tangent of
squareMatrix1. This is not the same as
calculating the tangent of each element.
For information about the calculation
method, refer to cos().

In Radian anglemode:

tan() µ key
squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

tan⁻¹() µ key
tan⁻¹(Expr1) ⇒ expression

tan⁻¹(List1) ⇒ list

tan⁻¹(Expr1) returns the angle whose
tangent is Expr1 as an expression.

tan⁻¹(List1) returns a list of the inverse
tangents of each element of List1.

Note: The result is returned as a degree,
gradian or radian angle, according to the
current angle mode setting.

Note: You can insert this function from the
keyboard by typing arctan(...).

InDegree anglemode:

InGradian anglemode:

In Radian anglemode:

tan⁻¹(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse tangent of
squareMatrix1. This is not the same as
calculating the inverse tangent of each
element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode:

tangentLine() Catalog >
tangentLine(Expr1,Var,Point) ⇒
expression

tangentLine(Expr1,Var=Point) ⇒
expression

Returns the tangent line to the curve
represented by Expr1 at the point specified
in Var=Point.

Alphabetical Listing 183

184 Alphabetical Listing

tangentLine() Catalog >
Make sure that the independent variable is
not defined. For example, If f1(x):=5 and
x:=3, then tangentLine(f1(x),x,2) returns
“false.”

tanh() Catalog >
tanh(Expr1) ⇒ expression

tanh(List1) ⇒ list

tanh(Expr1) returns the hyperbolic tangent
of the argument as an expression.

tanh(List1) returns a list of the hyperbolic
tangents of each element of List1.
tanh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic tangent of
squareMatrix1. This is not the same as
calculating the hyperbolic tangent of each
element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

In Radian anglemode:

tanh⁻¹() Catalog >
tanh⁻¹(Expr1) ⇒ expression

tanh⁻¹(List1) ⇒ list

tanh⁻¹(Expr1) returns the inverse
hyperbolic tangent of the argument as an
expression.

tanh⁻¹(List1) returns a list of the inverse
hyperbolic tangents of each element of
List1.

Note: You can insert this function from the
keyboard by typing arctanh(...).

In Rectangular complex format:

tanh⁻¹(squareMatrix1) ⇒ squareMatrix In Radian anglemode andRectangular
complex format:

tanh⁻¹() Catalog >
Returns the matrix inverse hyperbolic
tangent of squareMatrix1. This is not the
same as calculating the inverse hyperbolic
tangent of each element. For information
about the calculation method, refer to cos
().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

taylor() Catalog >
taylor(Expr1, Var, Order[, Point]) ⇒
expression

Returns the requested Taylor polynomial.
The polynomial includes non-zero terms of
integer degrees from zero throughOrder in
(Var minus Point). taylor() returns itself if
there is no truncated power series of this
order, or if it would require negative or
fractional exponents. Use substitution
and/or temporary multiplication by a power
of (Var minus Point) to determine more
general power series.

Point defaults to zero and is the expansion
point.

tCdf() Catalog >
tCdf(lowBound,upBound,df) ⇒ number if
lowBound and upBound are numbers, list if
lowBound and upBound are lists

Computes the Student-t distribution
probability between lowBound and upBound
for the specified degrees of freedom df.

For P(X ≤ upBound), set lowBound = ⁻∞.

Alphabetical Listing 185

186 Alphabetical Listing

tCollect() Catalog >
tCollect(Expr1) ⇒ expression

Returns an expression in which products
and integer powers of sines and cosines are
converted to a linear combination of sines
and cosines of multiple angles, angle sums,
and angle differences. The transformation
converts trigonometric polynomials into a
linear combination of their harmonics.

Sometimes tCollect() will accomplish your
goals when the default trigonometric
simplification does not. tCollect() tends to
reverse transformations done by tExpand().
Sometimes applying tExpand() to a result
from tCollect(), or vice versa, in two
separate steps simplifies an expression.

tExpand() Catalog >
tExpand(Expr1) ⇒ expression

Returns an expression in which sines and
cosines of integer-multiple angles, angle
sums, and angle differences are expanded.
Because of the identity (sin(x))2+(cos(x))
2=1, there are many possible equivalent
results. Consequently, a result might differ
from a result shown in other publications.

Sometimes tExpand() will accomplish your
goals when the default trigonometric
simplification does not. tExpand() tends to
reverse transformations done by tCollect().
Sometimes applying tCollect() to a result
from tExpand(), or vice versa, in two
separate steps simplifies an expression.

Note: Degree-mode scaling by π/180
interferes with the ability of tExpand() to
recognize expandable forms. For best
results, tExpand() should be used in Radian
mode.

Text Catalog >
TextpromptString[, DispFlag]

Programming command: Pauses the
program and displays the character string
promptString in a dialog box.

When the user selects OK, program
execution continues.

The optional flag argument can be any
expression.

• IfDispFlag is omitted or evaluates to 1,
the text message is added to the
Calculator history.

• IfDispFlag evaluates to 0, the text
message is not added to the history.

If the program needs a typed response from
the user, refer to Request, page 149, or
RequestStr, page 151.

Note: You can use this command within a
user-defined program but not within a
function.

Define a program that pauses to display
eachof five randomnumbers in a dialog
box.

Within the Prgm...EndPrgm template,
complete each line by pressing@ instead
of·. On the computer keyboard, hold
downAlt andpress Enter.

Define text_demo()=Prgm
 For i,1,5
 strinfo:=”Random number “ &
string(rand(i))
 Text strinfo
 EndFor
EndPrgm

Run the program:

text_demo()

Sample of one dialog box:

Then See If, page 86.

tInterval Catalog >
tInterval List[, Freq[, CLevel]]

(Data list input)

tInterval v, sx, n[, CLevel]

(Summary stats input)

Computes a t confidence interval. A
summary of results is stored in the
stat.results variable. (See page 176.)

Alphabetical Listing 187

188 Alphabetical Listing

tInterval Catalog >
For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.CLower, stat.CUpper Confidence interval for anunknownpopulationmean

stat.v Samplemeanof the data sequence from the normal randomdistribution

stat.ME Margin of error

stat.df Degrees of freedom

stat.σx Sample standarddeviation

stat.n Lengthof the data sequencewith samplemean

tInterval_2Samp Catalog >
tInterval_2Samp List1,List2[,Freq1[,Freq2
[,CLevel[,Pooled]]]]

(Data list input)

tInterval_2Samp v1,sx1,n1,v2,sx2,n2
[,CLevel[,Pooled]]

(Summary stats input)

Computes a two-sample t confidence
interval. A summary of results is stored in
the stat.results variable. (See page 176.)

Pooled=1 pools variances; Pooled=0 does
not pool variances.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.CLower,
stat.CUpper

Confidence interval containing confidence level probability of distribution

stat.v1-v2 Samplemeans of the data sequences from the normal random
distribution

stat.ME Margin of error

stat.df Degrees of freedom

Output variable Description

stat.v1, stat.v2 Samplemeans of the data sequences from the normal random
distribution

stat.σx1, stat.σx2 Sample standarddeviations for List 1 and List 2

stat.n1, stat.n2 Number of samples in data sequences

stat.sp The pooled standarddeviation. CalculatedwhenPooled = YES

tmpCnv() Catalog >
tmpCnv(Expr_°tempUnit, _°tempUnit2)
⇒ expression _°tempUnit2

Converts a temperature value specified by
Expr from one unit to another. Valid
temperature units are:

_°C Celsius
_°F Fahrenheit
_°K Kelvin
_°R Rankine

To type °, select it from the Catalog
symbols.

to type _ , press/_.

For example, 100_°C converts to 212_°F.

To convert a temperature range, use
ΔtmpCnv() instead.

Note: You canuse the Catalog to select
temperature units.

ΔtmpCnv() Catalog >
ΔtmpCnv(Expr_°tempUnit, _°tempUnit2)
⇒ expression _°tempUnit2

Note: You can insert this function from the
keyboard by typing deltaTmpCnv(...).

Converts a temperature range (the
difference between two temperature
values) specified by Expr from one unit to
another. Valid temperature units are:

_°C Celsius
_°F Fahrenheit
_°K Kelvin
_°R Rankine

Note: You canuse the Catalog to select
temperature units.

Alphabetical Listing 189

190 Alphabetical Listing

ΔtmpCnv() Catalog >
To enter °, select it from the Symbol
Palette or type @d.

To type _ , press/_.

1_°C and 1_°K have the same magnitude,
as do 1_°F and 1_°R. However, 1_°C is 9/5
as large as 1_°F.

For example, a 100_°C range (from 0_°C to
100_°C) is equivalent to a 180_°F range.

To convert a particular temperature value
instead of a range, use tmpCnv().

tPdf() Catalog >
tPdf(XVal,df) ⇒ number if XVal is a
number, list if XVal is a list

Computes the probability density function
(pdf) for the Student-t distribution at a
specified x value with specified degrees of
freedom df.

trace() Catalog >
trace(squareMatrix) ⇒ expression

Returns the trace (sum of all the elements
on the main diagonal) of squareMatrix.

Try Catalog >
Try
 block1
Else
 block2
EndTry

Executes block1 unless an error occurs.
Program execution transfers to block2 if an
error occurs in block1. System variable
errCode contains the error code to allow
the program to perform error recovery. For
a list of error codes, see “Error codes and
messages,” page 243.

block1 and block2 can be either a single
statement or a series of statements
separated with the “:” character.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

To see the commands Try, ClrErr, and
PassErr in operation, enter the eigenvals()
program shown at the right. Run the
program by executing each of the following
expressions.

Note: See also ClrErr, page 25, and PassErr,
page 131.

Define eigenvals(a,b)=Prgm
© Programeigenvals(A,B) displays
eigenvalues of A•B

Try
 Disp "A= ",a
 Disp "B= ",b
 Disp " "

 Disp "Eigenvalues of A•B are:",eigVl(a*b)

Else
 If errCode=230 Then
 Disp "Error: Product of A•B must be a
squarematrix"
 ClrErr
 Else
 PassErr
 EndIf
EndTry

EndPrgm

Alphabetical Listing 191

192 Alphabetical Listing

tTest Catalog >
tTest μ0,List[,Freq[,Hypoth]]

(Data list input)

tTest μ0,v,sx,n,[Hypoth]

(Summary stats input)

Performs a hypothesis test for a single
unknown population mean μ when the
population standard deviation σ is unknown.
A summary of results is stored in the
stat.results variable. (See page 176.)

Test H
0
: μ = μ0, against one of the

following:

For H
a
: μ < μ0, set Hypoth<0

For H
a
: μ ≠ μ0 (default), set Hypoth=0

For H
a
: μ > μ0, set Hypoth>0

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.t (v −μ0) / (stdev / sqrt(n))

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.df Degrees of freedom

stat.v Samplemeanof the data sequence inList

stat.sx Sample standarddeviationof the data sequence

stat.n Size of the sample

tTest_2Samp Catalog >
tTest_2Samp List1,List2[,Freq1[,Freq2
[,Hypoth[,Pooled]]]]

(Data list input)

tTest_2Samp v1,sx1,n1,v2,sx2,n2[,Hypoth
[,Pooled]]

(Summary stats input)

tTest_2Samp Catalog >
Computes a two-sample t test. A summary
of results is stored in the stat.results
variable. (See page 176.)

Test H
0
: μ1 = μ2, against one of the

following:

For H
a
: μ1< μ2, set Hypoth<0

For H
a
: μ1≠ μ2 (default), set Hypoth=0

For H
a
: μ1> μ2, set Hypoth>0

Pooled=1 pools variances
Pooled=0 does not pool variances

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.t Standardnormal value computed for the difference ofmeans

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.df Degrees of freedom for the t-statistic

stat.v1, stat.v2 Samplemeans of the data sequences inList 1 andList 2

stat.sx1, stat.sx2 Sample standarddeviations of the data sequences inList 1 andList 2

stat.n1, stat.n2 Size of the samples

stat.sp The pooled standarddeviation. CalculatedwhenPooled=1.

tvmFV() Catalog >
tvmFV(N,I,PV,Pmt,[PpY],[CpY],[PmtAt])
⇒ value

Financial function that calculates the future
value of money.

Note: Arguments used in the TVM functions
are described in the table of TVM
arguments, page 195. See also amortTbl(),
page 8.

tvmI() Catalog >
tvmI(N,PV,Pmt,FV,[PpY],[CpY],[PmtAt])
⇒ value

Alphabetical Listing 193

194 Alphabetical Listing

tvmI() Catalog >
Financial function that calculates the
interest rate per year.

Note: Arguments used in the TVM functions
are described in the table of TVM
arguments, page 195. See also amortTbl(),
page 8.

tvmN() Catalog >
tvmN(I,PV,Pmt,FV,[PpY],[CpY],[PmtAt])
⇒ value

Financial function that calculates the
number of payment periods.

Note: Arguments used in the TVM functions
are described in the table of TVM
arguments, page 195. See also amortTbl(),
page 8.

tvmPmt() Catalog >
tvmPmt(N,I,PV,FV,[PpY],[CpY],[PmtAt])
⇒ value

Financial function that calculates the
amount of each payment.

Note: Arguments used in the TVM functions
are described in the table of TVM
arguments, page 195. See also amortTbl(),
page 8.

tvmPV() Catalog >
tvmPV(N,I,Pmt,FV,[PpY],[CpY],[PmtAt])
⇒ value

Financial function that calculates the
present value.

Note: Arguments used in the TVM functions
are described in the table of TVM
arguments, page 195. See also amortTbl(),
page 8.

TVM
argument*

Description Data type

N Number of payment periods real number

I Annual interest rate real number

PV Present value real number

Pmt Payment amount real number

FV Future value real number

PpY Payments per year, default=1 integer > 0

CpY Compounding periods per year, default=1 integer > 0

PmtAt Payment due at the endor beginning of eachperiod,
default=end

integer (0=end,
1=beginning)

* These time-value-of-money argument names are similar to the TVM variable names
(such as tvm.pv and tvm.pmt) that are used by the Calculator application’s finance
solver. Financial functions, however, do not store their argument values or results to
the TVM variables.

TwoVar Catalog >
TwoVar X, Y[, [Freq][, Category, Include]]

Calculates the TwoVar statistics. A summary
of results is stored in the stat.results
variable. (See page 176.)

All the lists must have equal dimension
except for Include.

X and Y are lists of independent and
dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The
default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric category codes
for the corresponding X and Y data.

Include is a list of one or more of the
category codes. Only those data items
whose category code is included in this list
are included in the calculation.

Alphabetical Listing 195

196 Alphabetical Listing

TwoVar Catalog >
An empty (void) element in any of the lists
X, Freq, or Category results in a void for
the corresponding element of all those lists.
An empty element in any of the lists X1
through X20 results in a void for the
corresponding element of all those lists. For
more information on empty elements, see
page 236.

Output variable Description

stat.v Meanof x values

stat.Σx Sumof x values

stat.Σx2 Sumof x2 values

stat.sx Sample standarddeviationof x

stat.σx Population standarddeviationof x

stat.n Number of data points

stat.w Meanof y values

stat.Σy Sumof y values

stat.Σy2 Sumof y2 values

stat.sy Sample standarddeviationof y

stat.σy Population standarddeviationof y

stat.Σxy Sumof x•y values

stat.r Correlation coefficient

stat.MinX Minimumof x values

stat.Q1X 1stQuartile of x

stat.MedianX Medianof x

stat.Q3X 3rdQuartile of x

stat.MaxX Maximumof x values

stat.MinY Minimumof y values

stat.Q1Y 1stQuartile of y

stat.MedY Medianof y

stat.Q3Y 3rdQuartile of y

Output variable Description

stat.MaxY Maximumof y values

stat.Σ(x-v)2 Sumof squares of deviations from themeanof x

stat.Σ(y-w)2 Sumof squares of deviations from themeanof y

U

unitV() Catalog >
unitV(Vector1) ⇒ vector

Returns either a row- or column-unit vector,
depending on the form of Vector1.

Vector1must be either a single-row matrix
or a single-column matrix.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

unLock Catalog >
unLock Var1[, Var2] [, Var3] ...
unLock Var.

Unlocks the specified variables or variable
group. Locked variables cannot be modified
or deleted.

See Lock, page 106, and getLockInfo(), page
82.

Alphabetical Listing 197

198 Alphabetical Listing

V

varPop() Catalog >
varPop(List[, freqList]) ⇒ expression

Returns the population variance of List.

Each freqList element counts the number
of consecutive occurrences of the
corresponding element in List.

Note: List must contain at least two
elements.

If an element in either list is empty (void),
that element is ignored, and the
corresponding element in the other list is
also ignored. For more information on
empty elements, see page 236.

varSamp() Catalog >
varSamp(List[, freqList]) ⇒ expression

Returns the sample variance of List.

Each freqList element counts the number
of consecutive occurrences of the
corresponding element in List.

Note: List must contain at least two
elements.

If an element in either list is empty (void),
that element is ignored, and the
corresponding element in the other list is
also ignored. For more information on
empty elements, see page 236.

varSamp(Matrix1[, freqMatrix]) ⇒
matrix

Returns a row vector containing the sample
variance of each column inMatrix1.

Each freqMatrix element counts the
number of consecutive occurrences of the
corresponding element inMatrix1.

varSamp() Catalog >
If an element in either matrix is empty
(void), that element is ignored, and the
corresponding element in the other matrix
is also ignored. For more information on
empty elements, see page 236.

Note:Matrix1must contain at least two
rows.

W

Wait Catalog >
Wait timeInSeconds

Suspends execution for a period of
timeInSeconds seconds.

Wait is particularly useful in a program that
needs a brief delay to allow requested data
to become available.

The argument timeInSeconds must be an
expression that simplifies to a decimal value
in the range 0 through 100. The command
rounds this value up to the nearest 0.1
seconds.

To cancel a Wait that is in progress,

• Handheld: Hold down thec key and
press· repeatedly.

• Windows®: Hold down the F12 key and
press Enter repeatedly.

• Macintosh®: Hold down the F5 key and
press Enter repeatedly.

• iPad®: The app displays a prompt. You can
continue waiting or cancel.

Note: You can use the Wait command within
a user-defined program but not within a
function.

To wait 4 seconds:

Wait 4

To wait 1/2 second:

Wait 0.5

To wait 1.3 seconds using the variable
seccount:
seccount:=1.3
Wait seccount

This example switches a green LEDon for
0.5 seconds and then switches it off.

Send "SET GREEN 1 ON"
Wait 0.5
Send "SET GREEN 1 OFF"

Alphabetical Listing 199

200 Alphabetical Listing

warnCodes () Catalog >
warnCodes(Expr1, StatusVar) ⇒
expression

Evaluates expression Expr1, returns the
result, and stores the codes of any
generated warnings in the StatusVar list
variable. If no warnings are generated, this
function assigns StatusVar an empty list.

Expr1 can be any valid TI-Nspire™ or
TI-Nspire™ CAS math expression. You
cannot use a command or assignment as
Expr1.

StatusVar must be a valid variable name.

For a list of warning codes and associated
messages, see page 251.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

when() Catalog >
when(Condition, trueResult [, falseResult]
[, unknownResult]) ⇒ expression

Returns trueResult, falseResult, or
unknownResult, depending on whether
Condition is true, false, or unknown.
Returns the input if there are too few
arguments to specify the appropriate result.

Omit both falseResult and unknownResult
to make an expression defined only in the
region where Condition is true.
Use an undef falseResult to define an
expression that graphs only on an interval.

when() is helpful for defining recursive
functions.

While Catalog >
While Condition
 Block
EndWhile

Executes the statements in Block as long
as Condition is true.

Block can be either a single statement or a
sequence of statements separated with the
“:” character.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

X

xor Catalog >
BooleanExpr1 xor BooleanExpr2 returns
Boolean expressionBooleanList1
xor BooleanList2 returns Boolean
listBooleanMatrix1
xor BooleanMatrix2 returns Boolean
matrix

Returns true if BooleanExpr1 is true and
BooleanExpr2 is false, or vice versa.

Returns false if both arguments are true or
if both are false. Returns a simplified
Boolean expression if either of the
arguments cannot be resolved to true or
false.

Note: See or, page 129.

Integer1 xor Integer2⇒ integer

Compares two real integers bit-by-bit using
an xor operation. Internally, both integers
are converted to signed, 64-bit binary
numbers. When corresponding bits are
compared, the result is 1 if either bit (but
not both) is 1; the result is 0 if both bits are
0 or both bits are 1. The returned value
represents the bit results, and is displayed
according to the Base mode.

InHex basemode:

Important: Zero, not the letter O.

In Bin basemode:

Alphabetical Listing 201

202 Alphabetical Listing

xor Catalog >
You can enter the integers in any number
base. For a binary or hexadecimal entry, you
must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as
decimal (base 10).

If you enter a decimal integer that is too
large for a signed, 64-bit binary form, a
symmetric modulo operation is used to
bring the value into the appropriate range.
For more information, see►Base2, page
17.

Note: See or, page 129.

Note: A binary entry canhave up to 64 digits
(not counting the 0bprefix). A hexadecimal
entry canhave up to 16 digits.

Z

zeros() Catalog >
zeros(Expr, Var) ⇒ list

zeros(Expr, Var=Guess) ⇒ list

Returns a list of candidate real values of
Var that make Expr=0. zeros() does this by
computing exp►list(solve
(Expr=0,Var),Var).
For some purposes, the result form for
zeros() is more convenient than that of
solve(). However, the result form of zeros()
cannot express implicit solutions, solutions
that require inequalities, or solutions that
do not involve Var.

Note: See also cSolve(), cZeros(), and solve
().

zeros({Expr1, Expr2},
{VarOrGuess1, VarOrGuess2 [, …]}) ⇒
matrix

Returns candidate real zeros of the
simultaneous algebraic expressions, where
each VarOrGuess specifies an unknown
whose value you seek.

Optionally, you can specify an initial guess
for a variable. Each VarOrGuess must have
the form:

zeros() Catalog >
variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3.

If all of the expressions are polynomials and
if you do NOT specify any initial guesses,
zeros() uses the lexical Gröbner/Buchberger
elimination method to attempt to
determine all real zeros.

For example, suppose you have a circle of
radius r at the origin and another circle of
radius r centered where the first circle
crosses the positive x-axis. Use zeros() to
find the intersections.

As illustrated by r in the example to the
right, simultaneous polynomial expressions
can have extra variables that have no
values, but represent given numeric values
that could be substituted later.

Each row of the resulting matrix represents
an alternate zero, with the components
ordered the same as the varOrGuess list.
To extract a row, index the matrix by [row].

Extract row2:

You can also (or instead) include unknowns
that do not appear in the expressions. For
example, you can include z as an unknown
to extend the previous example to two
parallel intersecting cylinders of radius r.
The cylinder zeros illustrate how families of
zeros might contain arbitrary constants in
the form ck, where k is an integer suffix
from 1 through 255.

For polynomial systems, computation time
or memory exhaustion may depend strongly
on the order in which you list unknowns. If
your initial choice exhausts memory or your
patience, try rearranging the variables in
the expressions and/or varOrGuess list.

Alphabetical Listing 203

204 Alphabetical Listing

zeros() Catalog >
If you do not include any guesses and if any
expression is non-polynomial in any variable
but all expressions are linear in the
unknowns, zeros() uses Gaussian
elimination to attempt to determine all real
zeros.

If a system is neither polynomial in all of its
variables nor linear in its unknowns, zeros()
determines at most one zero using an
approximate iterative method. To do so, the
number of unknowns must equal the
number of expressions, and all other
variables in the expressions must simplify
to numbers.

Each unknown starts at its guessed value if
there is one; otherwise, it starts at 0.0.

Use guesses to seek additional zeros one by
one. For convergence, a guess may have to
be rather close to a zero.

zInterval Catalog >
zInterval σ,List[,Freq[,CLevel]]

(Data list input)

zInterval σ,v,n [,CLevel]

(Summary stats input)

Computes a z confidence interval. A
summary of results is stored in the
stat.results variable. (See page 176.)

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.CLower, stat.CUpper Confidence interval for anunknownpopulationmean

stat.x Samplemeanof the data sequence from the normal randomdistribution

stat.ME Margin of error

stat.sx Sample standarddeviation

Output variable Description

stat.n Lengthof the data sequencewith samplemean

stat.σ Knownpopulation standarddeviation for data sequenceList

zInterval_1Prop Catalog >
zInterval_1Prop x,n [,CLevel]

Computes a one-proportion z confidence
interval. A summary of results is stored in
the stat.results variable. (See page 176.)

x is a non-negative integer.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.Ç The calculatedproportionof successes

stat.ME Margin of error

stat.n Number of samples in data sequence

zInterval_2Prop Catalog >
zInterval_2Prop x1,n1,x2,n2[,CLevel]

Computes a two-proportion z confidence
interval. A summary of results is stored in
the stat.results variable. (See page 176.)

x1 and x2 are non-negative integers.

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.Ç Diff The calculateddifference betweenproportions

stat.ME Margin of error

Alphabetical Listing 205

206 Alphabetical Listing

Output variable Description

stat.Ç1 First sample proportion estimate

stat.Ç2 Second sample proportion estimate

stat.n1 Sample size in data sequence one

stat.n2 Sample size in data sequence two

zInterval_2Samp Catalog >
zInterval_2Samp σ1,σ2 ,List1,List2[,Freq1
[,Freq2,[CLevel]]]

(Data list input)

zInterval_2Samp σ1,σ2,v1,n1,v2,n2[,CLevel]

(Summary stats input)

Computes a two-sample z confidence
interval. A summary of results is stored in
the stat.results variable. (See page 176.)

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.CLower,
stat.CUpper

Confidence interval containing confidence level probability of distribution

stat.x1-x2 Samplemeans of the data sequences from the normal random
distribution

stat.ME Margin of error

stat.x1, stat.x2 Samplemeans of the data sequences from the normal random
distribution

stat.σx1, stat.σx2 Sample standarddeviations for List 1 andList 2

stat.n1, stat.n2 Number of samples in data sequences

stat.r1, stat.r2 Knownpopulation standarddeviations for data sequenceList 1 andList
2

zTest Catalog >
zTest μ0,σ,List,[Freq[,Hypoth]]

zTest Catalog >
(Data list input)

zTest μ0,σ,v,n[,Hypoth]

(Summary stats input)

Performs a z test with frequency freqlist. A
summary of results is stored in the
stat.results variable. (See page 176.)

Test H
0
: μ = μ0, against one of the

following:

For H
a
: μ < μ0, set Hypoth<0

For H
a
: μ ≠ μ0 (default), set Hypoth=0

For H
a
: μ > μ0, set Hypoth>0

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.z (x −μ0) / (σ / sqrt(n))

stat.P Value Least probability atwhich the null hypothesis canbe rejected

stat.x Samplemeanof the data sequence inList

stat.sx Sample standarddeviationof the data sequence. Only returned forData input.

stat.n Size of the sample

zTest_1Prop Catalog >

Output variable Description

stat.p0 Hypothesizedpopulationproportion

stat.z Standardnormal value computed for the proportion

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.Ç Estimated sample proportion

stat.n Size of the sample

zTest_2Prop Catalog >
zTest_2Prop x1,n1,x2,n2[,Hypoth]

Alphabetical Listing 207

208 Alphabetical Listing

zTest_2Prop Catalog >
Computes a two-proportion z test. A
summary of results is stored in the
stat.results variable. (See page 176.)

x1 and x2 are non-negative integers.

Test H
0
: p1 = p2, against one of the

following:

For H
a
: p1 > p2, set Hypoth>0

For H
a
: p1 ≠ p2 (default), set Hypoth=0

For H
a
: p < p0, set Hypoth<0

For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.z Standardnormal value computed for the difference of proportions

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.Ç1 First sample proportion estimate

stat.Ç2 Second sample proportion estimate

stat.Ç Pooled sample proportion estimate

stat.n1, stat.n2 Number of samples taken in trials 1 and2

zTest_2Samp Catalog >
zTest_2Samp σ1,σ2 ,List1,List2[,Freq1
[,Freq2[,Hypoth]]]

(Data list input)

zTest_2Samp σ1,σ2,v1,n1,v2,n2[,Hypoth]

(Summary stats input)

Computes a two-sample z test. A summary
of results is stored in the stat.results
variable. (See page 176.)

Test H
0
: μ1 = μ2, against one of the

following:

For H
a
: μ1 < μ2, set Hypoth<0

For H
a
: μ1 ≠ μ2 (default), set Hypoth=0

For H
a
: μ1 > μ2, Hypoth>0

zTest_2Samp Catalog >
For information on the effect of empty
elements in a list, see “Empty (Void)
Elements,” page 236.

Output variable Description

stat.z Standardnormal value computed for the difference ofmeans

stat.PVal Smallest level of significance atwhich the null hypothesis canbe rejected

stat.x1, stat.x2 Samplemeans of the data sequences inList1 andList2

stat.sx1, stat.sx2 Sample standarddeviations of the data sequences inList1 andList2

stat.n1, stat.n2 Size of the samples

Alphabetical Listing 209

210 Symbols

Symbols

+ (add) + key
Expr1 + Expr2⇒ expression

Returns the sum of the two arguments.

List1 + List2⇒ list

Matrix1 +Matrix2⇒ matrix

Returns a list (or matrix) containing the
sums of corresponding elements in List1
and List2 (orMatrix1 andMatrix2).

Dimensions of the arguments must be
equal.

Expr + List1⇒ list

List1 + Expr⇒ list

Returns a list containing the sums of Expr
and each element in List1.
Expr +Matrix1⇒ matrix

Matrix1 + Expr⇒ matrix

Returns a matrix with Expr added to each
element on the diagonal of Matrix1.
Matrix1must be square.

Note: Use .+ (dot plus) to add an expression
to each element.

− (subtract) - key
Expr1 − Expr2⇒ expression

Returns Expr1minus Expr2.

List1 −List2⇒ list

Matrix1 −Matrix2 ⇒ matrix

− (subtract) - key
Subtracts each element in List2 (or
Matrix2) from the corresponding element
in List1 (orMatrix1), and returns the
results.

Dimensions of the arguments must be
equal.

Expr − List1⇒ list

List1 − Expr⇒ list

Subtracts each List1 element from Expr or
subtracts Expr from each List1 element,
and returns a list of the results.

Expr −Matrix1⇒ matrix

Matrix1 − Expr⇒ matrix

Expr −Matrix1 returns a matrix of Expr
times the identity matrix minus
Matrix1. Matrix1must be square.

Matrix1 − Expr returns a matrix of Expr
times the identity matrix subtracted from
Matrix1. Matrix1must be square.

Note: Use .− (dot minus) to subtract an
expression from each element.

• (multiply) r key
Expr1•Expr2⇒ expression

Returns the product of the two arguments.

List1•List2⇒ list

Returns a list containing the products of the
corresponding elements in List1 and List2.

Dimensions of the lists must be equal.

Matrix1•Matrix2⇒ matrix

Returns the matrix product of Matrix1 and
Matrix2.

The number of columns inMatrix1must
equal the number of rows inMatrix2.

Symbols 211

212 Symbols

• (multiply) r key
Expr •List1⇒ list

List1•Expr⇒ list

Returns a list containing the products of
Expr and each element in List1.

Expr •Matrix1⇒ matrix

Matrix1•Expr⇒ matrix

Returns a matrix containing the products of
Expr and each element inMatrix1.

Note: Use .•(dot multiply) to multiply an
expression by each element.

⁄ (divide) p key
Expr1 ⁄ Expr2⇒ expression

Returns the quotient of Expr1 divided by
Expr2.

Note: See also Fraction template, page 1.

List1 ⁄ List2⇒ list

Returns a list containing the quotients of
List1 divided by List2.

Dimensions of the lists must be equal.

Expr ⁄ List1⇒ list

List1 ⁄ Expr⇒ list

Returns a list containing the quotients of
Expr divided by List1 orList1 divided by
Expr.
Matrix1 ⁄ Expr⇒ matrix

Returns a matrix containing the quotients
of Matrix1 ⁄ Expr.

Matrix1 ⁄ Value⇒ matrix

⁄ (divide) p key
Note: Use . ⁄ (dot divide) to divide an
expression by each element.

^ (power) l key
Expr1 ^ Expr2⇒ expression

List1 ^ List2⇒ list

Returns the first argument raised to the
power of the second argument.

Note: See also Exponent template, page 1.

For a list, returns the elements in List1
raised to the power of the corresponding
elements in List2.

In the real domain, fractional powers that
have reduced exponents with odd
denominators use the real branch versus
the principal branch for complex mode.

Expr ^ List1⇒ list

Returns Expr raised to the power of the
elements in List1.
List1 ^ Expr⇒ list

Returns the elements in List1 raised to the
power of Expr.
squareMatrix1 ^ integer⇒ matrix

Returns squareMatrix1 raised to the
integer power.

squareMatrix1must be a square matrix.

If integer = −1, computes the inverse
matrix.
If integer < −1, computes the inverse
matrix to an appropriate positive power.

Symbols 213

214 Symbols

x2 (square) q key
Expr12⇒ expression

Returns the square of the argument.

List12 ⇒ list

Returns a list containing the squares of the
elements in List1.

squareMatrix12 ⇒ matrix

Returns the matrix square of
squareMatrix1. This is not the same as
calculating the square of each element. Use
.^2 to calculate the square of each element.

.+ (dot add) ^+ keys
Matrix1 .+Matrix2⇒ matrix

Expr .+Matrix1⇒ matrix

Matrix1.+Matrix2 returns a matrix that is
the sum of each pair of corresponding
elements inMatrix1 andMatrix2.

Expr .+ Matrix1 returns a matrix that is
the sum of Expr and each element in
Matrix1.

.⁻(dot subt.) ^- keys
Matrix1 .−Matrix2⇒ matrix

Expr .−Matrix1⇒matrix

Matrix1.− Matrix2 returns a matrix that is
the difference between each pair of
corresponding elements inMatrix1 and
Matrix2.

Expr .− Matrix1 returns a matrix that is
the difference of Expr and each element in
Matrix1.

.

.•(dot mult.) ^r keys
Matrix1 .• Matrix2⇒ matrix

Expr .• Matrix1⇒ matrix

Matrix1.• Matrix2 returns a matrix that is
the product of each pair of corresponding
elements inMatrix1 andMatrix2.

Expr .• Matrix1 returns a matrix
containing the products of Expr and each
element inMatrix1.

. ⁄ (dot divide) ^p keys
Matrix1. ⁄Matrix2⇒ matrix

Expr . ⁄Matrix1⇒ matrix

Matrix1 . ⁄Matrix2 returns a matrix that is
the quotient of each pair of corresponding
elements inMatrix1 andMatrix2.

Expr . ⁄ Matrix1 returns a matrix that is
the quotient of Expr and each element in
Matrix1.

.^ (dot power) ^l keys
Matrix1 .^Matrix2⇒ matrix

Expr . ^Matrix1⇒ matrix

Matrix1.^ Matrix2 returns a matrix where
each element inMatrix2 is the exponent
for the corresponding element inMatrix1.

Expr .^ Matrix1 returns a matrix where
each element inMatrix1 is the exponent
for Expr.

− (negate) v key
−Expr1 ⇒ expression

−List1⇒ list

−Matrix1⇒ matrix

Symbols 215

216 Symbols

− (negate) v key
Returns the negation of the argument.

For a list or matrix, returns all the elements
negated.

If the argument is a binary or hexadecimal
integer, the negation gives the two’s
complement.

In Bin base mode:

Important: Zero, not the letter O.

To see the entire result,
press 5 and thenuse 7 and 8 to move the
cursor.

% (percent) /k keys
Expr1% ⇒ expression

List1% ⇒ list

Matrix1% ⇒ matrix

Returns

For a list or matrix, returns a list or matrix
with each element divided by 100.

Note: To force anapproximate result,

Handheld: Press/·.
Windows®: Press Ctrl+Enter.
Macintosh®: Press “+Enter.
iPad®: Holdenter, and select .

= (equal) = key
Expr1=Expr2⇒ Boolean expression

List1=List2⇒ Boolean list

Matrix1=Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be
equal to Expr2.

Returns false if Expr1 is determined to not
be equal to Expr2.

Anything else returns a simplified form of
the equation.

For lists and matrices, returns comparisons
element by element.

Example function that uses math test
symbols: =, ≠, <, ≤, >, ≥

= (equal) = key
Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

Result of graphing g(x)

≠ (not equal) /= keys
Expr1≠Expr2⇒ Boolean expression

List1≠List2⇒ Boolean list

Matrix1≠Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be
not equal to Expr2.

Returns false if Expr1 is determined to be
equal to Expr2.

Anything else returns a simplified form of
the equation.

For lists and matrices, returns comparisons
element by element.

Note: You can insert this operator from the
keyboard by typing /=

See “=” (equal) example.

< (less than) /= keys
Expr1<Expr2⇒ Boolean expression

List1<List2⇒ Boolean list

Matrix1<Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be
less than Expr2.

See “=” (equal) example.

Symbols 217

218 Symbols

< (less than) /= keys
Returns false if Expr1 is determined to be
greater than or equal to Expr2.

Anything else returns a simplified form of
the equation.

For lists and matrices, returns comparisons
element by element.

≤ (less or equal) /= keys
Expr1≤Expr2⇒ Boolean expression

List1≤List2⇒ Boolean list

Matrix1 ≤Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be
less than or equal to Expr2.

Returns false if Expr1 is determined to be
greater than Expr2.

Anything else returns a simplified form of
the equation.

For lists and matrices, returns comparisons
element by element.

Note: You can insert this operator from the
keyboard by typing <=

See “=” (equal) example.

> (greater than) /= keys
Expr1>Expr2⇒ Boolean expression

List1>List2⇒ Boolean list

Matrix1>Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be
greater than Expr2.

Returns false if Expr1 is determined to be
less than or equal to Expr2.

Anything else returns a simplified form of
the equation.

See “=” (equal) example.

> (greater than) /= keys
For lists and matrices, returns comparisons
element by element.

≥ (greater or equal) /= keys
Expr1≥Expr2⇒ Boolean expression

List1≥List2⇒ Boolean list

Matrix1 ≥Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be
greater than or equal to Expr2.

Returns false if Expr1 is determined to be
less than Expr2.

Anything else returns a simplified form of
the equation.

For lists and matrices, returns comparisons
element by element.

Note: You can insert this operator from the
keyboard by typing >=

See “=” (equal) example.

⇒ (logical implication) /= keys
BooleanExpr1⇒ BooleanExpr2 returns
Boolean expression

BooleanList1⇒ BooleanList2 returns
Boolean list

BooleanMatrix1⇒ BooleanMatrix2
returns Boolean matrix

Integer1⇒ Integer2 returns Integer

Evaluates the expression not <argument1>
or <argument2> and returns true, false, or a
simplified form of the equation.

For lists and matrices, returns comparisons
element by element.

Note: You can insert this operator from the
keyboard by typing =>

Symbols 219

220 Symbols

⇔ (logical double implication, XNOR) /= keys
BooleanExpr1⇔ BooleanExpr2 returns
Boolean expression

BooleanList1⇔ BooleanList2 returns
Boolean list

BooleanMatrix1⇔ BooleanMatrix2
returns Boolean matrix

Integer1⇔ Integer2 returns Integer

Returns the negation of an XOR Boolean
operation on the two arguments. Returns
true, false, or a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

Note: You can insert this operator from the
keyboard by typing <=>

! (factorial) º key
Expr1! ⇒ expression

List1! ⇒ list

Matrix1! ⇒ matrix

Returns the factorial of the argument.

For a list or matrix, returns a list or matrix
of factorials of the elements.

& (append) /k keys
String1 & String2⇒ string

Returns a text string that is String2
appended to String1.

d() (derivative) Catalog >
d(Expr1, Var[, Order]) ⇒ expression

d(List1, Var[, Order]) ⇒ list

d(Matrix1,Var[, Order]) ⇒ matrix

Returns the first derivative of the first
argument with respect to variable Var.

Order, if included, must be an integer. If
the order is less than zero, the result will be
an anti-derivative.

Note: You can insert this function from the
keyboard by typing derivative(...).

d() does not follow the normal evaluation
mechanism of fully simplifying its
arguments and then applying the function
definition to these fully simplified
arguments. Instead, d() performs the
following steps:

1. Simplify the second argument only to
the extent that it does not lead to a
non-variable.

2. Simplify the first argument only to the
extent that it does recall any stored
value for the variable determined by
step 1.

3. Determine the symbolic derivative of
the result of step 2 with respect to the
variable from step 1.

If the variable from step 1 has a stored
value or a value specified by the constraint
(“|”) operator, substitute that value into
the result from step 3.

Note: See also First derivative, page 5;
Second derivative, page 6; or
Nth derivative, page 6.

∫() (integral) Catalog >
∫(Expr1, Var[,Lower,Upper]) ⇒
expression

∫(Expr1,Var[,Constant]) ⇒ expression

Symbols 221

222 Symbols

∫() (integral) Catalog >
Returns the integral of Expr1 with respect
to the variable Var from Lower toUpper.

Note: See also Definite or Indefinite integral
template, page 6.

Note: You can insert this function from the
keyboard by typing integral(...).

If Lower andUpper are omitted, returns an
anti-derivative. A symbolic constant of
integration is omitted unless you provide
the Constant argument.

Equally valid anti-derivatives might differ by
a numeric constant. Such a constant might
be disguised—particularly when an anti-
derivative contains logarithms or inverse
trigonometric functions. Moreover,
piecewise constant expressions are
sometimes added to make an anti-
derivative valid over a larger interval than
the usual formula.

∫() returns itself for pieces of Expr1 that it
cannot determine as an explicit finite
combination of its built-in functions and
operators.

When you provide Lower andUpper, an
attempt is made to locate any
discontinuities or discontinuous derivatives
in the interval Lower < Var < Upper and to
subdivide the interval at those places.

For the Auto setting of the Auto or
Approximate mode, numerical integration is
used where applicable when an anti-
derivative or a limit cannot be determined.

For the Approximate setting, numerical
integration is tried first, if applicable. Anti-
derivatives are sought only where such
numerical integration is inapplicable or
fails.

Note: To force anapproximate result,

Handheld: Press/·.
Windows®: Press Ctrl+Enter.
Macintosh®: Press “+Enter.
iPad®: Holdenter, and select .

∫() (integral) Catalog >

∫() can be nested to do multiple integrals.
Integration limits can depend on integration
variables outside them.

Note: See also nInt(), page 122.

√() (square root) /q keys
√(Expr1) ⇒ expression

√(List1) ⇒ list

Returns the square root of the argument.

For a list, returns the square roots of all the
elements in List1.

Note: You can insert this function from the
keyboard by typing sqrt(...)

Note: See also Square root template, page
1.

Π() (prodSeq) Catalog >
Π(Expr1, Var, Low, High) ⇒ expression

Note: You can insert this function from the
keyboard by typing prodSeq(...).

Evaluates Expr1 for each value of Var from
Low toHigh, and returns the product of the
results.

Note: See also Product template (Π), page
5.

Symbols 223

224 Symbols

Π() (prodSeq) Catalog >
Π(Expr1, Var, Low, Low−1) ⇒ 1

Π(Expr1, Var, Low, High) ⇒ 1/Π(Expr1,
Var, High+1, Low−1) if High < Low−1

The product formulas used are derived from
the following reference:

Ronald L. Graham, Donald E. Knuth, and
Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science.
Reading, Massachusetts: Addison-Wesley,
1994.

Σ() (sumSeq) Catalog >
Σ(Expr1, Var, Low, High) ⇒ expression

Note: You can insert this function from the
keyboard by typing sumSeq(...).

Evaluates Expr1 for each value of Var from
Low toHigh, and returns the sum of the
results.

Note: See also Sum template, page 5.

Σ(Expr1, Var, Low, Low−1) ⇒ 0

Σ(Expr1, Var, Low, High) ⇒ μ

Σ(Expr1, Var, High+1, Low−1) if High <
Low−1

The summation formulas used are derived
from the following reference:

Ronald L. Graham, Donald E. Knuth, and
Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science.
Reading, Massachusetts: Addison-Wesley,
1994.

ΣInt() Catalog >
ΣInt(NPmt1, NPmt2, N, I, PV ,[Pmt], [FV],
[PpY], [CpY], [PmtAt], [roundValue])
⇒ value

ΣInt(NPmt1,NPmt2,amortTable) ⇒ value

Amortization function that calculates the
sum of the interest during a specified range
of payments.

NPmt1 and NPmt2 define the start and end
boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt
are described in the table of TVM
arguments, page 195.

• If you omit Pmt, it defaults to
Pmt=tvmPmt
(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt

are the same as for the TVM functions.

roundValue specifies the number of
decimal places for rounding. Default=2.

ΣInt(NPmt1,NPmt2,amortTable) calculates
the sum of the interest based on
amortization table amortTable. The
amortTable argument must be a matrix in
the form described under amortTbl(), page
8.

Note: See also ΣPrn(), below, and Bal(),
page 17.

ΣPrn() Catalog >
ΣPrn(NPmt1, NPmt2, N, I, PV, [Pmt],
[FV], [PpY], [CpY], [PmtAt],
[roundValue]) ⇒ value

ΣPrn(NPmt1, NPmt2, amortTable) ⇒
value

Amortization function that calculates the
sum of the principal during a specified
range of payments.

Symbols 225

226 Symbols

ΣPrn() Catalog >
NPmt1 and NPmt2 define the start and end
boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt
are described in the table of TVM
arguments, page 195.

• If you omit Pmt, it defaults to
Pmt=tvmPmt
(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt

are the same as for the TVM functions.

roundValue specifies the number of
decimal places for rounding. Default=2.

ΣPrn(NPmt1,NPmt2,amortTable)
calculates the sum of the principal paid
based on amortization table amortTable.
The amortTable argument must be a
matrix in the form described under
amortTbl(), page 8.

Note: See also ΣInt(), above, and Bal(),
page 17.

(indirection) /k keys
varNameString

Refers to the variable whose name is
varNameString. This lets you use strings to
create variable names from within a
function.

Creates or refers to the variable xyz .

Returns the value of the variable (r) whose
name is stored in variable s1.

E (scientific notation) i key
mantissaEexponent

Enters a number in scientific notation. The
number is interpreted as
mantissa × 10exponent.

Hint: If you want to enter a power of 10
without causing a decimal value result, use
10^integer.

Note: You can insert this operator from the
computer keyboard by typing @E. for
example, type 2.3@E4 to enter 2.3E4.

g (gradian) ¹ key
Expr1g ⇒ expression

List1g ⇒ list

Matrix1g ⇒ matrix

This function gives you a way to specify a
gradian angle while in the Degree or Radian
mode.

In Radian angle mode, multiplies Expr1 by
π/200.

In Degree angle mode, multiplies Expr1 by
g/100.

In Gradian mode, returns Expr1 unchanged.

Note: You can insert this symbol from the
computer keyboard by typing @g.

InDegree, Gradianor Radianmode:

r(radian) ¹ key
Expr1r ⇒expression

List1r ⇒ list

Matrix1r ⇒ matrix

InDegree, Gradianor Radian anglemode:

Symbols 227

228 Symbols

r(radian) ¹ key
This function gives you a way to specify a
radian angle while in Degree or Gradian
mode.

In Degree angle mode, multiplies the
argument by 180/π.

In Radian angle mode, returns the
argument unchanged.

In Gradian mode, multiplies the argument
by 200/π.

Hint: Use r if you want to force radians in a
function definition regardless of the mode
that prevails when the function is used.

Note: You can insert this symbol from the
computer keyboard by typing @r.

° (degree) ¹ key
Expr1°⇒expression

List1°⇒ list

Matrix1°⇒ matrix

This function gives you a way to specify a
degree angle while in Gradian or Radian
mode.

In Radian angle mode, multiplies the
argument by π/180.

In Degree angle mode, returns the
argument unchanged.

In Gradian angle mode, multiplies the
argument by 10/9.

Note: You can insert this symbol from the
computer keyboard by typing @d.

InDegree, Gradianor Radian anglemode:

In Radian anglemode:

Note: To force anapproximate result,

Handheld: Press/·.
Windows®: Press Ctrl+Enter.
Macintosh®: Press “+Enter.
iPad®: Holdenter, and select .

°, ', '' (degree/minute/second) /k keys
dd°mm'ss.ss'' ⇒ expression InDegree anglemode:

°, ', '' (degree/minute/second) /k keys
dd A positive or negative number
mm A non-negative number
ss.ss A non-negative number

Returns dd+(mm/60)+(ss.ss/3600).

This base-60 entry format lets you:

• Enter an angle in
degrees/minutes/seconds without regard
to the current angle mode.

• Enter time as hours/minutes/seconds.

Note: Follow ss.ss with two apostrophes
(''), not a quote symbol (").

∠ (angle) /k keys
[Radius,∠θ_Angle] ⇒ vector
(polar input)

[Radius,∠θ_Angle,Z_Coordinate] ⇒
vector
(cylindrical input)

[Radius,∠θ_Angle,∠θ_Angle] ⇒ vector
(spherical input)

Returns coordinates as a vector depending
on the Vector Format mode setting:
rectangular, cylindrical, or spherical.

Note: You can insert this symbol from the
computer keyboard by typing @<.

In Radianmode andvector format set to:
rectangular

cylindrical

spherical

(Magnitude∠Angle) ⇒ complexValue
(polar input)

Enters a complex value in (r∠θ) polar
form. The Angle is interpreted according to
the current Angle mode setting.

In Radian anglemode andRectangular
complex format:

Note: To force anapproximate result,

Handheld: Press/·.
Windows®: Press Ctrl+Enter.
Macintosh®: Press “+Enter.
iPad®: Holdenter, and select .

Symbols 229

230 Symbols

∠ (angle) /k keys

' (prime) º key
variable '
variable ' '

Enters a prime symbol in a differential
equation. A single prime symbol denotes a
1st-order differential equation, two prime
symbols denote a 2nd-order, and so on.

_ (underscore as an empty element)
See “Empty (Void) Elements,”

page 236.

_ (underscore as unit designator) /_ keys
Expr_Unit

Designates the units for an Expr. All unit
names must begin with an underscore.

You can use pre-defined units or create your
own units. For a list of pre-defined units,
open the Catalog and display the Unit
Conversions tab. You can select unit names
from the Catalog or type the unit names
directly.

Note: You can find the conversion symbol,

►, in the Catalog. Click , and then click
MathOperators.

Variable_

When Variable has no value, it is treated
as though it represents a complex number.
By default, without the _ , the variable is
treated as real.

If Variable has a value, the _ is ignored and
Variable retains its original data type.

Note: You can store a complex number to a
variable without
using _ . However, for best results in
calculations such as cSolve() and cZeros(),
the _ is recommended.

Assuming z is undefined:

► (convert) /k keys

Expr_Unit1►_Unit2⇒ Expr_Unit2

Converts an expression from one unit to
another.

The _ underscore character designates the
units. The units must be in the same
category, such as Length or Area.

For a list of pre-defined units, open the
Catalog and display the Unit Conversions
tab:

• You can select a unit name from the list.
• You can select the conversion operator,

►, from the top of the list.

You can also type unit names manually. To
type “_” when typing unit names on the
handheld, press/_.

Note: To convert temperature units, use
tmpCnv() and ΔtmpCnv(). The► conversion
operator does not handle temperature
units.

10^() Catalog >
10^ (Expr1) ⇒ expression

10^ (List1) ⇒ list

Returns 10 raised to the power of the
argument.

For a list, returns 10 raised to the power of
the elements in List1.
10^(squareMatrix1) ⇒ squareMatrix

Returns 10 raised to the power of
squareMatrix1. This is not the same as
calculating 10 raised to the power of each
element. For information about the
calculation method, refer to cos().

squareMatrix1must be diagonalizable. The
result always contains floating-point
numbers.

Symbols 231

232 Symbols

^⁻¹ (reciprocal) Catalog >
Expr1 ^⁻¹⇒ expression

List1 ^⁻¹⇒ list

Returns the reciprocal of the argument.

For a list, returns the reciprocals of the
elements in List1.
squareMatrix1 ^⁻¹⇒ squareMatrix

Returns the inverse of squareMatrix1.

squareMatrix1must be a non-singular
square matrix.

| (constraint operator) /k keys
Expr | BooleanExpr1[and
BooleanExpr2]...

Expr | BooleanExpr1[orBooleanExpr2]...

The constraint (“|”) symbol serves as a
binary operator. The operand to the left of |
is an expression. The operand to the right of
| specifies one or more relations that are
intended to affect the simplification of the
expression. Multiple relations after | must
be joined by logical “and” or “or” operators.

The constraint operator provides three basic
types of functionality:

• Substitutions
• Interval constraints
• Exclusions

Substitutions are in the form of an equality,
such as x=3 or y=sin(x). To be most
effective, the left side should be a simple
variable. Expr | Variable = value will
substitute value for every occurrence of
Variable in Expr.

| (constraint operator) /k keys
Interval constraints take the form of one or
more inequalities joined by logical “and” or
“or” operators. Interval constraints also
permit simplification that otherwise might
be invalid or not computable.

Exclusions use the “not equals” (/= or ≠)
relational operator to exclude a specific
value from consideration. They are used
primarily to exclude an exact solution when
using cSolve(), cZeros(), fMax(), fMin(),
solve(), zeros(), and so on.

→ (store) /h key
Expr → Var

List→ Var

Matrix→ Var

Expr→ Function(Param1,...)

List→ Function(Param1,...)

Matrix→ Function(Param1,...)

If the variable Var does not exist, creates it
and initializes it to Expr, List, orMatrix.

If the variable Var already exists and is not
locked or protected, replaces its contents
with Expr, List, orMatrix.

Symbols 233

234 Symbols

→ (store) /h key
Hint: If you plan to do symbolic
computations using undefined variables,
avoid storing anything into commonly used,
one-letter variables such as a, b, c, x, y, z,
and so on.

Note: You can insert this operator from the
keyboard by typing =: as a shortcut. For
example, type pi/4 =: myvar.

:= (assign) /t keys
Var := Expr

Var := List

Var :=Matrix

Function(Param1,...) := Expr

Function(Param1,...) := List

Function(Param1,...) :=Matrix

If variable Var does not exist, creates Var
and initializes it to Expr, List, orMatrix.

If Var already exists and is not locked or
protected, replaces its contents with Expr,
List, orMatrix.

Hint: If you plan to do symbolic
computations using undefined variables,
avoid storing anything into commonly used,
one-letter variables such as a, b, c, x, y, z,
and so on.

© (comment) /k keys
© [text]

© processes text as a comment line,
allowing you to annotate functions and
programs that you create.

© can be at the beginning or anywhere in
the line. Everything to the right of ©, to the
end of the line, is the comment.

Note for entering the example: For
instructions on entering multi-line program
and function definitions, refer to the
Calculator section of your product
guidebook.

0b, 0h 0B keys,0H keys
0b binaryNumber
0h hexadecimalNumber

Denotes a binary or hexadecimal number,
respectively. To enter a binary or hex
number, you must enter the 0b or 0h prefix
regardless of the Base mode. Without a
prefix, a number is treated as decimal
(base 10).

Results are displayed according to the Base
mode.

InDec basemode:

In Bin basemode:

InHex basemode:

Symbols 235

236 Empty (Void) Elements

Empty (Void) Elements
When analyzing real-world data, you might not always have a complete data set.
TI-Nspire™ CAS Software allows empty, or void, data elements so you can proceed
with the nearly complete data rather than having to start over or discard the
incomplete cases.

You can find an example of data involving empty elements in the Lists & Spreadsheet
chapter, under “Graphing spreadsheet data.”

The delVoid() function lets you remove empty elements from a list. The isVoid()
function lets you test for an empty element. For details, see delVoid(), page 49, and
isVoid(), page 94.

Note: To enter an empty element manually in a math expression, type “_” or the
keyword void. The keyword void is automatically converted to a “_” symbol when
the expression is evaluated. To type “_” on the handheld, press/_.

Calculations involving void elements
The majority of calculations involving a void
input will produce a void result. See special
cases below.

List arguments containing void elements
The following functions and commands
ignore (skip) void elements found in list
arguments.

count, countIf, cumulativeSum,
freqTable►list, frequency, max, mean,
median, product, stDevPop, stDevSamp,
sum, sumIf, varPop, and varSamp, as well as
regression calculations, OneVar, TwoVar,
and FiveNumSummary statistics, confidence
intervals, and stat tests

SortA and SortDmove all void elements
within the first argument to the bottom.

List arguments containing void elements

In regressions, a void in an X or Y list
introduces a void for the corresponding
element of the residual.

An omitted category in regressions
introduces a void for the corresponding
element of the residual.

A frequency of 0 in regressions introduces a
void for the corresponding element of the
residual.

Empty (Void) Elements 237

238 Shortcuts for Entering Math Expressions

Shortcuts for Entering Math Expressions
Shortcuts let you enter elements of math expressions by typing instead of using the
Catalog or Symbol Palette. For example, to enter the expression √6, you can type sqrt
(6) on the entry line. When you press·, the expression sqrt(6) is changed to
√6. Some shortcuts are useful from both the handheld and the computer keyboard.
Others are useful primarily from the computer keyboard.

From the Handheld or Computer Keyboard

To enter this: Type this shortcut:

π pi

θ theta

∞ infinity

≤ <=

≥ >=

≠ /=

⇒ (logical implication) =>

⇔ (logical double implication, XNOR) <=>

→ (store operator) =:

| | (absolute value) abs(...)

√() sqrt(...)

d() derivative(...)

∫() integral(...)

Σ() (Sum template) sumSeq(...)

Π() (Product template) prodSeq(...)

sin⁻¹(), cos⁻¹(), ... arcsin(...), arccos(...), ...

ΔList() deltaList(...)

ΔtmpCnv() deltaTmpCnv(...)

From the Computer Keyboard

To enter this: Type this shortcut:

c1, c2, ... (constants) @c1, @c2, ...

To enter this: Type this shortcut:

n1, n2, ... (integer constants) @n1, @n2, ...

i (imaginary constant) @i

e (natural log base e) @e

E (scientific notation) @E
T (transpose) @t
r (radians) @r

° (degrees) @d
g (gradians) @g

∠ (angle) @<

► (conversion) @>

►Decimal,►approxFraction(), and
so on.

@>Decimal, @>approxFraction(), and
so on.

Shortcuts for Entering Math Expressions 239

240 EOS™ (Equation Operating System) Hierarchy

EOS™ (Equation Operating System) Hierarchy
This section describes the Equation Operating System (EOS™) that is used by the
TI-Nspire™ CAS math and science learning technology. Numbers, variables, and
functions are entered in a simple, straightforward sequence. EOS™ software evaluates
expressions and equations using parenthetical grouping and according to the priorities
described below.

Order of Evaluation

Level Operator

1 Parentheses (), brackets [], braces { }

2 Indirection (#)

3 Function calls

4 Post operators: degrees-minutes-seconds (°,',"), factorial (!), percentage
(%), radian (r), subscript ([]), transpose (T)

5 Exponentiation, power operator (^)

6 Negation (⁻)

7 String concatenation (&)

8 Multiplication (•), division (/)

9 Addition (+), subtraction (-)

10 Equality relations: equal (=), not equal (≠ or /=),
less than (<), less than or equal (≤ or <=), greater than (>), greater than or
equal (≥ or >=)

11 Logical not

12 Logical and

13 Logical or

14 xor, nor, nand

15 Logical implication (⇒)

16 Logical double implication, XNOR (⇔)

17 Constraint operator (“|”)

18 Store (→)

Parentheses, Brackets, and Braces

All calculations inside a pair of parentheses, brackets, or braces are evaluated first. For
example, in the expression 4(1+2), EOS™ software first evaluates the portion of the
expression inside the parentheses, 1+2, and then multiplies the result, 3, by 4.

The number of opening and closing parentheses, brackets, and braces must be the
same within an expression or equation. If not, an error message is displayed that
indicates the missing element. For example, (1+2)/(3+4 will display the error message
“Missing).”

Note: Because the TI-Nspire™ CAS software allows you to define your own functions, a
variable name followed by an expression in parentheses is considered a “function call”
instead of implied multiplication. For example a(b+c) is the function a evaluated by
b+c. To multiply the expression b+c by the variable a, use explicit multiplication: a•
(b+c).

Indirection

The indirection operator (#) converts a string to a variable or function name. For
example, #(“x”&”y”&”z”) creates the variable name xyz. Indirection also allows the
creation and modification of variables from inside a program. For example, if 10→r
and “r”→s1, then #s1=10.

Post Operators

Post operators are operators that come directly after an argument, such as 5!, 25%, or
60°15' 45". Arguments followed by a post operator are evaluated at the fourth priority
level. For example, in the expression 4^3!, 3! is evaluated first. The result, 6, then
becomes the exponent of 4 to yield 4096.

Exponentiation

Exponentiation (^) and element-by-element exponentiation (.^) are evaluated from
right to left. For example, the expression 2^3^2 is evaluated the same as 2^(3^2) to
produce 512. This is different from (2^3)^2, which is 64.

Negation

To enter a negative number, pressv followed by the number. Post operations and
exponentiation are performed before negation. For example, the result of −x2 is a
negative number, and −92 = −81. Use parentheses to square a negative number such
as (−9)2 to produce 81.

Constraint (“|”)

The argument following the constraint (“|”) operator provides a set of constraints that
affect the evaluation of the argument preceding the operator.

EOS™ (Equation Operating System) Hierarchy 241

242 Constants and Values

Constants and Values
The following table lists the constants and their values that are available when
performing unit conversions. They can be typed in manually or selected from the
Constants list in Utilities > Unit Conversions (Handheld: Pressk 3).

Constant Name Value

_c Speedof light 299792458 _m/_s

_Cc Coulombconstant 8987551787.3682 _m/_F

_Fc Faraday constant 96485.33289 _coul/_mol

_g Accelerationof gravity 9.80665 _m/_s2

_Gc Gravitational constant 6.67408E-11 _m3/_kg/_s2

_h Planck's constant 6.626070040E-34 _J _s

_k Boltzmann's constant 1.38064852E-23 _J/_¡K

_m0 Permeability of a vacuum 1.2566370614359E-6 _N/_A2

_mb Bohr magneton 9.274009994E-24 _J _m2/_Wb

_Me Electron restmass 9.10938356E-31 _kg

_Mm Muonmass 1.883531594E-28 _kg

_Mn Neutron restmass 1.674927471E-27 _kg

_Mp Proton restmass 1.672621898E-27 _kg

_Na Avogadro's number 6.022140857E23 /_mol

_q Electron charge 1.6021766208E-19 _coul

_Rb Bohr radius 5.2917721067E-11 _m

_Rc Molar gas constant 8.3144598 _J/_mol/_¡K

_Rdb Rydberg constant 10973731.568508/_m

_Re Electron radius 2.8179403227E-15 _m

_u Atomicmass 1.660539040E-27 _kg

_Vm Molar volume 2.2413962E-2 _m3/_mol

_H0 Permittivity of a vacuum 8.8541878176204E-12 _F/_m

_s Stefan-Boltzmann constant 5.670367E-8 _W/_m2/_¡K4

_f0 Magnetic flux quantum 2.067833831E-15 _Wb

Error Codes and Messages
When an error occurs, its code is assigned to variable errCode. User-defined programs
and functions can examine errCode to determine the cause of an error. For an
example of using errCode, See Example 2 under the Try command, page 191.

Note: Some error conditions apply only to TI-Nspire™ CAS products, and some apply
only to TI-Nspire™ products.

Error
code Description

10 A functiondid not return a value

20 A test did not resolve to TRUE or FALSE.

Generally, undefined variables cannot be compared. For example, the test If a<bwill cause
this error if either a or b is undefinedwhen the If statement is executed.

30 Argument cannot be a folder name.

40 Argument error

50 Argumentmismatch

Two or more arguments must be of the same type.

60 Argumentmust be a Booleanexpressionor integer

70 Argumentmust be a decimal number

90 Argumentmust be a list

100 Argumentmust be amatrix

130 Argumentmust be a string

140 Argumentmust be a variable name.

Make sure that the name:
• does not begin with a digit
• does not contain spaces or special characters
• does not use underscore or period in invalid manner
• does not exceed the length limitations

See the Calculator section in the documentation for more details.

160 Argumentmust be anexpression

165 Batteries too low for sending or receiving

Install newbatteries before sending or receiving.

170 Bound

The lower boundmust be less than the upper bound to define the search interval.

Error Codes and Messages 243

244 Error Codes and Messages

Error
code Description

180 Break

Thed orc key was pressedduring a long calculationor during programexecution.

190 Circular definition

This message is displayed to avoid running out ofmemory during infinite replacement of
variable values during simplification. For example, a+1->a, where a is anundefined variable,
will cause this error.

200 Constraint expression invalid

For example, solve(3x^2-4=0,x) | x<0 or x>5wouldproduce this error message because the
constraint is separatedby “or” insteadof “and.”

210 InvalidData type

Anargument is of thewrong data type.

220 Dependent limit

230 Dimension

A list or matrix index is not valid. For example, if the list {1,2,3,4} is stored in L1, then L1[5] is a
dimensionerror because L1 only contains four elements.

235 Dimension Error. Not enoughelements in the lists.

240 Dimensionmismatch

Two or more arguments must be of the same dimension. For example, [1,2]+[1,2,3] is a
dimensionmismatchbecause thematrices contain a different number of elements.

250 Divide by zero

260 Domain error

Anargumentmust be in a specifieddomain. For example, rand(0) is not valid.

270 Duplicate variable name

280 Else andElseIf invalid outside of If...EndIf block

290 EndTry is missing thematching Else statement

295 Excessive iteration

300 Expected2 or 3-element list or matrix

310 The first argumentof nSolvemust be anequation in a single variable. It cannot contain a non-
valued variable other than the variable of interest.

320 First argumentof solve or cSolvemust be anequationor inequality

For example, solve(3x^2-4,x) is invalid because the first argument is not anequation.

Error
code Description

345 Inconsistent units

350 Index out of range

360 Indirection string is not a valid variable name

380 UndefinedAns

Either the previous calculationdid not create Ans, or no previous calculationwas entered.

390 Invalid assignment

400 Invalid assignment value

410 Invalid command

430 Invalid for the currentmode settings

435 Invalid guess

440 Invalid impliedmultiply

For example, x(x+1) is invalid; whereas, x*(x+1) is the correct syntax. This is to avoid
confusionbetween impliedmultiplication and function calls.

450 Invalid in a functionor current expression

Only certain commands are valid in a user-defined function.

490 Invalid in Try..EndTry block

510 Invalid list or matrix

550 Invalid outside functionor program

A number of commands are not valid outside a functionor program. For example, Local
cannot be usedunless it is in a functionor program.

560 Invalid outside Loop..EndLoop, For..EndFor, or While..EndWhile blocks

For example, the Exit command is valid only inside these loopblocks.

565 Invalid outside program

570 Invalid pathname

For example, \var is invalid.

575 Invalid polar complex

580 Invalid program reference

Programs cannot be referencedwithin functions or expressions such as 1+p(x) where p is a
program.

Error Codes and Messages 245

246 Error Codes and Messages

Error
code Description

600 Invalid table

605 Invalid use of units

610 Invalid variable name in a Local statement

620 Invalid variable or functionname

630 Invalid variable reference

640 Invalid vector syntax

650 Link transmission

A transmissionbetween two units was not completed. Verify that the connecting cable is
connected firmly to bothends.

665 Matrix not diagonalizable

670 LowMemory

1. Delete some data in this document

2. Save and close this document

If 1 and2 fail, pull out and re-insert batteries

672 Resource exhaustion

673 Resource exhaustion

680 Missing (

690 Missing)

700 Missing “

710 Missing]

720 Missing }

730 Missing start or endof block syntax

740 Missing Then in the If..EndIf block

750 Name is not a functionor program

765 No functions selected

780 No solution found

800 Non-real result

For example, if the software is in the Real setting, √(-1) is invalid.

Error
code Description

To allow complex results, change the “Real or Complex”Mode Setting to RECTANGULAR or
POLAR.

830 Overflow

850 Programnot found

A program reference inside another program couldnot be found in the providedpathduring
execution.

855 Rand type functions not allowed in graphing

860 Recursion too deep

870 Reservedname or systemvariable

900 Argument error

Median-medianmodel could not be applied to data set.

910 Syntax error

920 Text not found

930 Too fewarguments

The functionor command is missing one or more arguments.

940 Too many arguments

The expressionor equation contains anexcessive number of arguments and cannot be
evaluated.

950 Too many subscripts

955 Too many undefined variables

960 Variable is not defined

No value is assigned to variable. Use one of the following commands:
• sto→
• :=
• Define

to assign values to variables.

965 UnlicensedOS

970 Variable in use so references or changes are not allowed

980 Variable is protected

990 Invalid variable name

Make sure that the name does not exceed the length limitations

Error Codes and Messages 247

248 Error Codes and Messages

Error
code Description

1000 Windowvariables domain

1010 Zoom

1020 Internal error

1030 Protectedmemory violation

1040 Unsupported function. This function requires Computer Algebra System. Try TI-Nspire™
CAS.

1045 Unsupportedoperator. This operator requires Computer Algebra System. Try TI-Nspire™
CAS.

1050 Unsupported feature. This operator requires Computer Algebra System. Try TI-Nspire™
CAS.

1060 Input argumentmust be numeric. Only inputs containing numeric values are allowed.

1070 Trig function argument too big for accurate reduction

1080 Unsupporteduse of Ans.This applicationdoes not support Ans.

1090 Function is not defined. Use one of the following commands:
• Define
• :=
• sto→

to define a function.

1100 Non-real calculation

For example, if the software is in the Real setting, √(-1) is invalid.

To allow complex results, change the “Real or Complex”Mode Setting to RECTANGULAR or
POLAR.

1110 Invalid bounds

1120 No sign change

1130 Argument cannot be a list or matrix

1140 Argument error

The first argumentmust be a polynomial expression in the secondargument. If the second
argument is omitted, the software attempts to select a default.

1150 Argument error

The first two arguments must be polynomial expressions in the third argument. If the third
argument is omitted, the software attempts to select a default.

1160 Invalid library pathname

Error
code Description

A pathnamemust be in the form xxx\yyy, where:
• The xxx part can have 1 to 16 characters.
• The yyy part can have 1 to 15 characters.

See the Library section in the documentation for more details.

1170 Invalid use of library pathname
• A value cannot be assigned to a pathname using Define, :=, or sto→.
• A pathname cannot be declared as a Local variable or be used as a

parameter in a function or program definition.

1180 Invalid library variable name.

Make sure that the name:
• Does not contain a period
• Does not begin with an underscore
• Does not exceed 15 characters

See the Library section in the documentation for more details.

1190 Library document not found:
• Verify library is in the MyLib folder.
• Refresh Libraries.

See the Library section in the documentation for more details.

1200 Library variable not found:
• Verify library variable exists in the first problem in the library.
• Make sure library variable has been defined as LibPub or LibPriv.
• Refresh Libraries.

See the Library section in the documentation for more details.

1210 Invalid library shortcut name.

Make sure that the name:
• Does not contain a period
• Does not begin with an underscore
• Does not exceed 16 characters
• Is not a reserved name

See the Library section in the documentation for more details.

1220 Domain error:

The tangentLine andnormalLine functions support real-valued functions only.

1230 Domain error.

Error Codes and Messages 249

250 Error Codes and Messages

Error
code Description

Trigonometric conversionoperators are not supported inDegree or Gradian anglemodes.

1250 Argument Error

Use a systemof linear equations.

Example of a systemof two linear equations with variables x and y:

 3x+7y=5

 2y-5x=-1

1260 Argument Error:

The first argumentof nfMinor nfMaxmust be anexpression in a single variable. It cannot
contain a non-valued variable other than the variable of interest.

1270 Argument Error

Order of the derivativemust be equal to 1 or 2.

1280 Argument Error

Use a polynomial in expanded form inone variable.

1290 Argument Error

Use a polynomial in one variable.

1300 Argument Error

The coefficients of the polynomialmust evaluate to numeric values.

1310 Argument error:

A function couldnot be evaluated for one or more of its arguments.

1380 Argument error:

Nested calls to domain() function are not allowed.

Warning Codes and Messages
You can use the warnCodes() function to store the codes of warnings generated by
evaluating an expression. This table lists each numeric warning code and its associated
message. For an example of storing warning codes, see warnCodes(), page 200.

Warning
code Message

10000 Operationmight introduce false solutions.

10001 Differentiating anequationmay produce a false equation.

10002 Questionable solution

10003 Questionable accuracy

10004 Operationmight lose solutions.

10005 cSolvemight specify more zeros.

10006 Solvemay specify more zeros.

10007 More solutionsmay exist. Try specifying appropriate lower andupper bounds and/or a
guess.

Examples using solve():
• solve(Equation, Var=Guess)|lowBound<Var<upBound
• solve(Equation, Var)|lowBound<Var<upBound
• solve(Equation, Var=Guess)

10008 Domainof the resultmight be smaller than the domainof the input.

10009 Domainof the resultmight be larger than the domainof the input.

10012 Non-real calculation

10013 ∞^0 or undef^0 replacedby 1

10014 undef^0 replacedby 1

10015 1^∞ or 1^undef replacedby 1

10016 1^undef replacedby 1

10017 Overflow replacedby∞ or −∞

10018 Operation requires and returns 64 bit value.

10019 Resource exhaustion, simplificationmight be incomplete.

10020 Trig function argument too big for accurate reduction.

10021 Input contains anundefinedparameter.

Resultmight not be valid for all possible parameter values.

Warning Codes and Messages 251

252 Warning Codes and Messages

Warning
code Message

10022 Specifying appropriate lower andupper boundsmight produce a solution.

10023 Scalar has beenmultipliedby the identity matrix.

10024 Result obtainedusing approximate arithmetic.

10025 Equivalence cannot be verified in EXACTmode.

10026 Constraintmight be ignored. Specify constraint in the form "\" 'VariableMathTestSymbol
Constant' or a conjunct of these forms, for example 'x<3 and x>-12'

General Information
Online Help
education.ti.com/eguide

Select your country for more product information.

Contact TI Support
education.ti.com/ti-cares

Select your country for technical and other support resources.

Service and Warranty Information
education.ti.com/warranty

Select your country for information about the length and terms of the warranty or
about product service.

Limited Warranty. This warranty does not affect your statutory rights.

General Information 253

Index

-

-, subtract 210

!

!, factorial 220

"

", second notation 228

#

#, indirection 226
#, indirection operator 241

%

%, percent 216

&

&, append 220

*

*, multiply 211

.

.-, dot subtraction 214

.*, dot multiplication 215

./, dot division 215

.^, dot power 215

.+, dot addition 214

/

/, divide 212

:

:=, assign 234

^

^⁻¹, reciprocal 232

^, power 213

_

_, unit designation 230

|

|, constraint operator 232

′

′minute notation 228
′, prime 230

+

+, add 210

=

≠, not equal 217
≤, less than or equal 218
≥, greater than or equal 219
>, greater than 218
=, equal 216

∏

∏, product 223

∑

∑(), sum 224
∑Int() 225
∑Prn() 225

√

√, square root 223

∠

∠ (angle) 229

∫

∫, integral 221

Index 254

►

►, convert units 231
►approxFraction() 13
►Base10, display as decimal integer 18
►Base16, display as hexadecimal 19
►Base2, display as binary 17
►cos, display in terms of cosine 29
►Cylind, display as cylindrical vector 42
►DD, display as decimal angle 45
►Decimal, display result as decimal 45
►DMS, display as

degree/minute/second 54
►exp, display in terms of e 63
►Grad, convert to gradian angle 86
►Polar, display as polar vector 133
►Rad, convert to radian angle 143
►Rect, display as rectangular vector 146
►sin, display in terms of sine 166
►Sphere, display as spherical vector 175

⇒

⇒ , logical implication 219, 238

→

→, store variable 233

⇔

⇔ , logical double implication 220, 238

©

©, comment 235

°

°, degree notation 228
°, degrees/minutes/seconds 228

0

0b, binary indicator 235
0h, hexadecimal indicator 235

1

10^(), power of ten 231

2

2-sample F Test 75

A

abs(), absolute value 8
absolute value

template for 3-4
add, + 210
amortization table, amortTbl() 8, 17
amortTbl(), amortization table 8, 17
and, Boolean operator 9
angle(), angle 10
angle, angle() 10
ANOVA, one-way variance analysis 10
ANOVA2way, two-way variance

analysis 11
Ans, last answer 13
answer (last), Ans 13
append, & 220
approx(), approximate 13-14
approximate, approx() 13-14
approxRational() 14
arc length, arcLen() 15
arccos(), cos⁻¹() 14
arccosh(), cosh⁻¹() 14
arccot(), cot⁻¹() 14
arccoth(), coth⁻¹() 14
arccsc(), csc⁻¹() 14
arccsch(), csch⁻¹() 14
arcLen(), arc length 15
arcsec(), sec⁻¹() 15
arcsech(), csech⁻¹() 15
arcsin(), sin⁻¹() 15
arcsinh(), sinh⁻¹() 15
arctan(), tan⁻¹() 15
arctanh(), tanh⁻¹() 15
arguments in TVM functions 195
augment(), augment/concatenate 15
augment/concatenate, augment() 15

255 Index

average rate of change, avgRC() 16
avgRC(), average rate of change 16

B

binary
display, ►Base2 17
indicator, 0b 235

binomCdf() 20, 92
binomPdf() 20
Boolean operators

⇒ 219, 238
⇔ 220
and 9
nand 119
nor 123
not 125
or 129
xor 201

C

Cdf() 68
ceiling(), ceiling 20
ceiling, ceiling() 20-21, 36
centralDiff() 21
cFactor(), complex factor 21
char(), character string 22
character string, char() 22
characters

numeric code, ord() 130
string, char() 22

charPoly() 23
χ²2way 23
clear

error, ClrErr 25
ClearAZ 25
ClrErr, clear error 25
colAugment 26
colDim(), matrix column dimension 26
colNorm(), matrix column norm 26
combinations, nCr() 120
comDenom(), common

denominator 26
comment, © 235

common denominator, comDenom
() 26

completeSquare(), complete square 27
complex

conjugate, conj() 28
factor, cFactor() 21
solve, cSolve() 38
zeros, cZeros() 43

conj(), complex conjugate 28
constant

in solve() 171
constants

in cSolve() 39
in cZeros() 44
in deSolve() 49
in solve() 173
in zeros() 203
shortcuts for 238

constraint operator "|" 232
constraint operator, order of

evaluation 240
construct matrix, constructMat() 28
constructMat(), construct matrix 28
convert

►Grad 86
►Rad 143
units 231

copy variable or function, CopyVar 29
correlation matrix, corrMat() 29
corrMat(), correlation matrix 29
cos⁻¹, arccosine 31
cos(), cosine 30
cosh⁻¹(), hyperbolic arccosine 32
cosh(), hyperbolic cosine 32
cosine

display expression in terms of 29
cosine, cos() 30
cot⁻¹(), arccotangent 33
cot(), cotangent 33
cotangent, cot() 33
coth⁻¹(), hyperbolic arccotangent 34
coth(), hyperbolic cotangent 34
count days between dates, dbd() 44
count items in a list conditionally , 35

Index 256

countif()
count items in a list, count() 34
count(), count items in a list 34
countif(), conditionally count items

in a list 35
cPolyRoots() 36
cross product, crossP() 36
crossP(), cross product 36
csc⁻¹(), inverse cosecant 37
csc(), cosecant 36
csch⁻¹(), inverse hyperbolic cosecant 37
csch(), hyperbolic cosecant 37
cSolve(), complex solve 38
cubic regression, CubicReg 40
CubicReg, cubic regression 40
cumulative sum, cumulativeSum() 41
cumulativeSum(), cumulative sum 41
cycle, Cycle 42
Cycle, cycle 42
cylindrical vector display, ►Cylind 42
cZeros(), complex zeros 43

D

d(), first derivative 221
days between dates, dbd() 44
dbd(), days between dates 44
decimal

angle display, ►DD 45
integer display, ►Base10 18

Define 46
Define LibPriv 47
Define LibPub 47
define, Define 46
Define, define 46
defining

private function or program 47
public function or program 47

definite integral
template for 6

degree notation, ° 228
degree/minute/second display,

►DMS 54
degree/minute/second notation 228

delete
void elements from list 49

deleting
variable, DelVar 48

deltaList() 48
deltaTmpCnv() 48
DelVar, delete variable 48
delVoid(), remove void elements 49
denominator 26
derivative or nth derivative

template for 6
derivative() 49
derivatives

first derivative, d() 221
numeric derivative, nDeriv() 121-122
numeric derivative, nDerivative(

) 121
deSolve(), solution 49
det(), matrix determinant 51
diag(), matrix diagonal 51
dim(), dimension 52
dimension, dim() 52
Disp, display data 52, 158
DispAt 52
display as

binary, ►Base2 17
cylindrical vector, ►Cylind 42
decimal angle, ►DD 45
decimal integer, ►Base10 18
degree/minute/second, ►DMS 54
hexadecimal, ►Base16 19
polar vector, ►Polar 133
rectangular vector, ►Rect 146
spherical vector, ►Sphere 175

display data, Disp 52, 158
distribution functions

binomCdf() 20, 92
binomPdf() 20
invNorm() 92
invt() 92
Invχ²() 91
normCdf() 125
normPdf() 125
poissCdf() 132

257 Index

poissPdf() 132
tCdf() 185
tPdf() 190
χ²2way() 23
χ²Cdf() 24
χ²GOF() 24
χ²Pdf() 24

divide, / 212
domain function, domain() 55
domain(), domain function 55
dominant term, dominantTerm() 55
dominantTerm(), dominant term 55
dot

addition, .+ 214
division, ./ 215
multiplication, .* 215
power, .^ 215
product, dotP() 57
subtraction, .- 214

dotP(), dot product 57

E

e exponent
template for 2

e to a power, e^() 57, 63
e, display expression in terms of 63
E, exponent 227
e^(), e to a power 57
eff(), convert nominal to effective

rate 58
effective rate, eff() 58
eigenvalue, eigVl() 58
eigenvector, eigVc() 58
eigVc(), eigenvector 58
eigVl(), eigenvalue 58
else if, ElseIf 59
else, Else 86
ElseIf, else if 59
empty (void) elements 236
end

for, EndFor 72
function, EndFunc 75
if, EndIf 86

loop, EndLoop 110
program, EndPrgm 137
try, EndTry 191
while, EndWhile 201

end function, EndFunc 75
end if, EndIf 86
end loop, EndLoop 110
end while, EndWhile 201
EndTry, end try 191
EndWhile, end while 201
EOS (Equation Operating System) 240
equal, = 216
Equation Operating System (EOS) 240
error codes and messages 243, 251
errors and troubleshooting

clear error, ClrErr 25
pass error, PassErr 131

euler(), Euler function 60
evaluate polynomial, polyEval() 135
evaluation, order of 240
exact(), exact 62
exact, exact() 62
exclusion with "|" operator 232
exit, Exit 62
Exit, exit 62
exp(), e to a power 63
exp►list(), expression to list 64
expand(), expand 64
expand, expand() 64
exponent, E 227
exponential regession, ExpReg 66
exponents

template for 1
expr(), string to expression 65, 107
ExpReg, exponential regession 66
expressions

expression to list, exp►list() 64
string to expression, expr() 65, 107

F

factor(), factor 67
factor, factor() 67
factorial, ! 220

Index 258

Fill, matrix fill 69
financial functions, tvmFV() 193
financial functions, tvmI() 193
financial functions, tvmN() 194
financial functions, tvmPmt() 194
financial functions, tvmPV() 194
first derivative

template for 5
FiveNumSummary 69
floor(), floor 70
floor, floor() 70
fMax(), function maximum 70
fMin(), function minimum 71
For 72
for, For 72
For, for 72
format string, format() 72
format(), format string 72
fpart(), function part 73
fractions

propFrac 139
template for 1

freqTable() 73
frequency() 74
Frobenius norm, norm() 124
Func, function 75
Func, program function 75
functions

maximum, fMax() 70
minimum, fMin() 71
part, fpart() 73
program function, Func 75
user-defined 46

functions and variables
copying 29

G

g, gradians 227
gcd(), greatest common divisor 76
geomCdf() 76
geomPdf() 77
Get 77
get/return

denominator, getDenom() 78

number, getNum() 84
variables injformation,

getVarInfo() 82, 85
getDenom(), get/return

denominator 78
getKey() 78
getLangInfo(), get/return language

information 82
getLockInfo(), tests lock status of

variable or variable group 82
getMode(), get mode settings 83
getNum(), get/return number 84
GetStr 84
getType(), get typeof variable 84
getVarInfo(), get/return variables

information 85
go to, Goto 86
Goto, go to 86
gradian notation, g 227
greater than or equal, ≥ 219
greater than, > 218
greatest common divisor, gcd() 76
groups, locking and unlocking 106, 197
groups, testing lock status 82

H

hexadecimal
display, ►Base16 19
indicator, 0h 235

hyperbolic
arccosine, cosh⁻¹() 32
arcsine, sinh⁻¹() 168
arctangent, tanh⁻¹() 184
cosine, cosh() 32
sine, sinh() 168
tangent, tanh() 184

I

identity matrix, identity() 86
identity(), identity matrix 86
if, If 86
If, if 86
ifFn() 88
imag(), imaginary part 88

259 Index

imaginary part, imag() 88
ImpDif(), implicit derivative 89
implicit derivative, Impdif() 89
indefinite integral

template for 6
indirection operator (#) 241
indirection, # 226
input, Input 89
Input, input 89
inString(), within string 89
int(), integer 90
intDiv(), integer divide 90
integer divide, intDiv() 90
integer part, iPart() 93
integer, int() 90
integral, ∫ 221
interpolate(), interpolate 90
inverse cumulative normal

distribution (invNorm() 92
inverse, ^⁻¹ 232
invF() 91
invNorm(), inverse cumulative

normal distribution) 92
invt() 92
Invχ²() 91
iPart(), integer part 93
irr(), internal rate of return

internal rate of return, irr() 93
isPrime(), prime test 93
isVoid(), test for void 94

L

label, Lbl 95
language

get language information 82
Lbl, label 95
lcm, least common multiple 95
least common multiple, lcm 95
left(), left 95
left, left() 95
length of string 52
less than or equal, ≤ 218
LibPriv 47

LibPub 47
library

create shortcuts to objects 96
libShortcut(), create shortcuts to

library objects 96
limit

lim() 96
limit() 96
template for 6

limit() or lim(), limit 96
linear regression, LinRegAx 98
linear regression, LinRegBx 97, 99
LinRegBx, linear regression 97
LinRegMx, linear regression 98
LinRegtIntervals, linear regression 99
LinRegtTest 101
linSolve() 102
Δlist(), list difference 103
list to matrix, list►mat() 103
list, conditionally count items in 35
list, count items in 34
list►mat(), list to matrix 103
lists

augment/concatenate,
augment() 15

cross product, crossP() 36
cumulative sum,

cumulativeSum() 41
differences in a list, Δlist() 103
dot product, dotP() 57
empty elements in 236
expression to list, exp►list() 64
list to matrix, list►mat() 103
matrix to list, mat►list() 111
maximum, max() 111
mid-string, mid() 114
minimum, min() 115
new, newList() 121
product, product() 138
sort ascending, SortA 174
sort descending, SortD 175
summation, sum() 180

ln(), natural logarithm 103
LnReg, logarithmic regression 104

Index 260

local variable, Local 105
local, Local 105
Local, local variable 105
Lock, lock variable or variable group 106
locking variables and variable groups 106
Log

template for 2
logarithmic regression, LnReg 104
logarithms 103
logical double implication,⇔ 220
logical implication,⇒ 219, 238
logistic regression, Logistic 107
logistic regression, LogisticD 108
Logistic, logistic regression 107
LogisticD, logistic regression 108
loop, Loop 110
Loop, loop 110
LU, matrix lower-upper

decomposition 110

M

mat►list(), matrix to list 111
matrices

augment/concatenate,
augment() 15

column dimension, colDim() 26
column norm, colNorm() 26
cumulative sum,

cumulativeSum() 41
determinant, det() 51
diagonal, diag() 51
dimension, dim() 52
dot addition, .+ 214
dot division, ./ 215
dot multiplication, .* 215
dot power, .^ 215
dot subtraction, .- 214
eigenvalue, eigVl() 58
eigenvector, eigVc() 58
filling, Fill 69
identity, identity() 86
list to matrix, list►mat() 103
lower-upper decomposition, LU 110
matrix to list, mat►list() 111

maximum, max() 111
minimum, min() 115
new, newMat() 121
product, product() 138
QR factorization, QR 139
random, randMat() 145
reduced row echelon form, rref(

) 156
row addition, rowAdd() 155
row dimension, rowDim() 156
row echelon form, ref() 147
row multiplication and addition,

mRowAdd() 116
row norm, rowNorm() 156
row operation, mRow() 116
row swap, rowSwap() 156
submatrix, subMat() 180-181
summation, sum() 180
transpose, T 182

matrix (1 × 2)
template for 4

matrix (2 × 1)
template for 4

matrix (2 × 2)
template for 4

matrix (m ×n)
template for 4

matrix to list, mat►list() 111
max(), maximum 111
maximum, max() 111
mean(), mean 112
mean, mean() 112
median(), median 112
median, median() 112
medium-medium line regression,

MedMed 113
MedMed, medium-medium line

regression 113
mid-string, mid() 114
mid(), mid-string 114
min(), minimum 115
minimum, min() 115
minute notation, ′ 228
mirr(), modified internal rate of

return 115

261 Index

mixed fractions, using propFrac(›
with 139

mod(), modulo 116
mode settings, getMode() 83
modes

setting, setMode() 162
modified internal rate of return, mirr

() 115
modulo, mod() 116
mRow(), matrix row operation 116
mRowAdd(), matrix row

multiplication and addition 116
Multiple linear regression t test 118
multiply, * 211
MultReg 117
MultRegIntervals() 117
MultRegTests() 118

N

nand, Boolean operator 119
natural logarithm, ln() 103
nCr(), combinations 120
nDerivative(), numeric derivative 121
negation, entering negative numbers 241
net present value, npv() 126
new

list, newList() 121
matrix, newMat() 121

newList(), new list 121
newMat(), new matrix 121
nfMax(), numeric function

maximum 121
nfMin(), numeric function minimum 122
nInt(), numeric integral 122
nom), convert effective to nominal

rate 123
nominal rate, nom() 123
nor, Boolean operator 123
norm(), Frobenius norm 124
normal distribution probability,

normCdf() 125
normal line, normalLine() 124
normalLine() 124
normCdf() 125

normPdf() 125
not equal, ≠ 217
not, Boolean operator 125
nPr(), permutations 126
npv(), net present value 126
nSolve(), numeric solution 127
nth root

template for 1
numeric

derivative, nDeriv() 121-122
derivative, nDerivative() 121
integral, nInt() 122
solution, nSolve() 127

O

objects
create shortcuts to library 96

one-variable statistics, OneVar 128
OneVar, one-variable statistics 128
operators

order of evaluation 240
or (Boolean), or 129
or, Boolean operator 129
ord(), numeric character code 130

P

P►Rx(), rectangular x coordinate 130
P►Ry(), rectangular y coordinate 131
pass error, PassErr 131
PassErr, pass error 131
Pdf() 73
percent, % 216
permutations, nPr() 126
piecewise function (2-piece)

template for 2
piecewise function (N-piece)

template for 3
piecewise() 132
poissCdf() 132
poissPdf() 132
polar

coordinate, R►Pr() 143
coordinate, R►Pθ() 142

Index 262

vector display, ►Polar 133
polyCoef() 133
polyDegree() 134
polyEval(), evaluate polynomial 135
polyGcd() 135-136
polynomials

evaluate, polyEval() 135
random, randPoly() 145

PolyRoots() 136
power of ten, 10^() 231
power regression,

PowerReg 136, 149, 151, 187
power, ^ 213
PowerReg, power regression 136
Prgm, define program 137
primenumber test, isPrime() 93
prime, ′ 230
probability densiy, normPdf() 125
prodSeq() 138
product(), product 138
product, ∏() 223

template for 5
product, product() 138
programming

define program, Prgm 137
display data, Disp 52, 158
pass error, PassErr 131

programs
defining private library 47
defining public library 47

programs and programming
clear error, ClrErr 25
display I/O screen, Disp 52, 158
end program, EndPrgm 137
end try, EndTry 191
try, Try 191

proper fraction, propFrac 139
propFrac, proper fraction 139

Q

QR factorization, QR 139
QR, QR factorization 139
quadratic regression, QuadReg 140
QuadReg, quadratic regression 140

quartic regression, QuartReg 141
QuartReg, quartic regression 141

R

R, radian 227
R►Pr(), polar coordinate 143
R►Pθ(), polar coordinate 142
radian, R 227
rand(), random number 143
randBin, random number 144
randInt(), random integer 144
randMat(), random matrix 145
randNorm(), random norm 145
random

matrix, randMat() 145
norm, randNorm() 145
number seed, RandSeed 146
polynomial, randPoly() 145

random sample 145
randPoly(), random polynomial 145
randSamp() 145
RandSeed, random number seed 146
real(), real 146
real, real() 146
reciprocal, ^⁻¹ 232
rectangular-vector display, ►Rect 146
rectangular x coordinate, P►Rx() 130
rectangular y coordinate, P►Ry() 131
reduced row echelon form, rref() 156
ref(), row echelon form 147
RefreshProbeVars 148
regressions

cubic, CubicReg 40
exponential, ExpReg 66
linear regression, LinRegAx 98
linear regression, LinRegBx 97, 99
logarithmic, LnReg 104
Logistic 107
logistic, Logistic 108
medium-medium line, MedMed 113
MultReg 117
power regression,

PowerReg 136, 149, 151, 187
quadratic, QuadReg 140

263 Index

quartic, QuartReg 141
sinusoidal, SinReg 169

remain(), remainder 149
remainder, remain() 149
remove

void elements from list 49
Request 149
RequestStr 151
result

display in terms of cosine 29
display in terms of e 63
display in terms of sine 166

result values, statistics 177
results, statistics 176
return, Return 152
Return, return 152
right(), right 152
right, right() 27, 60, 90, 152
rk23(), RungeKutta function 152
rotate(), rotate 154
rotate, rotate() 154
round(), round 155
round, round() 155
row echelon form, ref() 147
rowAdd(), matrix row addition 155
rowDim(), matrix row dimension 156
rowNorm(), matrix row norm 156
rowSwap(), matrix row swap 156
rref(), reduced row echelon form 156

S

sec⁻¹(), inverse secant 157
sec(), secant 157
sech⁻¹(), inverse hyperbolic secant 158
sech(), hyperbolic secant 158
second derivative

template for 6
second notation, " 228
seq(), sequence 159
seqGen() 159
seqn() 160
sequence, seq() 159-160
series(), series 161

series, series() 161
set

mode, setMode() 162
setMode(), set mode 162
settings, get current 83
shift(), shift 163
shift, shift() 163
sign(), sign 165
sign, sign() 165
simult(), simultaneous equations 165
simultaneous equations, simult() 165
sin⁻¹(), arcsine 167
sin(), sine 166
sine

display expression in terms of 166
sine, sin() 166
sinh⁻¹(), hyperbolic arcsine 168
sinh(), hyperbolic sine 168
SinReg, sinusoidal regression 169
sinusoidal regression, SinReg 169
solution, deSolve() 49
solve(), solve 170
solve, solve() 170
SortA, sort ascending 174
SortD, sort descending 175
sorting

ascending, SortA 174
descending, SortD 175

spherical vector display, ►Sphere 175
sqrt(), square root 176
square root

template for 1
square root, √() 176, 223
standard deviation, stdDev() 178, 198
stat.results 176
stat.values 177
statistics

combinations, nCr() 120
factorial, ! 220
mean, mean() 112
median, median() 112
one-variable statistics, OneVar 128
permutations, nPr() 126
random norm, randNorm() 145

Index 264

random number seed,
RandSeed 146

standard deviation, stdDev() 178, 198
two-variable results, TwoVar 195
variance, variance() 198

stdDevPop(), population standard
deviation 178

stdDevSamp(), sample standard
deviation 178

Stop command 179
store variable (→) 233
storing

symbol, & 234
string

dimension, dim() 52
length 52

string(), expression to string 179
strings

append, & 220
character code, ord() 130
character string, char() 22
expression to string, string() 179
format, format() 72
formatting 72
indirection, # 226
left, left() 95
mid-string, mid() 114
right, right() 27, 60, 90, 152
rotate, rotate() 154
shift, shift() 163
string to expression, expr() 65, 107
using to create variable names 241
within, InString 89

student-t distribution probability,
tCdf() 185

student-t probability density, tPdf() 190
subMat(), submatrix 180-181
submatrix, subMat() 180-181
substitution with "|" operator 232
subtract, - 210
sum of interest payments 225
sum of principal payments 225
sum(), summation 180
sum, ∑() 224

template for 5

sumIf() 180
summation, sum() 180
sumSeq() 181
system of equations (2-equation)

template for 3
system of equations (N-equation)

template for 3

T

t test, tTest 192
T, transpose 182
tan⁻¹(), arctangent 183
tan(), tangent 182
tangent line, tangentLine() 183
tangent, tan() 182
tangentLine() 183
tanh⁻¹(), hyperbolic arctangent 184
tanh(), hyperbolic tangent 184
Taylor polynomial, taylor() 185
taylor(), Taylor polynomial 185
tCdf(), studentt distribution

probability 185
tCollect(), trigonometric collection 186
templates

absolute value 3-4
definite integral 6
derivative or nth derivative 6
e exponent 2
exponent 1
first derivative 5
fraction 1
indefinite integral 6
limit 6
Log 2
matrix (1 × 2) 4
matrix (2 × 1) 4
matrix (2 × 2) 4
matrix (m ×n) 4
nth root 1
piecewise function (2-piece) 2
piecewise function (N-piece) 3
product, ∏() 5
second derivative 6
square root 1

265 Index

sum, ∑() 5
system of equations (2-

equation) 3
system of equations (N-

equation) 3
test for void, isVoid() 94
Test_2S, 2-sample F test 75
tExpand(), trigonometric expansion 186
Text command 187
time value ofmoney, FutureValue 193
time value ofmoney, Interest 193
time value ofmoney, number of

payments 194
time value ofmoney, payment

amount 194
time value ofmoney, present value 194
tInterval, t confidence interval 187
tInterval_2Samp, twosample t

confidence interval 188
ΔtmpCnv() 189
tmpCnv() 189
tPdf(), student probability density 190
trace() 190
transpose, T 182
trigonometric collection, tCollect() 186
trigonometric expansion, tExpand() 186
Try, error handling command 191
tTest, t test 192
tTest_2Samp, two-sample t test 192
TVMarguments 195
tvmFV() 193
tvmI() 193
tvmN() 194
tvmPmt() 194
tvmPV() 194
two-variable results, TwoVar 195
TwoVar, two-variable results 195

U

underscore, _ 230
unit vector, unitV() 197
units

convert 231
unitV(), unit vector 197

unLock, unlock variable or variable
group 197

unlocking variables and variable
groups 197

user-defined functions 46
user-defined functions and

programs 47

V

variable
creating name from a character

string 241
variable and functions

copying 29
variables

clear all single-letter 25
delete, DelVar 48
local, Local 105

variables, locking and unlocking 82, 106, 197
variance, variance() 198
varPop() 198
varSamp(), sample variance 198
vectors

cross product, crossP() 36
cylindrical vector display,

►Cylind 42
dot product, dotP() 57
unit, unitV() 197

void elements 236
void elements, remove 49
void, test for 94

W

Wait command 199
warnCodes(), Warning codes 200
warning codes and messages 251
when(), when 200
when, when() 200
while, While 201
While, while 201
with, | 232
within string, inString() 89

Index 266

X

x², square 214
XNOR 220
xor, Boolean exclusive or 201

Z

zeroes(), zeroes 202
zeroes, zeroes() 202
zInterval, z confidence interval 204
zInterval_1Prop, one-proportion z

confidence interval 205
zInterval_2Prop, two-proportion z

confidence interval 205
zInterval_2Samp, two-sample z

confidence interval 206
zTest 206
zTest_1Prop, one-proportion z test 207
zTest_2Prop, two-proportion z test 207
zTest_2Samp, two-sample z test 208

Χ

χ²Cdf() 24
χ²GOF 24
χ²Pdf() 24

267 Index

