TI-Nspire ${ }^{\text {TM }}$ CAS Reference Guide

Important Information

Except as otherwise expressly stated in the License that accompanies a program, Texas Instruments makes no warranty, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the amount set forth in the license for the program. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.
© 2006-2019 Texas Instruments Incorporated

Contents

Expression Templates 1
Alphabetical Listing 8
A 8
B 17
C 20
D 44
E 57
F 67
G 76
I 86
L 95
M 111
N 119
0 128
P 130
Q 139
R 142
S 157
T 182
U 197
V 198
W 199
X 201
Z 202
Symbols 210
Empty (Void) Elements 236
Shortcuts for Entering Math Expressions 238
EOS ${ }^{\text {TM }}$ (Equation Operating System) Hierarchy 240
Constants and Values 242
Error Codes and Messages 243
Warning Codes and Messages 251
General Information 253
Online Help 253
Contact TI Support 253
Service and Warranty Information 253
Index 254

Expression Templates

Expression templates give you an easy way to enter math expressions in standard mathematical notation. When you insert a template, it appears on the entry line with small blocks at positions where you can enter elements. A cursor shows which element you can enter.

Position the cursor on each element, and type a value or expression for the element.

Fraction template

ctrl
Example:
$\frac{12}{8 \cdot 2} \quad \frac{3}{4}$

Exponent template

Note: Type the first value, press \wedge, and then type the exponent. To return the cursor to the baseline, press right arrow ($>$).

Note: See also ^ (power), page 213.

Square root template

Example:
 223.

$\frac{\sqrt{4}}{\sqrt{\{9, a, 4\}}}$	2
$\sqrt{4}$ $\{3, \sqrt{ }(a), 2\}$ $\sqrt{\{9,16,4\}}$ 2	

Nth root template

e exponent template

$\sqrt[3]{8}$
2
$\sqrt[3]{\{8,27, b\}}$
$\left\{2,3, b^{\frac{1}{3}}\right\}$
$e^{\Gamma \Gamma}$

Natural exponential e raised to a power
Note: See also e^(), page 57.

Log template

$\log (a)$
Calculates log to a specified base. For a

Example:

\boldsymbol{e}^{1}	\boldsymbol{e}
$\boldsymbol{e}^{1 .}$	2.71828182846

Note: See also $\log ()$, page 106.

Example:

$\log _{4}(2)$.	0.5

Piecewise template (2-piece)

Lets you create expressions and conditions for a two-piece piecewise function. To add a piece, click in the template and repeat the template.

Note: See also piecewise(), page 132.

No: See also piece
Catalog >
㭌保
Example:

Lets you create expressions and conditions for an N -piece piecewise function. Prompts for N.

Note: See also piecewise(), page 132.

Example:

See the example for Piecewise template (2piece).

System of 2 equations template

Catalog >
10
$\left\{\begin{array}{l}1 \\ \vdots \\ \vdots\end{array}\right.$

Creates a system of two equations. To add a row to an existing system, click in the template and repeat the template.

Note: See also system(), page 181.

Example:
solve $\left(\left\{\begin{array}{l}x+y=0 \\ x-y=5\end{array}, x, y\right) \quad x=\frac{5}{2}\right.$ and $y=\frac{-5}{2}$
solve $\left\{\begin{array}{l}\left\{\begin{array}{l}y=x^{2}-2 \\ x+2 \cdot y=-1\end{array}, x, y\right.\end{array}\right\}$

$$
x=\frac{-3}{2} \text { and } y=\frac{1}{4} \text { or } x=1 \text { and } y=-1
$$

System of \mathbf{N} equations template

Lets you create a system of N equations. Prompts for N.

Create a System of Eq... X

System of Equations
Number of equations $3 \hat{v}$

Example:

See the example for System of equations template (2-equation).

Note: See also system(), page 181.

Catalog $>$ | $\operatorname{lol} \mid(0)$
Example:

Note: See also abs(), page 8.
$\left|\left\{2,-3,4,-4^{3}\right\}\right| \quad\{2,3,4,64\}$

dd ${ }^{\circ} \mathrm{mm}$ 'ss.ss' ${ }^{\prime \prime}$ template		
-̇○○'	Example:	
Lets you enter angles in $\mathbf{d d}^{\circ} \mathrm{mm}^{\prime}$ ss.ss" ${ }^{\prime \prime}$ format, where dd is the number of decimal	$30^{\circ} 15^{\prime} 10^{\prime \prime}$	$\frac{10891 \cdot \pi}{64800}$

Matrix template (2 x 2)

Creates a 2×2 matrix.

Catalog >

Example:
$\left.\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \cdot a \quad\left[\begin{array}{cc}a & 2 \cdot a \\ 3 \cdot a & 4 \cdot a\end{array}\right]$

Matrix template (1 x 2)

[a].

Catalog >

Example:
$\operatorname{crossP}\left(\left[\begin{array}{ll}1 & 2\end{array}\right],\left[\begin{array}{ll}3 & 4\end{array}\right]\right) \quad\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]$

Matrix template (2 x 1)

Catalog $>$ 잉ㅇ
Example:

$\left[\begin{array}{l}5 \\ 8\end{array}\right] \cdot 0.01$

Matrix template (mxn)

The template appears after you are prompted to specify the number of rows and columns.

Catalog $>$ 닝ㅇㅇㅇ
Example:
$\operatorname{diag}\left(\left[\begin{array}{lll}4 & 2 & 6 \\ 1 & 2 & 3 \\ 5 & 7 & 9\end{array}\right]\right) \quad\left[\begin{array}{lll}4 & 2 & 9\end{array}\right]$

Note: If you create a matrix with a large number of rows and columns, it may take a few moments to appear.

Note: See also $\Sigma()$ (sumSeq), page 224.

Product template (П)		
I	Example:	
$\prod_{\square=}(\square)$	$\prod_{n=1}^{5}\left(\frac{1}{n}\right)$	$\frac{1}{120}$

Note: See also $\Pi()$ (prodSeq), page 223.

First derivative template

Catalog >
이영
$\frac{d}{d!}\binom{-1}{\vdots}$

The first derivative template can also be used to calculate first derivative at a point.
Note: See also d() (derivative), page 221.

Catalog > ${ }^{1010}(0)$,
$\frac{d^{2}}{d]^{2}}(i)$

The second derivative template can also be used to calculate second derivative at a point.

Note: See also d() (derivative), page 221.

Example:
$\frac{d^{2}}{d x^{2}}\left(x^{3}\right)$
$6 \cdot x$
$d x^{2}$
$\left.\frac{d^{2}}{d x^{2}}\left(x^{3}\right) \right\rvert\, x=3$

Nth derivative template

Catalog >

Example:
$\left.\frac{\boldsymbol{d}^{3}}{\boldsymbol{d} x^{3}}\left(x^{3}\right) \right\rvert\, x=3$
6
The nth derivative template can be used to calculate the nth derivative.

Note: See also d() (derivative), page 221.

Definite integral template

Catalog >
이영

Note: See alsol() integral(), page 221.

Indefinite integral template

Catalog $>$ 이잉
Example:
$\int x^{2} \mathrm{~d} x \quad \frac{x^{3}}{3}$

Limit template

Catalog >

Example:

$\lim _{x \rightarrow 5}(2 \cdot x+3)$	13

Use - or (-) for left hand limit. Use + for right hand limit.

Note: See also limit(), page 6.

Alphabetical Listing

Items whose names are not alphabetic (such as + , !, and $>$) are listed at the end of this section, page 210 . Unless otherwise specified, all examples in this section were performed in the default reset mode, and all variables are assumed to be undefined.

A

abs()
Catalog > 酋要
abs(Exprl) \Rightarrow expression
abs(Listl) \Rightarrow list
abs(Matrixl) \Rightarrow matrix
Returns the absolute value of the argument.

$\left\|\left\{\frac{\pi}{2}, \frac{-\pi}{3}\right\}\right\|$	$\left\{\frac{\pi}{2}, \frac{\pi}{3}\right\}$
$\|2-3 \cdot i\|$	$\sqrt{13}$
$\|z\|$	$\|z\|$
$\|x+y \cdot i\|$	$\sqrt{x^{2}+y^{2}}$

Note: See also Absolute value template, page 3.

If the argument is a complex number, returns the number's modulus.

Note: All undefined variables are treated as real variables.

- If you omit Pmt, it defaults to

Pmt=tvmPmt
($N, I, P V, F V, P p Y, C p Y, P m t A t$).

- If you omit $F V$, it defaults to $F V=0$.
- The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.

The columns in the result matrix are in this order: Payment number, amount paid to interest, amount paid to principal, and balance.

The balance displayed in row n is the balance after payment n.

You can use the output matrix as input for the other amortization functions $\Sigma \operatorname{lnt}()$ and $\Sigma \operatorname{Prn}()$, page 225, and bal(), page 17.

and	Catalog > 国 ${ }_{\text {2 }}$	
BooleanExpr 1 and BooleanExpr $2 \Rightarrow$	$x \geq 3$ and $x \geq 4$	$x \geq 4$
Boolean expression	$\{x \geq 3, x \leq 0\}$ and $\{x \geq 4, x \leq-2\}$	$\{x \geq 4, x \leq-2\}$

BooleanList 1 and BooleanList $2 \Rightarrow$ Boolean list

BooleanMatrix1 and BooleanMatrix2 \Rightarrow Boolean matrix

Returns true or false or a simplified form of the original entry.
Integer 1 andInteger $2 \Rightarrow$ integer
Compares two real integers bit-by-bit using an and operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1 ; otherwise, the result is 0 . The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the Ob or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

In Hex base mode:

0h7AC36 and 0h3D5F
0h2C16
Important: Zero, not the letter O.

In Bin base mode:
0b100101 and 0b100
0b100

In Dec base mode:
37 and 0b100
4

Note: A binary entry can have up to 64 digits (not counting the Ob prefix). A hexadecimal entry can have up to 16 digits.
angle（Exprl）\Rightarrow expression
Returns the angle of the argument， interpreting the argument as a complex number．

Note：All undefined variables are treated as real variables．
angle（List 1$) \Rightarrow$ list
angle（Matrixl）\Rightarrow matrix
Returns a list or matrix of angles of the elements in List 1 or Matrix 1，interpreting each element as a complex number that represents a two－dimensional rectangular coordinate point．

In Degree angle mode：
$\overline{\text { angle }(0+2 \cdot i) \quad 90}$

In Gradian angle mode：

angle $(0+3 \cdot i)$	100

In Radian angle mode：

angle $(1+i)$	$\frac{\pi}{4}$
angle (z)	$\frac{-\pi \cdot(\operatorname{sign}(z)-1)}{2}$
angle $(x+i \cdot y)$	$\frac{\pi \cdot \operatorname{sign}(y)}{2}-\tan ^{-1}\left(\frac{x}{y}\right)$

angle $(\{1+2 \cdot i, 3+0 \cdot i, 0-4 \cdot i\})$
$\left\{\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right), 0, \frac{-\pi}{2}\right\}$

ANOVA

ANOVA List 1，List2［，List3，．．．，List20］［，Flag］
Performs a one－way analysis of variance for comparing the means of two to 20 populations．A summary of results is stored in the stat．results variable．（page 176）

Flag＝0 for Data，Flag＝1 for Stats

Output variable	Description
stat．F	Value of the F statistic
stat．PVal	Smallest level of significance at which the null hypothesis can be rejected
stat．df	Degrees of freedom of the groups
stat．SS	Sum of squares of the groups
stat．MS	Mean squares for the groups

Output variable	Description
stat. dfError	Degrees of freedom of the errors
stat.SSError	Sum of squares of the errors
stat. MSError	Mean square for the errors
stat.sp	Pooled standard deviation
stat.xbarlist	Mean of the input of the lists
stat.CLowerList	95% confidence intervals for the mean of each input list
stat.CUpperList	95% confidence intervals for the mean of each input list

ANOVA2way

ANOVA2way List1,List2[,List3,...,List10]
[,levRow]
Computes a two-way analysis of variance for comparing the means of two to 10 populations. A summary of results is stored in the stat.results variable. (See page 176.)

LevRow=0 for Block

LevRow=2,3,..,Len-1, for Two Factor,

 where Len=length $($ List 1$)=$ length $($ List 2$)=$... $=$ length(List 10) and Len / LevRow $\hat{\imath}$$\{2,3, \ldots\}$
Outputs: Block Design

Output variable	Description
stat.F	F statistic of the column factor
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat. df	Degrees of freedom of the column factor
stat.SS	Sum of squares of the column factor
stat.MS	Mean squares for column factor
stat.FBlock	F statistic for factor
stat.PValBlock	Least probability at which the null hypothesis can be rejected
stat.dfBlock	Degrees of freedom for factor
stat.SSBlock	Sum of squares for factor

Output variable	Description
stat.MSBlock	Mean squares for factor
stat.dfError	Degrees of freedom of the errors
stat.SSError	Sum of squares of the errors
stat.MSError	Mean squares for the errors
stat.s	Standard deviation of the error

COLUMN FACTOR Outputs

Output variable	Description
stat.Fcol	F statistic of the column factor
stat.PValCol	Probability value of the column factor
stat.dfCol	Degrees of freedom of the column factor
stat. SSCol	Sum of squares of the column factor
stat.MSCol	Mean squares for column factor

ROW FACTOR Outputs

Output variable	Description
stat.FRow	F statistic of the row factor
stat. PValRow	Probability value of the row factor
stat. dfRow	Degrees of freedom of the row factor
stat.SSRow	Sum of squares of the row factor
stat.MSRow	Mean squares for row factor

INTERACTION Outputs

Output variable	Description
stat.FInteract	F statistic of the interaction
stat.PVallnteract	Probability value of the interaction
stat. dfInteract	Degrees of freedom of the interaction
stat.SSInteract	Sum of squares of the interaction
stat.MSInteract	Mean squares for interaction

ERROR Outputs

Output variable	Description
stat．dfError	Degrees of freedom of the errors
stat．SSError	Sum of squares of the errors
stat．MSError	Mean squares for the errors
s	Standard deviation of the error

Ans		$\operatorname{ctrl}(-)$	keys
Ans \Rightarrow value	56		56
Returns the result of the most recently	$56+4$		60
evaluated expression．	60＋4		64

approx（）
approx $($ Exprl $) \Rightarrow$ expression
Returns the evaluation of the argument as an expression containing decimal values， when possible，regardless of the current Auto or Approximate mode．

This is equivalent to entering the argument and pressing ctrr enter．

```
approx(Listl) \(\Rightarrow\) list
approx(Matrixl) \(\Rightarrow\) matrix
```

Returns a list or matrix where each element has been evaluated to a decimal value，when possible．

Catalog＞国合
$\left.\left.\begin{array}{ll}\hline \operatorname{approx}\left(\frac{1}{3}\right) & 0.333333 \\ \hline \operatorname{approx}\left(\left\{\frac{1}{3}, \frac{1}{9}\right\}\right) & \{0.333333,0.111111\} \\ \hline \operatorname{approx}(\{\sin (\pi), \cos (\pi)\}) & \{0 .,-1 .\} \\ \hline \operatorname{approx}([\sqrt{2} & \sqrt{3}\end{array}\right]\right) \quad\left[\begin{array}{ll}1.41421 & 1.73205\end{array}\right]$.
$\left.\begin{array}{lll}\hline \operatorname{approx}(\{\sin (\pi), \cos (\pi)\}) & \{0 .,-1 .\} \\ \hline \operatorname{approx}([\sqrt{2} & \sqrt{3}]\end{array}\right] \quad\left[\begin{array}{ll}1.41421 & 1.73205\end{array}\right]$

Catalog＞国

Matrix approxFraction $([$ Tol $]) \Rightarrow$ matrix
Returns the input as a fraction，using a tolerance of Tol ．If Tol is omitted，a tolerance of 5．E－14 is used．
Expr approxFraction（［Tol］）\Rightarrow expression

List approxFraction（［Tol］）\Rightarrow list
$\frac{1}{2}+\frac{1}{3}+\tan (\pi)$
0.83333333333333 approxFraction（5．E－14）
0.833333 $\frac{5}{6}$
$\{\pi, 1.5\}$ approxFraction（5．E－14）
$\left\{\frac{5419351}{1725033}, \frac{3}{2}\right\}$

Note: You can insert this function from the computer keyboard by typing @>approxFraction(...).

approxRational()	Catalog > 国 ${ }_{\text {c }}$	
approxRational(Expr $[$, Tol $]$) \Rightarrow expression	approxRational ($0.333,5 \cdot 10^{-5}$)	333
approxRational(List $[$, Tol $]$) \Rightarrow list		1000
approxRational(List, Tol]) \rightarrow list	approxRational $\left(\{0.2,0.33,4.125\}, 5 . \mathrm{E}^{-14}\right)$	
approxRational(Matrix $[$, Tol $]$) \Rightarrow matrix	$\left\{\frac{1}{5}, \frac{33}{100}, \frac{33}{8}\right\}$	
Returns the argument as a fraction using a	[5, 100' 8 \}	

$\arccos ()$ See $\cos ^{-1}()$, page 31.
$\operatorname{arccosh}()$ See $\cosh ^{-1}()$, page 32.
$\operatorname{arcLen}($ Expr 1,Var,Start,End) \Rightarrow expression

Returns the arc length of Exprl from Start to End with respect to variable Var.

Arc length is calculated as an integral assuming a function mode definition.
$\operatorname{arcLen}($ List1,Var,Start,End $) \Rightarrow$ list
Returns a list of the arc lengths of each element of List 1 from Start to End with respect to Var.
$\frac{\operatorname{arcLen}(\cos (x), x, 0, \pi)}{\operatorname{arcLen}(f(x), x, a, b)} \int_{a}^{b} \sqrt{\left(\frac{d}{d x}(f(x))\right)^{2}+1 \mathrm{~d} x}$
$\operatorname{arcLen}(\{\sin (x), \cos (x)\}, x, 0, \pi\}$
$\{3.8202,3.8202\}$
$\operatorname{arcsec}()$ See $\sec ^{-1}()$, page 157.
$\operatorname{arcsech}()$ See $\operatorname{sech}^{-1}()$, page 158.
$\arcsin () \quad$ See $\sin ^{-1}()$, page 167.
$\operatorname{arcsinh}()$
See $\sinh ^{-1}()$, page 168.
$\arctan ()$
See $\tan ^{-1}()$, page 183.
$\operatorname{arctanh}()$
See $\tanh ^{-1}()$, page 184.

augment()	Catalog > 国 ${ }^{2}$	
augment(List1, List 2) \Rightarrow list	augment $(\{1,-3,2\},\{5,4\})$	$\{1,-3,2,5,4\}$

Returns a new list that is List 2 appended to the end of Listl.
augment(Matrix1, Matrix2) \Rightarrow matrix
Returns a new matrix that is Matrix 2 appended to Matrix 1. When the "," character is used, the matrices must have equal row dimensions, and Matrix2 is appended to Matrixl as new columns. Does not alter Matrixl or Matrix2.
$\left.\begin{array}{ll}{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \rightarrow m 1} & {\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]} \\ {\left[\begin{array}{l}5 \\ 6\end{array}\right] \rightarrow m 2} & \\ \hline \text { augment }(m 1, m 2) & {\left[\begin{array}{lll}5 \\ 6\end{array}\right]} \\ \hline & 2\end{array}\right)$

avgRC()	Catalog > 国]	
$\operatorname{avgRC}($ Expr1,Var $[=$ Value $]$ [,Step] $) \Rightarrow$ expression	$\operatorname{avgRC}(f(x), x, h)$	$\frac{f(x+h)-f(x)}{h}$
$\operatorname{avgRC}($ Expr $1, \operatorname{Var}[=$ Value $][$, List 1$]) \Rightarrow$	$\overline{\operatorname{avgRC}}(\sin (x), x, h) \mid x=2$	$\underline{\sin (h+2)-\sin (2)}$
list		h
$\operatorname{avgRC}($ List 1, Var $[=$ Value $][$, Step $]) \Rightarrow$	$\operatorname{avgRC}\left(x^{2}-x+2, x\right)$	2. $(x-0.4995)$
list	$\operatorname{avgRC}\left(x^{2}-x+2, x, 0.1\right)$	$2 .\left(\begin{array}{l}\text { (}\end{array}\right.$
$\operatorname{avgRC}($ Matrix 1, Var $[=$ Value $][$, Step $]) \Rightarrow$	$\underline{\operatorname{avgRC}}\left(x^{2}-x+2, x, 3\right)$	$2 \cdot(x+1)$

Returns the forward-difference quotient (average rate of change).

Exprl can be a user-defined function name (see Func).

When Value is specified, it overrides any prior variable assignment or any current " \mid " substitution for the variable.

Step is the step value. If Step is omitted, it defaults to 0.001 .

Note that the similar function centralDiff() uses the central-difference quotient.
bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY], $[C p Y],[$ PmtAt $],[$ roundValue $]) \Rightarrow$ value
bal(NPmt,amortTable) \Rightarrow value
Amortization function that calculates schedule balance after a specified payment.
$N, I, P V, P m t, F V, P p Y, C p Y$, and PmtAt are described in the table of TVM arguments, page 195.
$N P m t$ specifies the payment number after which you want the data calculated.

N, I, PV, Pmt , FV , PpY, CpY, and PmtAt are described in the table of TVM arguments, page 195.

- If you omit Pmt, it defaults to $P m t=t v m P m t$ ($N, I, P V, F V, P p Y, C p Y, P m t A t)$.
- If you omit $F V$, it defaults to $F V=0$.
- The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.
bal(NPmt,amortTable) calculates the balance after payment number $N P m t$, based on amortization table amortTable. The amortTable argument must be a matrix in the form described under amortTbl(), page 8.
Note: See also $\Sigma \operatorname{lnt}()$ and $\Sigma \operatorname{Prn}()$, page 225.

$\operatorname{bal}(5,6,5.75,5000,, 12,12)$
$t b l:=\operatorname{amortTbl}(6,6,5.75,5000,, 12,12)$
$\qquad\left[\begin{array}{cccc}0 & 0 . & 0 . & 5000 . \\ 1 & -23.35 & -825.63 & 4174.37 \\ 2 & -19.49 & -829.49 & 3344.88 \\ 3 & -15.62 & -833.36 & 2511.52 \\ 4 & -11.73 & -837.25 & 1674.27 \\ 5 & -7.82 & -841.16 & 833.11 \\ 6 & -3.89 & -845.09 & -11.98\end{array}\right]$
$\operatorname{bal}(4, t b l)$

Converts Integerl to a binary number. Binary or hexadecimal numbers always have a Ob or Oh prefix, respectively. Use a zero, not the letter O, followed by b or h .

Ob binaryNumber
Oh hexadecimalNumber
A binary number can have up to 64 digits. A hexadecimal number can have up to 16 .

Without a prefix, Integerl is treated as decimal (base 10). The result is displayed in binary, regardless of the Base mode.

Negative numbers are displayed in "two's complement" form. For example,
${ }^{-1}$ is displayed as
OhFFFFFFFFFFFFFFFFF in Hex base mode Ob111... 111 (64 1's) in Binary base mode
2^{63} is displayed as
Oh80000000000000000 in Hex base mode 0b100... 000 (63 zeros) in Binary base mode

If you enter a decimal integer that is outside the range of a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. Consider the following examples of values outside the range.
2^{63} becomes 2^{63} and is displayed as Oh80000000000000000 in Hex base mode 0b100... 000 (63 zeros) in Binary base mode
2^{64} becomes 0 and is displayed as
OhO in Hex base mode
ObO in Binary base mode
$-2^{63}-1$ becomes $2^{63}-1$ and is displayed as
Oh7FFFFFFFFFFFFFFFF in Hex base mode Ob111... 111 (64 1's) in Binary base mode

Catalog > 国
Integer $1>$ Base10 \Rightarrow integer

0b10011 Base10 19
0h1F Base10 31

Note: You can insert this operator from the computer keyboard by typing @>Base10.

Converts Integerl to a decimal (base 10) number. A binary or hexadecimal entry must always have a Ob or Oh prefix, respectively.

Ob binaryNumber
Oh hexadecimalNumber
Zero, not the letter O, followed by b or h.
A binary number can have up to 64 digits. A hexadecimal number can have up to 16 .

Without a prefix, Integerl is treated as decimal. The result is displayed in decimal, regardless of the Base mode.

- Base16	Catalog > [-]	
Integer $\$ Base16 \Rightarrow integer	256- Base16	Oh100
Note: You can insert this operator from the	0b111100001111 Base16	OhF0F

Converts Integerl to a hexadecimal number. Binary or hexadecimal numbers always have a Ob or Oh prefix, respectively.

Ob binaryNumber
Oh hexadecimalNumber
Zero, not the letter O, followed by b or h .
A binary number can have up to 64 digits. A hexadecimal number can have up to 16 .

Without a prefix, Integerl is treated as decimal (base 10). The result is displayed in hexadecimal, regardless of the Base mode.

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see Base2, page 17.
binomCdf（ $n, p) \Rightarrow$ list
binomCdf（ n, p, lowBound，upBound）\Rightarrow
number if lowBound and upBound are
numbers，list if lowBound and upBound are lists
binomCdf（ $n, p, u p$ Bound $)$ for $\mathrm{P}(0 \leq \mathrm{X} \leq$ upBound $)$
\Rightarrow number if upBound is a number，list if upBound is a list

Computes a cumulative probability for the discrete binomial distribution with n number of trials and probability p of success on each trial．

For $\mathrm{P}(\mathrm{X} \leq$ upBound $)$ ，set lowBound $=0$
binomPdf（ $) \quad$ Catalog $>$ 国
binom $\operatorname{Pdf}(n, p) \Rightarrow$ list
binomPdf $(n, p, X$ Val $) \Rightarrow$ number if $X V a l$ is a number，list if XVal is a list

Computes a probability for the discrete binomial distribution with n number of trials and probability p of success on each trial．

C

Catalog＞国

ceiling（Exprl）\Rightarrow integer
ceiling（．456）
1.

Returns the nearest integer that is \geq the argument．

The argument can be a real or a complex number．

Note：See also floor（）．
ceiling（Listl）\Rightarrow list
ceiling（Matrix 1$) \Rightarrow$ matrix
Returns a list or matrix of the ceiling of each element．

When Value is specified, it overrides any prior variable assignment or any current " \mid " substitution for the variable.

Step is the step value. If Step is omitted, it defaults to 0.001 .

When using Listl or Matrixl, the operation gets mapped across the values in the list or across the matrix elements.

Note: See also avgRC() and $\boldsymbol{d}()$.

cFactor()

cFactor(Exprl[,Var]) \Rightarrow expression
cFactor(Listl[,Var]) \Rightarrow list
cFactor(Matrix $1[, V a r]) \Rightarrow$ matrix
cFactor(Exprl) returns Exprl factored with respect to all of its variables over a common denominator.

Exprl is factored as much as possible toward linear rational factors even if this introduces new non-real numbers. This alternative is appropriate if you want factorization with respect to more than one variable.

Catalog > 国

cFactor $\left(a^{3} \cdot x^{2}+a \cdot x^{2}+a^{3}+a, x\right.$	
	$a \cdot\left(a^{2}+1\right) \cdot(x-\boldsymbol{i}) \cdot(x+\boldsymbol{i})$
cFactor $\left(x^{2}+\frac{4}{9}\right)$	$\frac{(3 \cdot x-2 \cdot \boldsymbol{i}) \cdot(3 \cdot x+2 \cdot \boldsymbol{i})}{9}$
cFactor $\left(x^{2}+3\right)$	$x^{2}+3$
cFactor $\left(x^{2}+a\right)$	$x^{2}+a$

cFactor(Expr1,Var) returns Exprl factored with respect to variable Var.

Exprl is factored as much as possible toward factors that are linear in Var, with perhaps non-real constants, even if it introduces irrational constants or subexpressions that are irrational in other variables.

The factors and their terms are sorted with Var as the main variable. Similar powers of Var are collected in each factor. Include Var if factorization is needed with respect to only that variable and you are willing to accept irrational expressions in any other variables to increase factorization with respect to Var. There might be some incidental factoring with respect to other variables.

For the Auto setting of the Auto or Approximate mode, including Var also permits approximation with floating-point coefficients where irrational coefficients cannot be explicitly expressed concisely in terms of the built-in functions. Even when there is only one variable, including Var might yield more complete factorization.

Note: See also factor().

cFactor $\left(a^{3} \cdot x^{2}+a \cdot x^{2}+a^{3}+a, x\right)$ $a \cdot\left(a^{2}+1\right) \cdot(x-i) \cdot(x+\boldsymbol{i})$ cFactor $\left(x^{2}+3, x\right)$ cFactor $\left(x^{2}+a, x\right)$ $(x+\sqrt{3} \cdot \boldsymbol{i}) \cdot(x-\sqrt{3} \cdot \boldsymbol{i})$

cFactor $\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3\right)$
$x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3$
cFactor $\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3, x\right)$
$(x-0.964673) \cdot(x+0.611649) \cdot(x+2.12543) \cdot(x)$

To see the entire result, press $\boldsymbol{\Delta}$ and then use $\boldsymbol{<}$ and to move the cursor.

char()	Catalog > [aran	
char(Integer $) \Rightarrow$ character	"\&"	
Returns a character string containing the	char(65)	"A"

charPoly(squareMatrix 1,Matrix2) \Rightarrow polynomial expression

Returns the characteristic polynomial of squareMatrix. The characteristic polynomial of $n \times n$ matrix A, denoted by p_{A} (λ), is the polynomial defined by
$p_{A}(\lambda)=\operatorname{det}(\lambda \cdot I-A)$
where I denotes the $n \times n$ identity matrix.
squareMatrix 1 and squareMatrix 2 must have the equal dimensions.

$m:=\left[\begin{array}{ccc}1 & 3 & 0 \\ 2 & -1 & 0 \\ -2 & 2 & 5\end{array}\right]$	$\left[\begin{array}{ccc}1 & 3 & 0 \\ 2 & -1 & 0 \\ -2 & 2 & 5\end{array}\right]$
charPoly (m, x)	$-x^{3}+5 \cdot x^{2}+7 \cdot x-35$
charPoly $\left(m, x^{2}+1\right)$	$-x^{6}+2 \cdot x^{4}+14 \cdot x^{2}-24$
charPoly (m, m)	0

Computes a χ^{2} test for association on the two-way table of counts in the observed matrix obsMatrix. A summary of results is stored in the stat.results variable. (page 176)

For information on the effect of empty elements in a matrix, see "Empty (Void) Elements," page 236.

Output variable	Description
stat. χ^{2}	Chi square stat: sum (observed - expected) ${ }^{2} /$ expected
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom for the chi square statistics
stat. ExpMat	Matrix of expected elemental count table, assuming null hypothesis
stat. CompMat	Matrix of elemental chi square statistic contributions

$\chi^{2} \operatorname{Cdf}($ lowBound，upBound，$d f) \Rightarrow$ number if lowBound and upBound are numbers，list if lowBound and upBound are lists
chi2Cdf（lowBound，upBound，$d f) \Rightarrow$ number if lowBound and upBound are numbers，list if lowBound and upBound are lists
Computes the χ^{2} distribution probability between lowBound and upBound for the specified degrees of freedom $d f$ ．

For $\mathrm{P}(X \leq$ upBound $)$ ，set lowBound $=0$ ．
For information on the effect of empty elements in a list，see＂Empty（Void） Elements，＂page 236.
χ^{2} GOF
χ^{2} GOF obsList，expList，df
chi2GOF obsList，expList，df

Performs a test to confirm that sample data is from a population that conforms to a specified distribution．obsList is a list of counts and must contain integers．A summary of results is stored in the stat．results variable．（See page 176．）

For information on the effect of empty elements in a list，see＂Empty（Void）
Elements，＂page 236.

Output variable	Description
stat．χ^{2}	Chi square stat：sum（（observed－expected）$)^{2} /$ expected
stat．PVal	Smallest level of significance at which the null hypothesis can be rejected
stat．df	Degrees of freedom for the chi square statistics
stat．CompList	Elemental chi square statistic contributions

chi2Pdf（ $X V$ Val，$d f) \Rightarrow$ number if $X V a l$ is a number，list if $X V$ Val is a list

Computes the probability density function （pdf）for the χ^{2} distribution at a specified XVal value for the specified degrees of freedom $d f$ ．

For information on the effect of empty elements in a list，see＂Empty（Void）
Elements，＂page 236.

ClearAZ	Catalog＞国运	
ClearAZ	$5 \rightarrow b$	5
Clears all single－character variables in the	b	5
current problem space．	ClearAZ	Done
If one or more of the variables are locked，	b	b

ClrErr

ClrErr

Clears the error status and sets system variable errCode to zero．

The Else clause of the Try．．．Else．．．EndTry block should use CIrErr or PassErr．If the error is to be processed or ignored，use CIrErr．If what to do with the error is not known，use PassErr to send it to the next error handler．If there are no more pending Try．．．Else．．．EndTry error handlers，the error dialog box will be displayed as normal．

Note：See also PassErr，page 131，and Try， page 191.

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

For an example of ClrErr，See Example 2 under the Try command，page 191.
colAugment（Matrix 1，Matrix2）\Rightarrow matrix
Returns a new matrix that is Matrix2 appended to Matrixl．The matrices must have equal column dimensions，and Matrix2 is appended to Matrix1 as new rows．Does not alter Matrix1 or Matrix2．

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \rightarrow m 1$	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\left[\begin{array}{ll}5 & 6\end{array}\right] \rightarrow m 2$	$\left[\begin{array}{ll}5 & 6\end{array}\right]$
colAugment $(m 1, m 2)$	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$

colDim（）		Catalog＞国
colDim（Matrix）\Rightarrow expression Returns the number of columns contained	$\operatorname{colDim}\left(\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 5\end{array}\right]\right\}$	3

Note：See also rowDim（）．

colNorm（）	Catalog＞［1］	
colNorm（Matrix）\Rightarrow expression	$\left[\begin{array}{ccc}1 & -2 & 3 \\ 4 & 5 & -6\end{array}\right] \rightarrow$ mat	$\left[\begin{array}{ccc}1 & -2 & 3 \\ 4 & 5 & -6\end{array}\right]$
absolute values of the elements in the	colNorm（mat）	9

Note：Undefined matrix elements are not allowed．See also rowNorm（）．

comDenom（）	Catalog＞国运
$\begin{aligned} & \operatorname{comDenom}(\text { Expr } 1[, V a r]) \Rightarrow \text { expression } \\ & \operatorname{comDenom}(\text { List } 1[, \text { Var }]) \Rightarrow \text { list } \\ & \text { comDenom }(\text { Matrix } 1[, \text { Var }]) \Rightarrow \text { matrix } \end{aligned}$	comDenom $\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y\right)$
mDenom（Exprl）returns a reduced ratio	$\underline{x^{2} \cdot y^{2}+x^{2} \cdot y+2 \cdot x \cdot y^{2}+2 \cdot x \cdot y+2 \cdot y^{2}+2 \cdot y}$
of a fully expanded numerator over a fully	$x^{2}+2 \cdot x+1$

comDenom(Exprl,Var) returns a reduced ratio of numerator and denominator expanded with respect to Var. The terms and their factors are sorted with Var as the main variable. Similar powers of Var are collected. There might be some incidental factoring of the collected coefficients. Compared to omitting Var, this often saves time, memory, and screen space, while making the expression more comprehensible. It also makes subsequent operations on the result faster and less likely to exhaust memory.

If Var does not occur in Exprl, comDenom (Expr1,Var) returns a reduced ratio of an unexpanded numerator over an unexpanded denominator. Such results usually save even more time, memory, and screen space. Such partially factored results also make subsequent operations on the result much faster and much less likely to exhaust memory.
Even when there is no denominator, the comden function is often a fast way to achieve partial factorization if factor() is too slow or if it exhausts memory.

Hint: Enter this comden() function definition and routinely try it as an alternative to comDenom() and factor().

completeSquare ()

completeSquare(ExprOrEqn, Var) \Rightarrow expression or equation
completeSquare(ExprOrEqn, Var^Power)
\Rightarrow expression or equation
completeSquare(ExprOrEqn, Var1, Var2
$[, \ldots].) \Rightarrow$ expression or equation
completeSquare(ExprOrEqn, \{Var1, Var2
$[, \ldots]\}.) \Rightarrow$ expression or equation
Converts a quadratic polynomial expression of the form $a \cdot x^{2}+b \cdot x+c$ into the form $a \cdot(x-h)$ $2^{2}+\mathrm{k}$

$\overline{\text { Define } \operatorname{comden}(\text { exprn })=\mathrm{comDenom}(\text { exprn }, a b c)}$
Done
comden $\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y\right) \frac{\left(x^{2}+2 \cdot x+2\right) \cdot y \cdot(y+1)}{(x+1)^{2}}$

$$
\begin{array}{r}
\text { comden }\left(1234 \cdot x^{2} \cdot\left(y^{3}-y\right)+2468 \cdot x \cdot\left(y^{2}-1\right)\right) \\
1234 \cdot x \cdot(x \cdot y+2) \cdot\left(y^{2}-1\right)
\end{array}
$$

Catalog > [-1]

completeSquare $\left(x^{2}+2 \cdot x+3, x\right)$	$(x+1)^{2}+2$
completeSquare $\left(x^{2}+2 \cdot x=3, x\right)$	$(x+1)^{2}=4$
completeSquare $\left(x^{6}+2 \cdot x^{3}+3, x^{3}\right)$	$\left(x^{3}+1\right)^{2}+2$

completeSquare $\left(x^{2}+4 \cdot x+y^{2}+6 \cdot y+3=0, x, y\right)$

$$
(x+2)^{2}+(y+3)^{2}=10
$$

- or -

Converts a quadratic equation of the form $a \cdot x^{2}+b \cdot x+c=d$ into the form $a \cdot(x-h)^{2}=k$

The first argument must be a quadratic expression or equation in standard form with respect to the second argument.

The Second argument must be a single univariate term or a single univariate term raised to a rational power, for example x, y^{2}, or $z^{(1 / 3)}$.

The third and fourth syntax attempt to complete the square with respect to variables Var1, Var2 [,...]).
completeSquare $\left(3 \cdot x^{2}+2 \cdot y+7 \cdot y^{2}+4 \cdot x=3,\{x, y\}\right)$

$$
3 \cdot\left(x+\frac{2}{3}\right)^{2}+7 \cdot\left(y+\frac{1}{7}\right)^{2}=\frac{94}{21}
$$

completeSquare $\left(x^{2}+2 \cdot x \cdot y, x y\right) \quad(x+y)^{2}-y^{2}$
conj()
conj(Expr1) \Rightarrow expression
$\operatorname{conj}($ List 1$) \Rightarrow$ list
conj(Matrixl) \Rightarrow matrix
Returns the complex conjugate of the argument.

Note: All undefined variables are treated as real variables.
constructMat()
constructMat
(Expr,Var1,Var2,numRows,numCols) \Rightarrow matrix

Returns a matrix based on the arguments.
Expr is an expression in variables Varl and Var2. Elements in the resulting matrix are formed by evaluating Expr for each incremented value of Varl and Var2.

Var1 is automatically incremented from 1 through numRows. Within each row, Var 2 is incremented from 1 through numCols.

CopyVar Var1, Var2
CopyVar Var1., Var2.
CopyVar Var1, Var2 copies the value of variable Varl to variable Var2, creating Var2 if necessary. Variable Varl must have a value.

If Varl is the name of an existing userdefined function, copies the definition of that function to function Var2. Function Varl must be defined.

Varl must meet the variable-naming requirements or must be an indirection expression that simplifies to a variable name meeting the requirements.

CopyVar Var1., Var2. copies all members of the Varl. variable group to the Var2. group, creating Var2. if necessary.

Varl. must be the name of an existing variable group, such as the statistics stat.nn results, or variables created using the LibShortcut() function. If Var2. already exists, this command replaces all members

Define $a(x)=\frac{1}{x}$	Done
Define $b(x)=x^{2}$	Done
CopyVar $a, c: c(4)$	$\frac{1}{4}$
CopyVar $b, c: c(4)$	16

aa.a: $=45$		45
$a a . b:=6.78$		6.78
CopyVar $a a ., b b$.		Done
getVarInfo()	$\left[\begin{array}{l}a a . a \\ \text { aa. }{ }^{\text {"NUM" }} \text { "NUM" } \\ b b . a \\ \text { "NUM" } \\ b b . b\end{array}\right.$	"\% 0

corrMat()

Catalog > 国
corrMat(Listl,List $2[, \ldots[$ [List20]]])
Computes the correlation matrix for the augmented matrix [List1, List2, ..., List20].

cos

Catalog > 国
Expr -cos
Note: You can insert this operator from the computer keyboard by typing @>cos.
$\underline{(\sin (x))^{2}>\cos } 1-(\cos (x))^{2}$

Represents Expr in terms of cosine. This is a display conversion operator. It can be used only at the end of the entry line.

Catalog > 国成

- cos reduces all powers of
$\sin (\ldots)$ modulo $1-\cos (\ldots)^{\wedge} 2$
so that any remaining powers of $\cos (\ldots)$ have exponents in the range (0,2). Thus, the result will be free of $\sin (\ldots)$ if and only if $\sin (\ldots)$ occurs in the given expression only to even powers.

Note: This conversion operator is not supported in Degree or Gradian Angle modes. Before using it, make sure that the Angle mode is set to Radians and that Expr does not contain explicit references to degree or gradian angles.
$\cos ($ Expr 1$) \Rightarrow$ expression
$\cos ($ List 1$) \Rightarrow$ list
$\cos (E x p r l)$ returns the cosine of the argument as an expression.
$\cos ($ Listl) returns a list of the cosines of all elements in Listl.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode setting. You can use ${ }^{\circ}, \mathrm{G}$, or ${ }^{\mathrm{r}}$ to override the angle mode temporarily.

In Degree angle mode:

$\cos \left(\frac{\pi}{4} r\right)$	$\frac{\sqrt{2}}{2}$
$\cos (45)$	$\frac{\sqrt{2}}{2}$
$\cos (\{0,60,90\})$	$\left\{1, \frac{1}{2}, 0\right\}$

In Gradian angle mode:
$\cos (\{0,50,100\}) \quad\left\{1, \frac{\sqrt{2}}{2}, 0\right\}$

In Radian angle mode:

$\cos \left(\frac{\pi}{4}\right)$	$\frac{\sqrt{2}}{2}$
$\cos \left(45^{\circ}\right)$	$\frac{\sqrt{2}}{2}$

In Radian angle mode:
$\cos ($ squareMatrix 1$) \Rightarrow$ squareMatrix
Returns the matrix cosine of squareMatrixl. This is not the same as calculating the cosine of each element.

When a scalar function $f(A)$ operates on squareMatrix 1 (A), the result is calculated by the algorithm:

Compute the eigenvalues $\left(\lambda_{i}\right)$ and eigenvectors $\left(V_{i}\right)$ of A.
squareMatrix 1 must be diagonalizable. Also, it cannot have symbolic variables that have not been assigned a value.

Form the matrices:
$B=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$ and $X=\left[V_{1}, V_{2}, \ldots, V_{n}\right]$
Then $A=X B X^{-1}$ and $f(A)=X f(B) X^{-1}$. For example, $\cos (A)=X \cos (B) X^{-1}$ where:
$\cos (\mathrm{B})=$
$\left[\begin{array}{llll}\cos \left(\lambda_{1}\right) & 0 & \ldots & 0 \\ 0 & \cos \left(\lambda_{2}\right) & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & \cos \left(\lambda_{n}\right)\end{array}\right]$

All computations are performed using floating-point arithmetic.
$\cos ^{-1}()$
$\cos ^{-1}($ Expr 1$) \Rightarrow$ expression
$\cos ^{-1}($ List 1$) \Rightarrow$ list
$\cos ^{-1}(E x p r 1)$ returns the angle whose cosine is Exprl as an expression.
$\cos ^{-1}($ List 1$)$ returns a list of the inverse cosines of each element of List1.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arccos (...).
$\cos \left(\left[\begin{array}{lll}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)$
$\left[\begin{array}{ccc}0.212493 & 0.205064 & 0.121389 \\ 0.160871 & 0.259042 & 0.037126 \\ 0.248079 & -0.090153 & 0.218972\end{array}\right]$
$\cos ^{-1}$ (squareMatrixl) \Rightarrow squareMatrix
Returns the matrix inverse cosine of squareMatrixl. This is not the same as calculating the inverse cosine of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix 1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode and Rectangular Complex Format:
$\cos ^{-1}\left(\left[\begin{array}{lll}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)$
$\left[\begin{array}{cc}1.73485+0.064606 \cdot \boldsymbol{i} & -1.49086+2.10514 \\ -0.725533+1.51594 \cdot \boldsymbol{i} & 0.623491+0.77836 \cdot \\ -2.08316+2.63205 \cdot \boldsymbol{i} & 1.79018-1.27182\end{array}\right.$

To see the entire result, press $\boldsymbol{\Delta}$ and then use $\boldsymbol{<}$ and $\boldsymbol{\text { to move the }}$ cursor.

$\cosh ()$

$\cosh ($ Expr 1$) \Rightarrow$ expression
$\cosh ($ List 1$) \Rightarrow$ list
$\cosh (\operatorname{Expr} 1)$ returns the hyperbolic cosine of the argument as an expression.
$\cosh ($ List 1) returns a list of the hyperbolic cosines of each element of Listl.
\cosh (squareMatrixl) \Rightarrow squareMatrix
Returns the matrix hyperbolic cosine of squareMatrixl. This is not the same as calculating the hyperbolic cosine of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrixl must be diagonalizable. The result always contains floating-point numbers.

In Degree angle mode:
$\cosh \left(\left(\frac{\pi}{4}\right) \mathrm{r}\right) \quad \cosh (45)$

In Radian angle mode:
$\left[\begin{array}{lll}421.255 & 253.909 & 216.905 \\ 327.635 & 255.301 & 202.958 \\ 226.297 & 216.623 & 167.628\end{array}\right]$
$\cosh ^{-1}()$
$\cosh ^{-1}($ Expr 1$) \Rightarrow$ expression
$\cosh ^{-1}($ List 1$) \Rightarrow$ list

$\cosh ^{-1}(1)$	0
$\cosh ^{-1}(\{1,2.1,3\}) \quad\left\{0,1.37286, \cosh ^{-1}(3)\right\}$	

$\cosh ^{-1}($ List 1$)$ returns a list of the inverse hyperbolic cosines of each element of List1.

Note: You can insert this function from the keyboard by typing arccosh (...) .
$\cosh ^{-1}($ squareMatrix 1$) \Rightarrow$ squareMatrix
Returns the matrix inverse hyperbolic cosine of squareMatrixl. This is not the same as calculating the inverse hyperbolic cosine of each element. For information about the calculation method, refer to cos ().
squareMatrix 1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode and In Rectangular Complex Format:

$\cosh ^{-1}\left(\left[\begin{array}{lll}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)$
$\left[\begin{array}{cc}2.52503+1.73485 \cdot \boldsymbol{i} & -0.009241-1.4908 \boldsymbol{1} \\ 0.486969-0.725533 \cdot \boldsymbol{i} & 1.66262+0.623491 \\ -0.322354-2.08316 \cdot \boldsymbol{i} & 1.26707+1.79018 \\ \hline\end{array}\right.$

To see the entire result, press Δ and then use $\boldsymbol{\Delta}$ and to move the cursor.

$\cot (\mathbf{)}$		trig key
$\boldsymbol{\operatorname { c o t } (\text { Expr } 1) \Rightarrow \text { expression }}$	In Degree angle mode:	
$\boldsymbol{\operatorname { c o t } (\text { List } 1) \Rightarrow \text { list }}$	$\boxed{\cot (45)}$	1

Returns the cotangent of Exprl or returns a
list of the cotangents of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode setting. You can use ${ }^{\circ}, \mathrm{G}$, or ${ }^{r}$ to override the angle mode temporarily.

In Gradian angle mode:

$\cot (50)$	1

In Radian angle mode:
$\cot (\{1,2.1,3\}) \quad\left\{\frac{1}{\tan (1)},-0.584848, \frac{1}{\tan (3)}\right\}$
$\cot ^{-1}()$
$\cot ^{-1}($ Expr 1$) \Rightarrow$ expression
$\cot ^{-1}($ List 1$) \Rightarrow$ list
Returns the angle whose cotangent is Exprl or returns a list containing the inverse cotangents of each element of List1.

In Degree angle mode:
$\cot ^{-1}(1)$
45.

In Gradian angle mode:
$\cot ^{-1}(1) \quad 50$.

Note：The result is returned as a degree， gradian or radian angle，according to the current angle mode setting．

Note：You can insert this function from the keyboard by typing arccot（．．．）．

In Radian angle mode：

$\operatorname{coth}()$	Catalog＞国 2 2	
$\operatorname{coth}($ Expr $) \Rightarrow$ expression	$\overline{\operatorname{coth}(1.2)}$	1.19954
$\operatorname{coth}(\{1,3.2\})$	$\left\{\frac{1}{\tanh (1)}, 1.00333\right\}$	

Returns the hyperbolic cotangent of Expr1 or returns a list of the hyperbolic cotangents of all elements of Listl．

```
coth }\mp@subsup{}{}{-1}(
\mp@subsup{coth}{}{-1}(Exprl)}=>\mathrm{ expression
\mp@subsup{\operatorname{coth}}{}{-1}(\mathrm{ List 1) }=>\mathrm{ list}
```

Returns the inverse hyperbolic cotangent of Exprl or returns a list containing the inverse hyperbolic cotangents of each element of List 1 ．

Note：You can insert this function from the keyboard by typing arccoth（．．．）．

count（）

count（ValuelorList1［，Value2orList2
［，．．．］］）\Rightarrow value
Returns the accumulated count of all elements in the arguments that evaluate to numeric values．

Each argument can be an expression，value， list，or matrix．You can mix data types and use arguments of various dimensions．

For a list，matrix，or range of cells，each element is evaluated to determine if it should be included in the count．

Catalog＞国会

$\operatorname{coth}^{-1}(3.5)$	0.293893
$\operatorname{coth}^{-1}(\{-2,2.1,6\})$	

$$
\left\{\frac{-\ln (3)}{2}, 0.518046, \frac{\ln \left(\frac{7}{5}\right)}{2}\right\}
$$

Within the Lists \＆Spreadsheet application， you can use a range of cells in place of any argument．

Empty（void）elements are ignored．For more information on empty elements，see page 236.

countif（）

countif（List，Criteria）\Rightarrow value
Returns the accumulated count of all elements in List that meet the specified Criteria．

Criteria can be：

－A value，expression，or string．For example， $\mathbf{3}$ counts only those elements in List that simplify to the value 3.
－A Boolean expression containing the symbol ？as a placeholder for each element．For example，？＜5 counts only those elements in List that are less than 5.

Within the Lists \＆Spreadsheet application， you can use a range of cells in place of List．

Empty（void）elements in the list are ignored．For more information on empty elements，see page 236.

Note：See also sumif（），page 180，and frequency（），page 74.

Catalog＞［⿴囗玉心
countIf（\｛ 1,3, ＂abc＂，undef， 3,1$\}, 3$ ）
Counts the number of elements equal to 3 ．
countIf（\｛ ${ }^{(a b c ", " d e f ", " a b c ", 3\}, " d e f ") ~}$
Counts the number of elements equal to ＂def．＂
countif $\left(\left\{x^{-2}, x^{-1}, 1, x, x^{2}\right\}, x\right) \quad 1$

Counts the number of elements equal to x ； this example assumes the variable x is undefined．
countIf $(\{1,3,5,7,9\}, ?<5)$
Counts 1 and 3 ．
$\overline{\text { countIf }\{\{1,3,5,7,9\}, 2<?<8\}} 3$
Counts 3,5 ，and 7 ．
countIf $\{1,3,5,7,9\}, ?<4$ or $?>6\} \quad 4$

Counts 1，3，7，and 9 ．
cPolyRoots(Poly,Var) \Rightarrow list
cPolyRoots(ListOfCoeffs) \Rightarrow list
The first syntax, cPolyRoots(Poly,Var), returns a list of complex roots of polynomial Poly with respect to variable Var.

Poly must be a polynomial in one variable.

The second syntax, cPolyRoots (ListOfCoeffs), returns a list of complex roots for the coefficients in ListOfCoeffs.

Note: See also polyRoots(), page 136.

crossP()

crossP(List1, List 2$) \Rightarrow$ list
Returns the cross product of Listl and List 2 as a list.

List 1 and List 2 must have equal dimension, and the dimension must be either 2 or 3.
crossP(Vectorl, Vector 2$) \Rightarrow$ vector
Returns a row or column vector (depending on the arguments) that is the cross product of Vectorl and Vector2.

Both Vector 1 and Vector 2 must be row vectors, or both must be column vectors. Both vectors must have equal dimension, and the dimension must be either 2 or 3 .

In Radian angle mode：
$\csc \left(\left\{1, \frac{\pi}{2}, \frac{\pi}{3}\right\}\right\} \quad\left\{\frac{1}{\sin (1)}, 1, \frac{2 \cdot \sqrt{3}}{3}\right\}$
$\csc ^{-1}()$
csc $^{-1}($ Expr 1$) \Rightarrow$ expression
$\csc ^{-1}($ List 1$) \Rightarrow$ list
Returns the angle whose cosecant is Expr1 or returns a list containing the inverse cosecants of each element of Listl．

Note：The result is returned as a degree， gradian or radian angle，according to the current angle mode setting．

Note：You can insert this function from the keyboard by typing arccsc（．．．）．
$\operatorname{csch}()$
$\operatorname{csch}($ Exprl $) \Rightarrow$ expression
$\operatorname{csch}($ List 1$) \Rightarrow$ list
Returns the hyperbolic cosecant of Exprl or returns a list of the hyperbolic cosecants of all elements of Listl．

In Degree angle mode：
$\csc ^{-1}(1)$
90.

In Gradian angle mode：
$\csc ^{-1}(1)$ 100.

In Radian angle mode：
$\csc ^{-1}(\{1,4,6\}) \quad\left\{\frac{\pi}{2}, \sin ^{-1}\left(\frac{1}{4}\right), \sin ^{-1}\left(\frac{1}{6}\right)\right\}$

Catalog＞［⿴囗玉心

$\operatorname{csch}(3)$	$\frac{1}{\sinh (3)}$

$\operatorname{csch}(\{1,2.1,4\})$

$$
\left\{\frac{1}{\sinh (1)}, 0.248641, \frac{1}{\sinh (4)}\right\}
$$

$\operatorname{csch}^{-1}()$
$\operatorname{csch}^{-1}($ Expr 1$) \Rightarrow$ expression
$\operatorname{csch}^{-1}($ List 1$) \Rightarrow$ list
Returns the inverse hyperbolic cosecant of Exprl or returns a list containing the inverse hyperbolic cosecants of each element of List 1 ．

Note：You can insert this function from the keyboard by typing arccsch（．．．）．

Catalog＞国

$\operatorname{csch}^{-1}(1)$
$\operatorname{csch}^{-1}(\{1,2.1,3\})$
$\left\{\sinh ^{-1}(1)\right.$

cSolve(Equation, Var) \Rightarrow Boolean
expression
cSolve(Equation, Var $=$ Guess $) \Rightarrow$ Boolean expression
cSolve(Inequality, Var) \Rightarrow Boolean expression

Returns candidate complex solutions of an equation or inequality for Var. The goal is to produce candidates for all real and nonreal solutions. Even if Equation is real, cSolve() allows non-real results in Real result Complex Format.

Although all undefined variables that do not end with an underscore (_) are processed as if they were real, cSolve() can solve polynomial equations for complex solutions.
cSolve() temporarily sets the domain to complex during the solution even if the current domain is real. In the complex domain, fractional powers having odd denominators use the principal rather than the real branch. Consequently, solutions from solve() to equations involving such fractional powers are not necessarily a subset of those from cSolve().
cSolve() starts with exact symbolic methods. cSolve() also uses iterative approximate complex polynomial factoring, if necessary.

Note: See also cZeros(), solve(), and zeros().
$\operatorname{cSolve}\left(x^{3}=-1, x\right)$

$x=\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i$ or $x=\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i$ or $x=-1$	
solve $\left(x^{3}=-1, x\right)$	$x=-1$

CSolve $\left(x^{\frac{1}{3}}=-1, x\right)$	false
solve $\left(\frac{1}{3} x^{3}=-1, x\right)$	$x=-1$

In Display Digits mode of Fix 2:

$\operatorname{exact}\left(\operatorname{cSolve}\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3=0, x\right)\right)$
$x \cdot\left(x^{4}+4 \cdot x^{3}+5 \cdot x^{2}-6\right)=3$
cSolve $(A n s, x)$
$x=-1.11+1.07 \cdot i$ or $x=-1.11-1.07 \cdot i$ or $x=-2 . p:$

To see the entire result, press $\boldsymbol{\Delta}$ and then use $\boldsymbol{\triangleleft}$ and to move the cursor.
cSolve(Eqn1andEqn2 [and...],
VarOrGuess1, VarOrGuess 2 [, ...]) \Rightarrow
Boolean expression
cSolve(SystemOfEqns, VarOrGuess1, VarOrGuess 2 [, ...]) \Rightarrow
Boolean expression
Returns candidate complex solutions to the simultaneous algebraic equations, where each varOrGuess specifies a variable that you want to solve for.

Optionally, you can specify an initial guess for a variable. Each varOrGuess must have the form:

variable

- or -
variable $=$ real or non-real number
For example, x is valid and so is $\mathrm{x}=3+i$.
If all of the equations are polynomials and if you do NOT specify any initial guesses, cSolve() uses the lexical
Gröbner/Buchberger elimination method to attempt to determine all complex solutions.
Complex solutions can include both real and non-real solutions, as in the example to the right.

Simultaneous polynomial equations can have extra variables that have no values, but represent given numeric values that could be substituted later.

You can also include solution variables that do not appear in the equations. These solutions show how families of solutions might contain arbitrary constants of the form $c k$, where k is an integer suffix from 1 through 255.
cSolve $\left(u \cdot v-u=v\right.$ and $\left.v^{2}=-u,\{u, v\}\right)$
$u=\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i$ and $v=\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i$ or $u=\frac{1}{2}-\frac{\sqrt{3}}{2}$,
To see the entire result, press \triangle and then use $\boldsymbol{\triangleleft}$ and to move the cursor.

$$
\begin{aligned}
& \text { cSolve }\left(u \cdot v-u=c \cdot v \text { and } v^{2}=-u,\{u, v\}\right) \\
& u=\frac{-(\sqrt{4 \cdot c-1} \cdot i+1)^{2}}{4} \text { and } v=\frac{\sqrt{4 \cdot c-1} \cdot i+1}{2} o^{\prime}
\end{aligned}
$$

To see the entire result, press $\boldsymbol{\Delta}$ and then use $\boldsymbol{\measuredangle}$ and to move the cursor.

$$
\begin{aligned}
& \operatorname{cSolve}\left(u \cdot v-u=v \text { and } v^{2}=-u,\{u, v, w\}\right) \\
& u=\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i \text { and } v=\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i \text { and } w=\boldsymbol{c} 43 \text { or }
\end{aligned}
$$

For polynomial systems，computation time or memory exhaustion may depend strongly on the order in which you list solution variables．If your initial choice exhausts memory or your patience，try rearranging the variables in the equations and／or varOrGuess list．

If you do not include any guesses and if any equation is non－polynomial in any variable but all equations are linear in all solution variables，cSolve（）uses Gaussian elimination to attempt to determine all solutions．

If a system is neither polynomial in all of its variables nor linear in its solution variables， cSolve（）determines at most one solution using an approximate iterative method．To do so，the number of solution variables must equal the number of equations，and all other variables in the equations must simplify to numbers．
A non－real guess is often necessary to determine a non－real solution．For convergence，a guess might have to be rather close to a solution．

To see the entire result， press $\boldsymbol{\Delta}$ and then use $\boldsymbol{\triangleleft}$ and to move the cursor．

$$
\begin{aligned}
& \text { cSolve }\left(u+v=e^{w} \text { and } u-v=i,\{u, v\}\right) \\
& \qquad u=\frac{e^{w}+i}{2} \text { and } v=\frac{e^{w}-i}{2}
\end{aligned}
$$

cSolve $\left(e^{z}=w\right.$ and $\left.w=z^{2},\{w, z\}\right)$ $w=0.494866$ and $z=0.703467$
$\left\lvert\, \begin{aligned} & \text { cSolve }\left(e^{z}=w \text { and } w=z^{2},\{w, z=1+i\}\right) \\ & w=0.149606+4.8919 \cdot i \text { and } z=1.58805+1.5402 .\end{aligned}\right.$
To see the entire result， press $\boldsymbol{\Delta}$ and then use $\boldsymbol{\triangleleft}$ and to move the cursor．

CubicReg

Catalog＞国
CubicReg $X, Y[$ ，［Freq］［，Category， Include］］

Computes the cubic polynomial regression $\mathrm{y}=\mathrm{a} \cdot \mathrm{x}^{3}+\mathrm{b} \cdot \mathrm{x}^{2}+\mathrm{c} \cdot \mathrm{x}+\mathrm{d}$ on lists X and Y with frequency Freq．A summary of results is stored in the stat．results variable．（See page 176．）

All the lists must have equal dimension except for Include．
X and Y are lists of independent and dependent variables．

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat.RegEqn	Regression equation: $\mathrm{a} \cdot \mathrm{x}^{3}+\mathrm{b} \cdot \mathrm{x}^{2}+\mathrm{c}^{\bullet} \mathrm{x}+\mathrm{d}$
stat.a, stat.b, stat.c, stat.d	Regression coefficients
stat. R^{2}	Coefficient of determination
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat. YReg

cumulativeSum()
Catalog > 国
cumulativeSum(List 1) \Rightarrow list
cumulativeSum $(\{1,2,3,4\}) \quad\{1,3,6,10\}$

Returns a list of the cumulative sums of the elements in Listl, starting at element 1.
cumulativeSum（Matrixl）\Rightarrow matrix
Returns a matrix of the cumulative sums of the elements in Matrix 1．Each element is the cumulative sum of the column from top to bottom．

An empty（void）element in Listl or Matrixl produces a void element in the resulting list or matrix．For more information on empty elements，see page 236.
$\left.\begin{array}{l}{\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] \rightarrow m 1} \\ \text { cumulativeSum }(m 1) \\ {\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]} \\ \hline 1\end{array}\right]$

Cycle
Catalog＞国
Cycle
Transfers control immediately to the next iteration of the current loop（For，While，or Loop）．

Cycle is not allowed outside the three looping structures（For，While，or Loop）．

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

Function listing that sums the integers from 1 to 100 skipping 50 ．

Define $g()=$	Func	Done
	Local temp,i	
	$0 \rightarrow$ temp	
	For $i, 1,100,1$	
	If $i=50$	
	Cycle	
	temp $+i \rightarrow$ temp	
	EndFor	
	Return temp	
	EndFunc	
$g()$		5000

Catalog＞国
$\left[\begin{array}{lll}2 & 2 & 3\end{array}\right]$ Cylind $\left[\begin{array}{lll}2 \cdot \sqrt{2} & <\frac{\pi}{4} & 3\end{array}\right]$

Note：You can insert this operator from the computer keyboard by typing＠＞Cylind．

Displays the row or column vector in cylindrical form $[r, \angle \theta, z]$ ．

Vector must have exactly three elements． It can be either a row or a column．

cZeros()

Catalog > 国

cZeros(Expr, Var) \Rightarrow list
Returns a list of candidate real and non-real values of Var that make Expr=0. cZeros() does this by computing
explist(cSolve(Expr=0,Var),Var).
Otherwise, cZeros() is similar to zeros().
Note: See also cSolve(), solve(), and zeros().
cZeros(\{Expr1, Expr2[, ...] \},
\{VarOrGuess1,VarOrGuess $2[, \ldots]$ \})
\Rightarrow matrix
Returns candidate positions where the expressions are zero simultaneously. Each VarOrGuess specifies an unknown whose value you seek.

Optionally, you can specify an initial guess for a variable. Each VarOrGuess must have the form:
variable

- or -
variable $=$ real or non-real number
For example, x is valid and so is $\mathrm{x}=3+i$.
If all of the expressions are polynomials and you do NOT specify any initial guesses, cZeros() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all complex zeros.

Complex zeros can include both real and non-real zeros, as in the example to the right.

Each row of the resulting matrix represents an alternate zero, with the components ordered the same as the VarOrGuess list. To extract a row, index the matrix by [row].

In Display Digits mode of Fix 3:
$\operatorname{cZeros}\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3, x\right)$
$\{-1.1138+1.07314 \cdot \boldsymbol{i},-1.1138-1.07314 \cdot \boldsymbol{i},-2$.
To see the entire result,
press Δ and then use \measuredangle and to move the cursor.

Extract row 2:
Ans[2] $\left[\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i \frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i\right]$

Simultaneous polynomials can have extra variables that have no values，but represent given numeric values that could be substituted later．

You can also include unknown variables that do not appear in the expressions．These zeros show how families of zeros might contain arbitrary constants of the form $c k$ ， where k is an integer suffix from 1 through 255.

For polynomial systems，computation time or memory exhaustion may depend strongly on the order in which you list unknowns．If your initial choice exhausts memory or your patience，try rearranging the variables in the expressions and／or VarOrGuess list．
If you do not include any guesses and if any expression is non－polynomial in any variable but all expressions are linear in all unknowns，cZeros（）uses Gaussian elimination to attempt to determine all zeros．

If a system is neither polynomial in all of its variables nor linear in its unknowns，cZeros （）determines at most one zero using an approximate iterative method．To do so，the number of unknowns must equal the number of expressions，and all other variables in the expressions must simplify to numbers．

A non－real guess is often necessary to determine a non－real zero．For convergence，a guess might have to be rather close to a zero．
$\operatorname{cZeros}\left(\left\{u \cdot v-u-c \cdot v^{2}, v^{2}+u\right\},\{u, v\}\right)$

$$
\begin{aligned}
& \operatorname{cZeros}\left(\left\{e^{\sim} \sim-w, w-z^{2}\right\},\{w, z=1+i\}\right) \\
& \quad\left[\begin{array}{ll}
0.149606+4.8919 \cdot i & 1.58805+1.54022 \cdot i
\end{array}\right]
\end{aligned}
$$

D

dbd（）
dbd（date1，date2）\Rightarrow value
Returns the number of days between datel and date 2 using the actual－day－count method．

Catalog＞国会

$\mathrm{dbd}(12.3103,1.0104)$	1
$\operatorname{dbd}(1.0107,6.0107)$	151
$\operatorname{dbd}(3112.03,101.04)$	1
$\operatorname{dbd}(101.07,106.07)$	151

date 1 and date 2 can be numbers or lists of numbers within the range of the dates on the standard calendar. If both date 1 and date 2 are lists, they must be the same length.
date 1 and date 2 must be between the years 1950 through 2049.

You can enter the dates in either of two formats. The decimal placement differentiates between the date formats.
MM.DDYY (format used commonly in the United States)
DDMM.YY (format use commonly in Europe)

DD

Catalog > and

Expr1 DD \Rightarrow valueList 1
-DD \Rightarrow listMatrix 1
-DD \Rightarrow matrix
Note: You can insert this operator from the computer keyboard by typing @>DD.

Returns the decimal equivalent of the argument expressed in degrees. The argument is a number, list, or matrix that is interpreted by the Angle mode setting in gradians, radians or degrees.

In Degree angle mode:

$\left(1.5^{\circ}\right) \cdot \mathrm{DD}$	1.5°
$\left(45^{\circ} 22^{\prime} 14.3^{\prime \prime}\right) \bullet \mathrm{DD}$	45.3706°
$\left(\left\{45^{\circ} 22^{\prime} 14.3^{\prime \prime}, 60^{\circ} 0^{\prime} 0^{\prime \prime}\right\}\right) \bullet \mathrm{DD}$	
	$\left\{45.3706^{\circ}, 60^{\circ}\right\}$

In Gradian angle mode:
$\overline{1-D D} \frac{9}{10} \circ$

In Radian angle mode:
(1.5) DD
85.9437°

Decimal

Expression1 Decimal \Rightarrow expression
List 1 Decimal \Rightarrow expression
Matrix 1 Decimal \Rightarrow expression
Note: You can insert this operator from the computer keyboard by typing @>Decimal.

Catalog >
$\frac{1}{3}$ Decimal
0.333333

Displays the argument in decimal form.
This operator can be used only at the end of the entry line.

Define

Catalog > a

Define Var $=$ Expression
Define Function(Param1, Param2, ...) = Expression

Defines the variable Var or the userdefined function Function.

Parameters, such as Param1, provide placeholders for passing arguments to the function. When calling a user-defined function, you must supply arguments (for example, values or variables) that correspond to the parameters. When called, the function evaluates Expression using the supplied arguments.

Var and Function cannot be the name of a system variable or built-in function or command.

Note: This form of Define is equivalent to executing the expression: expression \rightarrow Function(Param1,Param2).
Define Function(Param1, Param2, ...) = Func

Block
EndFunc

Define Program(Param1, Param2, ...) = Prgm

Define $g(x, y)=$	Func	Done
	If $x>y$ Then	
	Return x	
	Else	
	Return y	
	EndIf	
	EndFunc	
$g(3,-7)$		3

Define $g(x, y)=2 \cdot x-3 \cdot y$	Done
$g(1,2)$	-4
$1 \rightarrow a: 2 \rightarrow b: g(a, b)$	-4
Define $h(x)=$ when $(x<2,2 \cdot x-3,-2 \cdot x+3)$	Done
$h(-3)$	-9
$h(4)$	-5

EndPrgm
In this form, the user-defined function or program can execute a block of multiple statements.

Block can be either a single statement or a series of statements on separate lines. Block also can include expressions and instructions (such as If, Then, Else, and For).

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

Note：See also Define LibPriv，page 47，and Define LibPub，page 47.

Define $g(x, y)=\operatorname{Prgm}$
If $x>y$ Then
Disp x ，＂greater than＂，y
Else
Disp $x, 4$ not greater than＂，y
Endif
EndPrgm

Done
$g(3,-7)$
3 greater than－ 7

Define LibPriv

Catalog＞［⿴囗玉心
Define LibPriv Var $=$ Expression
Define LibPriv Function（Param1，Param2， ．．．）＝Expression

Define LibPriv Function（Param1，Param2， ．．．）＝Func Block
EndFunc
Define LibPriv Program（Param1，Param2， ．．．）＝Prgm

Block
EndPrgm
Operates the same as Define，except defines a private library variable，function，or program．Private functions and programs do not appear in the Catalog．

Note：See also Define，page 46，and Define LibPub，page 47.

Define LibPub
Catalog＞国
Define LibPub Var $=$ Expression Define LibPub Function（Param1，Param2， ．．．）＝Expression

Define LibPub Function（Param1，Param2， ．．．）＝Func

Block
EndFunc

Define LibPub Program（Param1，Param2，
．．．）＝Prgm
Block
EndPrgm
Operates the same as Define，except defines a public library variable，function，or program．Public functions and programs appear in the Catalog after the library has been saved and refreshed．

Note：See also Define，page 46，and Define LibPriv，page 47.

deltaList（）

See Δ List（），page 103.
deltaTmpCnv（） See Δ tmpCnv（），page 189.

DelVar		Catalog＞国 ${ }^{2}$
DelVar Var1［，Var2］［，Var3］．．．	$2 \rightarrow a$	2
DelVar Var．	${ }^{(a+2)^{2}}$	16
	DelVar a	Done
Deletes the specified variable or variable group from memory．	$(a+2)^{2}$	$(a+2)^{2}$

If one or more of the variables are locked， this command displays an error message and deletes only the unlocked variables．See unLock，page 197.
DelVar Var．deletes all members of the Var．variable group（such as the statistics stat．nn results or variables created using the LibShortcut（）function）．The dot（．）in this form of the DelVar command limits it to deleting a variable group；the simple variable Var is not affected．

aa．a：＝45	45
a a．b：＝5．67	5.67
aa．c：＝78．9	78.9
getVarinfo（）	
DelVar $a a$.	Done
getVarinfo（）	＂NONE＂

delVoid $(\{1$, void, 3$\}) \quad\{1,3\}$

Returns a list that has the contents of List1 with all empty (void) elements removed.

For more information on empty elements, see page 236.

deSolve()

deSolve(1stOr2ndOrderODE, Var, depVar) \Rightarrow a general solution

Returns an equation that explicitly or implicitly specifies a general solution to the 1st- or 2nd-order ordinary differential equation (ODE). In the ODE:

- Use a prime symbol (press ? ?) to denote the 1st derivative of the dependent variable with respect to the independent variable.
- Use two prime symbols to denote the corresponding second derivative.

The prime symbol is used for derivatives within deSolve() only. In other cases, use d ().

The general solution of a 1st-order equation contains an arbitrary constant of the form $c k$, where k is an integer suffix from 1 through 255 . The solution of a 2 nd-order equation contains two such constants.

Apply solve() to an implicit solution if you want to try to convert it to one or more equivalent explicit solutions.

When comparing your results with textbook or manual solutions, be aware that different methods introduce arbitrary constants at different points in the calculation, which may produce different general solutions.

Catalog > 国
deSolve $\left(y^{\prime \prime}+2 \cdot y^{\prime}+y=x^{2}, x, y\right)$
$\frac{y=(c 3 \cdot x+c 4) \cdot e^{-x}+x^{2}-4 \cdot x+6}{\operatorname{right}(\text { Ans }) \rightarrow \text { temp } \quad(c 3 \cdot x+c 4) \cdot e^{-x}+x^{2}-4 \cdot x+6}$
$\frac{d^{2}}{d x^{2}}($ temp $)+2 \cdot \frac{d}{d x}($ temp $)+$ temp $-x^{2}$
DelVar temp Done
deSolve $\left(y^{\prime}=(\cos (y))^{2} \cdot x, x, y\right) \quad \tan (y)=\frac{x^{2}}{2}+c 4$

deSolve(1stOrderODE and initCond, Var, depVar) \Rightarrow a particular solution

Returns a particular solution that satisfies lstOrderODE and initCond. This is usually easier than determining a general solution, substituting initial values, solving for the arbitrary constant, and then substituting that value into the general solution.
initCond is an equation of the form:
depVar (initialIndependentValue) $=$ initialDependentValue

The initialIndependentValue and initialDependentValue can be variables such as xO and y 0 that have no stored values. Implicit differentiation can help verify implicit solutions.
deSolve(2ndOrderODE and initCondl and initCond2, Var, depVar)
\Rightarrow particular solution
Returns a particular solution that satisfies 2nd Order $O D E$ and has a specified value of the dependent variable and its first derivative at one point.

For initCondl, use the form:
depVar $($ initialIndependentValue $)=$ initialDependentValue

For initCond2, use the form:
depVar $($ initialIndependentValue $)=$ initial1stDerivativeValue
deSolve(2ndOrderODE and bndCondl and bndCond2, Var, depVar)
\Rightarrow a particular solution
Returns a particular solution that satisfies 2ndOrderODE and has specified values at two different points.

$\sin (y)=\left(y \cdot e^{x}+\cos (y)\right) \cdot y^{\prime} \rightarrow o d e$
$\sin (y)=\left(e^{x} \cdot y+\cos (y)\right) \cdot y^{\prime}$

deSolve (ode and $y(0)=0, x, y) \rightarrow \operatorname{soln}$
$\frac{-\left(2 \cdot \sin (y)+y^{2}\right)}{2}=-\left(e^{x}-1\right) \cdot e^{-x} \cdot \sin (y)$
soln $\mid x=0$ and $y=0$
ode $y^{\prime}=$ impDif $(\operatorname{soln}, x, y)$
DelVar ode,soln

solve $\left(\frac{2 \cdot y^{\frac{3}{4}}}{3}=t, y\right)$

$$
y=\frac{3 \cdot 3^{\frac{1}{3}} \cdot 2^{\frac{2}{3}} \cdot t^{\frac{4}{3}}}{4} \text { and } t \geq 0
$$

deSolve $\left(y^{\prime \prime}=x\right.$ and $y(0)=1$ and $\left.y^{\prime}(2)=3, x, y\right)$
$y=\frac{x^{3}}{6}+x+1$
$\operatorname{deSolve}\left(y^{\prime \prime}=2 \cdot y^{\prime}\right.$ and $y(3)=1$ and $\left.y^{\prime}(4)=2, x, y\right)$
$y=\mathbf{e}^{2 \cdot x-8}-e^{-2}+1$

$$
\begin{array}{r}
\operatorname{deSolve}\left(w^{\prime \prime}-\frac{2 \cdot w^{\prime}}{x}+\left(9+\frac{2}{x^{2}}\right) \cdot w=x \cdot e^{x} \text { and } w\left(\frac{\pi}{6}\right)=0 \text { and } w\left(\frac{\pi}{3}\right)=0, x, w\right) \\
w=\frac{x \cdot e^{x}}{(\ln (e))^{2}+9}+\frac{e^{\frac{\pi}{3}} \cdot x \cdot \cos (3 \cdot x)}{(\ln (e))^{2}+9}-\frac{e^{\frac{\pi}{6}} \cdot x \cdot \sin (3 \cdot x)}{(\ln (e))^{2}+9}
\end{array}
$$

$\operatorname{det}()$

$\operatorname{det}($ squareMatrix $[$, Tolerance $]) \Rightarrow$ expression

Returns the determinant of squareMatrix.
Optionally, any matrix element is treated as zero if its absolute value is less than Tolerance. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, Tolerance is ignored.

- If you use ctrr enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.
- If Tolerance is omitted or not used, the default tolerance is calculated as: 5E-14 •max(dim(squareMatrix)) -rowNorm(squareMatrix)
diag()
$\operatorname{diag}($ List $) \Rightarrow$ matrix
$\operatorname{diag}($ rowMatrix $) \Rightarrow$ matrix
$\operatorname{diag}($ columnMatrix $) \Rightarrow$ matrix
Returns a matrix with the values in the argument list or matrix in its main diagonal.
$\operatorname{diag}($ squareMatrix $) \Rightarrow$ rowMatrix
Returns a row matrix containing the elements from the main diagonal of squareMatrix.
squareMatrix must be square.

Catalog > 国
$\operatorname{diag}\left(\left[\begin{array}{lll}2 & 4 & 6\end{array}\right]\right) \quad\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6\end{array}\right]$

$\left[\begin{array}{lll}4 & 6 & 8 \\ 1 & 2 & 3 \\ 5 & 7 & 9\end{array}\right]$	
$\operatorname{diag}(A n s)$	$\left[\begin{array}{lll}4 & 6 & 8 \\ 1 & 2 & 3 \\ 5 & 7 & 9\end{array}\right]$

$\overline{\operatorname{dim}(\{0,1,2\})} 3$

Returns the dimension of List．
dim（Matrix）\Rightarrow list
Returns the dimensions of matrix as a two－ element list \｛rows，columns\}.

$\operatorname{dim}($ String $) \Rightarrow$ integer
Returns the number of characters contained in character string String．

Disp	Catalog＞国］
Disp exprOrString1［，exprOrString2］．．．	Define chars $($ start，end $)=\operatorname{Prgm}$
Displays the arguments in the Calculator history．The arguments are displayed in succession，with thin spaces as separators．	For i，start，end Disp $i, " \quad$＂，char (i) EndFor EndPrgm
Useful mainly in programs and functions to ensure the display of intermediate calculations．	Done
	chars（240，243）
	240 ð
Note for entering the example：For	241 ñ
instructions on entering multi－line program	242 ò
and function definitions，refer to the	
Calculator section of your product guidebook．	2430 Done

DispAt

$\operatorname{dim}($＂Hello＂$)$	5
$\operatorname{dim}($＂Hello＂\＆＂there＂）	11

DispAt int，expr 1 ，expr2 ．．．］．．．
DispAt allows you to specify the line where the specified expression or string will be displayed on the screen．

The line number can be specified as an expression．

Please note that the line number is not for the entire screen but for the area immediately following the command／program．

Catalog＞国
DispAt
Example

This command allows dashboard-like output from programs where the value of an expression or from a sensor reading is updated on the same line.

DispAtand Disp can be used within the same program.

Note: The maximum number is set to 8 since that matches a screen-full of lines on the handheld screen - as long as the lines don't have 2D math expressions. The exact number of lines depends on the content of the displayed information.

Illustrative examples:

Define z()$=$	Output
Prgm	z()
For $\mathrm{n}, 1,3$	Iteration 1:
DispAt 1,"N: ",n	Line 1: $\mathrm{N}: 1$
Disp "Hello"	Line 2: Hello
EndFor	
EndPrgm	Iteration 2:
	Line 1: $\mathrm{N}: 2$
	Line 2: Hello
	Line 3: Hello

Iteration 3:
Line 1: $\mathrm{N}: 3$
Line 2: Hello
Line 3: Hello
Line 4: Hello

Define z1()=	z1()	
Prgm		Line 1: $\mathrm{N}: 3$
For $\mathrm{n}, 1,3$		Line 2: Hello
DispAt 1,"N: ",n		Line 3: Hello
EndFor		Line 4: Hello
		Line 5: Hello
For $\mathrm{n}, 1,4$		
Disp "Hello"		
EndFor		
EndPrgm		

Error conditions：

Error Message DispAt line number must be between 1 and 8	Description Expression evaluates the line number outside the range 1－8（inclusive）
Too few arguments	The function or command is missing one or more arguments．
No arguments	Same as current＇syntax error＇dialog
Too many arguments	Limit argument．Same error as Disp．
Invalid data type	First argument must be a number．
Void：DispAt void	＂Hello World＂Datatype error is thrown for the void（if the callback is defined）
Conversion operator：DispAt 2＿ft＠＞＿m，	CAS：Datatype Error is thrown（if the callback is defined） ＂Hello World＂
Numeric：Conversion will be evaluated and if the result is a valid argument， DispAt print the string at the result line．	

Matrix DMS

Catalog＞国
In Degree angle mode：

$(45.371) \bullet$ DMS	$45^{\circ} 22^{\prime} 15.6^{\prime \prime}$
$(\{45.371,60\})>$ DMS	$\left\{45^{\circ} 22^{\prime} 15.6^{\prime \prime}, 60^{\circ}\right\}$

Note：You can insert this operator from the computer keyboard by typing＠＞DMS．

Interprets the argument as an angle and displays the equivalent DMS （DDDDDD ${ }^{\circ}$ MM＇SS．ss＇＂）number．See ${ }^{\circ}$ ，＇，＇＂ on page 228 for DMS（degree，minutes， seconds）format．

Note：DMS will convert from radians to degrees when used in radian mode．If the input is followed by a degree symbol ${ }^{\circ}$ ，no conversion will occur．You can use－DMS only at the end of an entry line．
domain（Expr1，Var）\Rightarrow expression
Returns the domain of Exprl with respect to Var．
domain（）can be used to examine domains of functions．It is restricted to real and finite domain．

This functionality has limitations due to shortcomings of computer algebra simplification and solver algorithms．

Certain functions cannot be used as arguments for domain（），regardless of whether they appear explicitly or within user－defined variables and functions．In the following example，the expression cannot be simplified because $\int()$ is a disallowed function．
domain $\left\{\int_{1}^{x} \frac{1}{t} \mathrm{~d} t, x\right) \cdot$ domain $\left(\int_{1}^{x} \frac{1}{t} \mathrm{~d} t, x\right)$ dominantTerm（）
dominantTerm（Expr1，Var $[$, Point $]) \Rightarrow$ expression
dominantTerm（Expr1，Var［，Point $]$ ）｜
Var $>$ Point \Rightarrow expression
dominantTerm（Expr1，Var［，Point］）｜
Var $<$ Point \Rightarrow expression

domain $\left(\frac{1}{x+y}, y\right)$	$-\infty<y<-x$ or $-x<y<\infty$
domain $\left(\frac{x+1}{x^{2}+2 \cdot x}, x\right)$	$x \neq-2$ and $x \neq 0$

domain $\left((\sqrt{x})^{2}, x\right)$	$0 \leq x<\infty$
domain $\left(\frac{1}{x+y} y\right)$	$-\infty<y<-x$ or $-x<y<\infty$

dominantTerm（）	Catalog＞［⿴囗玉心］	
dominantTerm（Expr1，Var $[$ ，Point $]) \Rightarrow$ expression	dominantTerm（ $\tan (\sin (x))-\sin (\tan (x)\rangle, x)$	
		${ }^{x^{7}}$
$\begin{aligned} & \text { dominantTerm(Expr1, Var }[, \text { Point }]) \mid \\ & \text { Var }>\text { Point } \Rightarrow \text { expression } \end{aligned}$	$\frac{x}{30}$	
	dominantTerm $\left(\frac{1-\cos (x-1)}{(x-1)^{3}}, x, 1\right)$	$\frac{1}{2 \cdot(x-1)}$
$\begin{aligned} & \text { dominantTerm(Expr 1, Var }[, \text { Point }]) \mid \\ & \text { Var }<\text { Point } \Rightarrow \text { expression } \end{aligned}$	dominantTerm $\left(x^{-2} \cdot \tan \left(x^{3}\right)_{, x}\right)$	$\frac{1}{x^{\frac{5}{3}}}$
	dominantTerm $\left(\ln \left(x^{x}-1\right) \cdot x^{-2}, x\right)$	$\underline{\ln (x \cdot \ln (x))}$
		x^{2}

Returns the dominant term of a power series representation of Exprl expanded about Point. The dominant term is the one whose magnitude grows most rapidly near Var $=$ Point . The resulting power of (Var Point) can have a negative and/or fractional exponent. The coefficient of this power can include logarithms of (Var Point) and other functions of Var that are dominated by all powers of (Var - Point) having the same exponent sign.

Point defaults to 0 . Point can be ∞ or $-\infty$, in which cases the dominant term will be the term having the largest exponent of Var rather than the smallest exponent of Var.
dominantTerm(...) returns "dominantTerm (...)" if it is unable to determine such a representation, such as for essential singularities such as $\sin (1 / z)$ at $z=0, \mathrm{e}-1 / \mathrm{z}$ at $\mathrm{z}=0$, or e^{z} at $\mathrm{z}=\infty$ or $-\infty$.

If the series or one of its derivatives has a jump discontinuity at Point, the result is likely to contain sub-expressions of the form $\operatorname{sign}(\ldots)$ or abs(...) for a real expansion variable or $(-1)^{\text {floor }(\ldots . . a n g l e(. . .) . . .) ~ f o r ~ a ~ c o m p l e x ~}$ expansion variable, which is one ending with " _". If you intend to use the dominant term only for values on one side of Point, then append to dominantTerm(...) the appropriate one of "| Var > Point", "| Var < Point", "| "Var \geq Point", or "Var \leq Point" to obtain a simpler result.
dominantTerm() distributes over 1stargument lists and matrices.
dominantTerm() is useful when you want to know the simplest possible expression that is asymptotic to another expression as Var \rightarrow Point. dominantTerm() is also useful when it isn't obvious what the degree of the first non-zero term of a series will be, and you don't want to iteratively guess either interactively or by a program loop.
dominantTerm $\left(e^{\frac{-1}{z}}, z\right)$

dominantTerm $\left(\left(1+\frac{1}{n}\right)^{n}, n, \infty\right) \quad e$ dominantTerm $\left(\tan ^{-1}\left(\frac{1}{x}\right), x, 0\right) \quad \frac{\pi \cdot \operatorname{sign}(x)}{2}$ dominantTerm $\left.\left(\tan ^{-1}\left(\frac{1}{x}\right), x\right) \right\rvert\, x>0 \quad \frac{\pi}{2}$

Note: See also series(), page 161.

$\operatorname{dotP}()$	Catalog > 国 ${ }_{\text {2 }}$	
$\operatorname{dotP}($ List 1, List 2$) \Rightarrow$ expression	$\operatorname{dotP}(\{a, b, c\},\{d, e, f\})$	$a \cdot d+b \cdot e+c \cdot f$
Returns the "dot" product of two lists.	$\operatorname{dotP}(\{1,2\},\{5,6\})$	17
$\operatorname{dotP}($ Vector 1, Vector 2$) \Rightarrow$ expression	$\overline{\operatorname{dotP}\left(\left[\begin{array}{lll}a & b & c\end{array}\right],\left[\begin{array}{lll}d & e & f\end{array}\right]\right)}$	$a \cdot d+b \cdot e+c \cdot f$
Returns the "dot" product of two vectors	$\operatorname{dotP}\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]\right)$	32

Both must be row vectors, or both must be column vectors.

E

$e^{\boldsymbol{\wedge}}()$
$e^{\boldsymbol{\wedge}}($ Exprl $) \Rightarrow$ expression
Returns \boldsymbol{e} raised to the Exprl power.
Note: See also \boldsymbol{e} exponent template, page

	$\boxed{e^{x}}$ key
e^{1}	e
$e^{1 .}$	2.71828
$e^{3^{2}}$	e^{9}

Note: Pressing ex^{x} to display $\boldsymbol{e}^{\boldsymbol{\wedge}}$ (is different from pressing the character E on the keyboard.

You can enter a complex number in $\mathrm{re}^{\mathrm{i}} \theta$ polar form. However, use this form in Radian angle mode only; it causes a Domain error in Degree or Gradian angle mode.
$e^{\wedge}($ List 1$) \Rightarrow$ list
Returns \boldsymbol{e} raised to the power of each element in Listl.
$e^{\wedge}($ squareMatrix 1$) \Rightarrow$ squareMatrix
Returns the matrix exponential of squareMatrixl. This is not the same as calculating e raised to the power of each element. For information about the calculation method, refer to $\boldsymbol{\operatorname { c o s } () .}$
squareMatrix 1 must be diagonalizable．The result always contains floating－point numbers．

eff（）	Catalog＞国运	
eff（nominalRate， $\mathrm{Cp} Y$ ）\Rightarrow value	eff（ $5.75,12$ ）	5.90398

Financial function that converts the nominal interest rate nominalRate to an annual effective rate，given $C p Y$ as the number of compounding periods per year．
nominalRate must be a real number，and $C p Y$ must be a real number >0 ．

Note：See also nom（），page 123.
eigVc（）
eigVc（squareMatrix）\Rightarrow matrix
Returns a matrix containing the eigenvectors for a real or complex squareMatrix，where each column in the result corresponds to an eigenvalue．Note that an eigenvector is not unique；it may be scaled by any constant factor．The eigenvectors are normalized，meaning that：
if $\mathrm{V}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}\right]$
then $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=1$
squareMatrix is first balanced with similarity transformations until the row and column norms are as close to the same value as possible．The squareMatrix is then reduced to upper Hessenberg form and the eigenvectors are computed via a Schur factorization．

In Rectangular Complex Format：

| $\left[\begin{array}{ccc}-1 & 2 & 5 \\ 3 & -6 & 9 \\ 2 & -5 & 7\end{array}\right] \rightarrow m 1$ |
| :---: | :---: | :---: |

eigVc $(m 1)$

$\left[\begin{array}{ccc}-0.800906 & 0.767947 & {\left[\begin{array}{rrr}-1 & 2 & 5 \\
3 & -6 & 9 \\
2 & -5 & 7\end{array}\right]} \\
0.484029 & 0.573804+0.052258 \cdot \boldsymbol{i} & 0.5738 \cdot \\
0.352512 & 0.262687+0.096286 \cdot \boldsymbol{i} & 0.2626 \\
\hline\end{array}\right.$

To see the entire result，
press $\boldsymbol{\Delta}$ and then use $\boldsymbol{⿶}$ and \downarrow to move the cursor．

Catalog＞国运
In Rectangular complex format mode：
eigVI（squareMatrix）\Rightarrow list
Returns a list of the eigenvalues of a real or complex squareMatrix．
squareMatrix is first balanced with similarity transformations until the row and column norms are as close to the same value as possible．The squareMatrix is then reduced to upper Hessenberg form and the eigenvalues are computed from the upper Hessenberg matrix．

| $\left[\begin{array}{ccc}-1 & 2 & 5 \\ 3 & -6 & 9 \\ 2 & -5 & 7\end{array}\right] \rightarrow m 1$ |
| :---: | :---: | :---: |
| $\operatorname{eigVl}(m 1)$ |
| $\{-4.40941,2.20471+0.763006 \cdot \boldsymbol{i}, 2.20471-0$. |

To see the entire result，
press $\boldsymbol{\Delta}$ and then use $\boldsymbol{4}$ and to move the cursor．

$$
\text { Else } \quad \text { See If, page } 86 .
$$

Elself Catalog＞国远

If BooleanExprl Then Block1
Elself BooleanExpr 2 Then Block2
：
Elself BooleanExpr N Then BlockN
Endlf
：
Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

Define $g(x)=$ Func
If $x \leq-5$ Then
Return 5
ElseIf $x>-5$ and $x<0$ Then
Return $-x$
ElseIf $x \geq 0$ and $x \neq 10$ Then
Return x
ElseIf $x=10$ Then
Return 3
EndIf
EndFunc
Done

EndFor See For，page 72.

EndFunc
See Func，page 75.

EndIf
See If，page 86.

euler ()

Catalog > 国
euler(Expr, Var, depVar, \{Var0, VarMax\}, depVar0, VarStep $[$, eulerStep $]$) \Rightarrow matrix
euler(SystemOfExpr, Var, ListOfDepVars, \{Var0, VarMax\}, ListOfDepVars0, VarStep $[$, eulerStep]) \Rightarrow matrix
euler(ListOfExpr, Var, ListOfDepVars, \{Var0, VarMax\}, ListOfDepVars0, VarStep $[$, eulerStep] $) \Rightarrow$ matrix
Uses the Euler method to solve the system $\frac{d \text { depVar }}{d V a r}=\operatorname{Expr}($ Var, depVar $)$ with $\operatorname{dep} \operatorname{Var}(\operatorname{Var} 0)=d e p \operatorname{Var} 0$ on the interval [Var0,VarMax]. Returns a matrix whose first row defines the Var output values and whose second row defines the value of the first solution component at the corresponding Var values, and so on.

Expr is the right-hand side that defines the ordinary differential equation (ODE).

SystemOfExpr is the system of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

Differential equation:
$y^{\prime}=0.001^{*} y^{*}(100-y)$ and $y(0)=10$
euler $(0.001 \cdot y \cdot(100-y), t, y,\{0,100\}, 10,1)$
$\left[\begin{array}{ccccc}0 . & 1 . & 2 . & 3 . & 4 . \\ 10 . & 10.9 & 11.8712 & 12.9174 & 14.042\end{array}\right.$

To see the entire result,
press $\boldsymbol{\Delta}$ and then use $\boldsymbol{\triangleleft}$ and to move the cursor.

Compare above result with CAS exact solution obtained using deSolve() and seqGen():
deSolve $\left(y^{\prime}=0.001 \cdot y \cdot(100-y)\right.$ and $\left.y(0)=10, t y\right)$
$y=\frac{100 \cdot(1.10517)^{t}}{(1.10517)^{t}+9 .}$

[^0]ListOfExpr is a list of right-hand sides that define the system of ODEs (corresponds to the order of dependent variables in ListOfDepVars).

Var is the independent variable.
ListOfDepVars is a list of dependent variables.
$\{$ Var0, VarMax\} is a two-element list that tells the function to integrate from Var0 to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.

VarStep is a nonzero number such that sign $($ VarStep $)=\operatorname{sign}($ VarMax-Var 0$)$ and solutions are returned at $\operatorname{Var} 0+i \cdot$ VarStep for all $i=0,1,2, \ldots$ such that Var $0+i \cdot$ VarStep is in [var0,VarMax] (there may not be a solution value at VarMax).
eulerStep is a positive integer (defaults to 1) that defines the number of euler steps between output values. The actual step size used by the euler method is VarStep / eulerStep.

System of equations:
$\left\{\begin{array}{l}y 1^{\prime}=-y 1+0.1 \cdot y 1 \cdot y 2 \\ y 2=3 \cdot y 2-y 1 \cdot y 2\end{array}\right.$
with $y 1(0)=2$ and $y 2(0)=5$
euler $\left\{\left\{\begin{array}{l}-y 1+0.1 \cdot y 1 \cdot y 2 \\ 3 \cdot y 2-y 1 \cdot y 2\end{array}, t,\{y 1, y 2\},\{0,5\},\{2,5\}, 1\right\}\right.$
$\left[\begin{array}{cccccc}0 . & 1 . & 2 . & 3 . & 4 . & 5 . \\ 2 . & 1 . & 1 . & 3 . & 27 . & 243 .\end{array}\right]$ $\left[\begin{array}{llllll}5 . & 10 . & 30 . & 90 . & 90 . & -2070 .\end{array}\right]$

Program to fade-in the red element

```
Define fadein()=
Prgm
For i,0,255,10
    Send "SET COLOR.RED eval(i)"
        Wait 0.1
    EndFor
    Send "SET COLOR.RED OFF"
EndPrgm
```

Execute the program.
fadein() Done

$n:=0.25$	0.25
$m:=8$	8
$n \cdot m$	2.
Send "SET COLOR.BLUE ON TIME eval(n• m)"	
	Done
iostr.SendAns	"SET COLOR.BLUE ON TIME $2 "$

Although eval() does not display its result, you can view the resulting Hub command string after executing the command by inspecting any of the following special variables.
iostr.SendAns
iostr.GetAns
iostr.GetStrAns
Note: See also Get (page 77), GetStr (page 84), and Send (page 158).

exact()	Catalog > [1]	
$\begin{aligned} & \text { exact }(\text { Expr } 1[, \text { Tolerance }]) \Rightarrow \text { expression } \\ & \text { exact }(\text { List } 1[, \text { Tolerance }]) \Rightarrow \text { list } \\ & \operatorname{exact}(\text { Matrix } 1[, \text { Tolerance }]) \Rightarrow \text { matrix } \end{aligned}$	exact(0.25)	$\frac{1}{4}$
	exact(0.333333)	333333
Uses Exact mode arithmetic to return, when possible, the rational-number equivalent of the argument.		1000000
	exact (0.333333,0.001)	$\frac{1}{3}$
Tolerance specifies the tolerance for the conversion; the default is 0 (zero).	exact ($3.5 \cdot x+y$)	$\frac{7 \cdot x}{2}+y$
	$\operatorname{exact}(\{0.2,0.33,4.125\})$	$\left\{\frac{1}{5}, \frac{33}{100}, \frac{33}{8}\right\}$

Exit
Catalog > 国
Exit
Function listing:
Exits the current For, While, or Loop block.

Exit is not allowed outside the three looping structures (For, While, or Loop).

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

Define $g()=$	Func	Done
	Local temp,i	
	$0 \rightarrow$ temp	
	For $i, 1,100,1$	
	temp $+i \rightarrow$ temp	
	If temp >20 Then	
	Exit	
	EndIf	
	EndFor	
	EndFunc	
$g()$		21

$\frac{d}{d x}\left(e^{x}+e^{-x}\right)$	$2 \cdot \sinh (x)$
$2 \cdot \sinh (x) \exp$	$e^{x}-e^{-x}$

Represents Expr in terms of the natural exponential e. This is a display conversion operator. It can be used only at the end of the entry line.

Note: You can insert this operator from the computer keyboard by typing @>exp.

$\exp ()$		ex^{x} key
$\mathbf{e x p}($ Expr 1$) \Rightarrow$ expression	e^{1}	e
Returns e raised to the Exprl power.	$e^{1 .}$	2.71828
Note: See also e exponent template, page 2.	$e^{3^{2}}$	e^{9}

You can enter a complex number in re ${ }^{i} \theta$ polar form. However, use this form in Radian angle mode only; it causes a Domain error in Degree or Gradian angle mode.
$\exp ($ List 1$) \Rightarrow$ list
Returns \boldsymbol{e} raised to the power of each element in List 1.
$\exp ($ squareMatrixl $) \Rightarrow$ squareMatrix
$\underline{\boldsymbol{e}^{\{1,1 ., 0.5\}} \quad\{\boldsymbol{e}, 2.71828,1.64872\}}$
$e^{\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]}\left[\begin{array}{lll}782.209 & 559.617 & 456.509 \\ 680.546 & 488.795 & 396.521 \\ 524.929 & 371.222 & 307.879\end{array}\right]$

Returns the matrix exponential of squareMatrixl. This is not the same as calculating \boldsymbol{e} raised to the power of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix 1 must be diagonalizable. The result always contains floating-point numbers.
$\exp >$ list()
exp $>$ list $($ Expr,$V a r) \Rightarrow$ list
Examines Expr for equations that are separated by the word "or," and returns a list containing the right-hand sides of the equations of the form Var=Expr. This gives you an easy way to extract some solution values embedded in the results of the solve(), cSolve(), $f \operatorname{Min}()$, and $f \operatorname{Max}()$ functions.

Note: \exp list() is not necessary with the zeros() and cZeros() functions because they return a list of solution values directly.

You can insert this function from the keyboard by typing exp@>list(...).
expand()
expand(Expr1 [,Var]) \Rightarrow expression
expand $($ List $1[, V a r]) \Rightarrow$ list
expand(Matrix $1[, V a r]) \Rightarrow$ matrix
expand(Exprl) returns Exprl expanded with respect to all its variables. The expansion is polynomial expansion for polynomials and partial fraction expansion for rational expressions.

The goal of expand() is to transform Exprl into a sum and/or difference of simple terms. In contrast, the goal of factor() is to transform Exprl into a product and/or quotient of simple factors.
expand(Exprl,Var) returns Expr1 expanded with respect to Var. Similar powers of Var are collected. The terms and their factors are sorted with Var as the main variable. There might be some incidental factoring or expansion of the collected coefficients. Compared to omitting Var, this often saves time, memory, and screen space, while making the expression more comprehensible.

Even when there is only one variable, using Var might make the denominator factorization used for partial fraction expansion more complete.

Hint: For rational expressions, propFrac() is a faster but less extreme alternative to expand().

Note: See also comDenom() for an expanded numerator over an expanded denominator.
expand(Expr1,[Var]) also distributes logarithms and fractional powers regardless of Var. For increased distribution of logarithms and fractional powers, inequality constraints might be necessary to guarantee that some factors are nonnegative.
expand(Exprl, [Var]) also distributes absolute values, sign(), and exponentials, regardless of Var.

Note: See also tExpand() for trigonometric angle-sum and multiple-angle expansion.

$\left.\begin{array}{r}\text { expand }\left((x+y+1)^{2}, y\right) \\ \text { expand }\left((x+y+1)^{2}, x\right) \\ y^{2}+2 \cdot y \cdot(x+1)+(x+1)^{2} \\ \text { expand }\left(\frac{x^{2}+2 \cdot x \cdot(y+1)+(y+1)^{2}}{\left(x^{2} \cdot y^{2}-x^{2} \cdot y-y^{2}-y\right.} y^{2}+x \cdot y\right.\end{array}\right)$
$\frac{1}{y-1}-\frac{1}{y}+\frac{1}{x \cdot(x-1)}$
$\operatorname{expand}($ Ans, $x)$

expand $\left(\frac{x^{3}+x^{2}-2}{x^{2}-2}\right)$
expand $($ Ans,$x)$
$\frac{1}{x-\sqrt{2}}+\frac{2 \cdot x}{x+\sqrt{2}}+x+1$

$\ln (2 \cdot x \cdot y)+\sqrt{2 \cdot x \cdot y}$	$\ln (2 \cdot x \cdot y)+\sqrt{2 \cdot x \cdot y}$
expand(Ans)	$\ln (x \cdot y)+\sqrt{2} \cdot \sqrt{x \cdot y}+\ln (2)$
expand (Ans) $\mid \boldsymbol{y} \geq 0$	
$\ln (x)+\sqrt{2} \cdot \sqrt{x} \cdot \sqrt{y}+\ln (y)+\ln (2)$	
$\operatorname{sign}(x \cdot y)+\|x \cdot y\|+e^{2 \cdot x+y}$	
	$2 \cdot x+y_{+\operatorname{sign}(x \cdot y)+\mid x \cdot y}$
expand (Ans)	

$$
\operatorname{sign}(x) \cdot \operatorname{sign}(y)+|x| \cdot|y|+\left(e^{x}\right)^{2} \cdot e^{y}
$$

expr()

expr(String) \Rightarrow expression
Returns the character string contained in String as an expression and immediately executes it.

Catalog > 国

expr("1+2+x^2+x")	$x^{2}+x+3$
$\operatorname{expr}\left(\underline{\operatorname{expand}}\left((1+\mathrm{x})^{\wedge} 2\right) "\right)$	$x^{2}+2 \cdot x+1$
"Define cube $(\mathrm{x})=\mathrm{x}^{\wedge} 3 \mathrm{H} \rightarrow$ funcstr	
"Define cube(x)=x^3"	
expr (funcstr)	Done
cube(2)	8

ExpReg X, Y [, [Freq] [, Category,
Include]]
Computes the exponential regression $\mathrm{y}=\mathrm{a} \cdot$
(b) ${ }^{\mathrm{x}}$ on lists X and Y with frequency Freq. A
summary of results is stored in the
stat.results variable. (See page 176.)
All the lists must have equal dimension except for Include.
X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.

Output variable	Description
stat. RegEqn	Regression equation: $\mathrm{a} \bullet(\mathrm{b})^{\mathrm{x}}$
stat.a, stat.b	Regression coefficients
stat. r^{2}	Coefficient of linear determination for transformed data
stat.r	Correlation coefficient for transformed data (x, In(y))
stat.Resid	Residuals associated with the exponential model
stat. ResidTrans	Residuals associated with linear fit of transformed data
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories

Output variable	Description
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat. YReg

F

factor()

factor(Expr $1[$, Var $]) \Rightarrow$ expression
factor(List $1[, V a r]) \Rightarrow$ list
factor(Matrix $1[$, Var $]) \Rightarrow$ matrix
factor(Exprl) returns Exprl factored with respect to all of its variables over a common denominator.

Exprl is factored as much as possible toward linear rational factors without introducing new non-real subexpressions. This alternative is appropriate if you want factorization with respect to more than one variable.
factor(Expr1,Var) returns Expr1 factored with respect to variable Var.

Expr 1 is factored as much as possible toward real factors that are linear in Var, even if it introduces irrational constants or subexpressions that are irrational in other variables.

The factors and their terms are sorted with Var as the main variable. Similar powers of Var are collected in each factor. Include Var if factorization is needed with respect to only that variable and you are willing to accept irrational expressions in any other variables to increase factorization with respect to Var. There might be some incidental factoring with respect to other variables.

For the Auto setting of the Auto or Approximate mode, including Var permits approximation with floating-point coefficients where irrational coefficients cannot be explicitly expressed concisely in terms of the built-in functions. Even when there is only one variable, including Var might yield more complete factorization.

Catalog > 国

factor $\left(a^{3} \cdot x^{2}-a \cdot x^{2}-a^{3}+a\right)$	
	$a \cdot(a-1) \cdot(a+1) \cdot(x-1) \cdot(x+1)$
factor $\left(x^{2}+1\right)$	$x^{2}+1$
factor $\left(x^{2}-4\right)$	$(x-2) \cdot(x+2)$
factor $\left(x^{2}-3\right)$	$x^{2}-3$
factor $\left(x^{2}-a\right)$	$x^{2}-a$

factor $\left(a^{3} \cdot x^{2}-a \cdot x^{2}-a^{3}+a, x\right)$
factor $\left(x^{2}-3, x\right)$ $a \cdot\left(a^{2}-1\right) \cdot(x-1) \cdot(x+1)$ factor $\left(x^{2}-a, x\right)$ $(x+\sqrt{3}) \cdot(x-\sqrt{3})$

factor $\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3\right)$

$x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3$

factor $\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3, x\right)$
$(x-0.964673) \cdot(x+0.611649) \cdot(x+2.12543) \cdot\left(x^{\prime}\right.$

Note: See also comDenom() for a fast way to achieve partial factoring when factor() is not fast enough or if it exhausts memory.

Note: See also cFactor() for factoring all the way to complex coefficients in pursuit of linear factors.
factor(rationalNumber) returns the rational number factored into primes. For composite numbers, the computing time grows exponentially with the number of digits in the second-largest factor. For example, factoring a 30 -digit integer could take more than a day, and factoring a 100digit number could take more than a century.

To stop a calculation manually,

- Handheld: Hold down the non key and press enter repeatedly.
- Windows ${ }^{\oplus}$: Hold down the $\mathbf{F 1 2}$ key and press Enter repeatedly.
- Macintosh ${ }^{\oplus}$: Hold down the F5 key and press Enter repeatedly.
- iPad ${ }^{\oplus}$: The app displays a prompt. You can continue waiting or cancel.

If you merely want to determine if a number is prime, use isPrime() instead. It is much faster, particularly if rationalNumber is not prime and if the second-largest factor has more than five digits.

factor (152417172689)	$123457 \cdot 1234577$
isPrime (152417172689)	false

FCdf()
Catalog > 国

FCdf

(lowBound,upBound,dfNumer,dfDenom) \Rightarrow number if lowBound and upBound are numbers, list if lowBound and upBound are lists

FCdf

(lowBound,upBound,dfNumer,dfDenom) \Rightarrow number if lowBound and upBound are numbers, list if lowBound and upBound are lists

Computes the F distribution probability between lowBound and upBound for the specified $d f$ Numer（degrees of freedom）and dfDenom．

For $\mathrm{P}(X \leq$ upBound $)$ ，set lowBound $=0$ ．

Fill

Catalog＞国
Fill Expr，matrixVar \Rightarrow matrix
Replaces each element in variable matrixVar with Expr．
matrixVar must already exist．
Fill Expr，listVar \Rightarrow list
Replaces each element in variable listVar with Expr．

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \rightarrow$ amatrix	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Fill 1．01，amatrix	Done
amatrix	$\left[\begin{array}{ll}1.01 & 1.01 \\ 1.01 & 1.01\end{array}\right]$

listVar must already exist．

FiveNumSummary

FiveNumSummary X［，［Freq］
［，Category，Include］］
Provides an abbreviated version of the 1－ variable statistics on list X ．A summary of results is stored in the stat．results variable． （See page 176．）
X represents a list containing the data．
Freq is an optional list of frequency values．
Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point．The default value is 1 ．

Category is a list of numeric category codes for the corresponding X data．

Include is a list of one or more of the category codes．Only those data items whose category code is included in this list are included in the calculation．

An empty（void）element in any of the lists X ，Freq，or Category results in a void for the corresponding element of all those lists． For more information on empty elements， see page 236.

Output variable	Description
stat．MinX	Minimum of x values．
stat．$Q_{1} X$	1st Quartile of x.
stat．MedianX	Median of x.
stat．$Q_{3} X$	3rd Quartile of x.
stat．MaxX	Maximum of x values．

floor（）		Catalog＞国运
floor（Exprl）\Rightarrow integer	floor（－2．14）	3.

Returns the greatest integer that is \leq the argument．This function is identical to int（）．

The argument can be a real or a complex number．
floor（Listl）\Rightarrow list
floor（Matrixl）\Rightarrow matrix
Returns a list or matrix of the floor of each element．

floor $\left(\left\{\frac{3}{2}, 0,-5.3\right\}\right\}$	
floor $\left(\left[\begin{array}{ll}1.2 & 3.4 \\ 2.5 & 4.8\end{array}\right]\right\}$	$\{1,0,-6\}$.

Note：See also ceiling（）and int（）．
fMax（）
$\mathbf{f M a x}($ Expr，Var $) \Rightarrow$ Boolean expression
fMax（Expr，Var，lowBound）
$\mathbf{f M a x}($ Expr，Var，lowBound，upBound $)$
$\mathbf{f M a x}($ Expr，Var $)$
lowBound \leq Var $\leq u p B o u n d ~$
Returns a Boolean expression specifying
candidate values of Var that maximize
Expr or locate its least upper bound．

You can use the constraint ("|") operator to restrict the solution interval and/or specify
$\mathrm{fMax}\left(0.5 \cdot x^{3}-x-2, x\right) \mid x \leq 1 \quad x=-0.816497$ other constraints.

For the Approximate setting of the Auto or Approximate mode, fMax() iteratively searches for one approximate local maximum. This is often faster, particularly if you use the " \mid " operator to constrain the search to a relatively small interval that contains exactly one local maximum.

Note: See also fMin() and max().
fMin()

Catalog > 国

$\mathrm{fMin}($ Expr, Var $) \Rightarrow$ Boolean expression
$\mathbf{f M i n}($ Expr, Var,lowBound)
fMin(Expr, Var,lowBound,upBound)
fMin(Expr, Var) |
lowBound \leq Var \leq upBound
Returns a Boolean expression specifying candidate values of Var that minimize Expr or locate its greatest lower bound.

You can use the constraint ("|") operator to restrict the solution interval and/or specify other constraints.

For the Approximate setting of the Auto or Approximate mode, fMin() iteratively searches for one approximate local minimum. This is often faster, particularly if you use the " \mid " operator to constrain the search to a relatively small interval that contains exactly one local minimum.

Note: See also $\mathrm{f} \operatorname{Max}()$ and $\min ()$.

For Var，Low，High［，Step］ Block

EndFor

Executes the statements in Block iteratively for each value of Var，from Low to High，in increments of Step．

Var must not be a system variable．
Step can be positive or negative．The default value is 1 ．

Block can be either a single statement or a series of statements separated with the＂：＂ character．

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

Define $g()=$	Func	Done
	Local tempsum，step,i	
	$0 \rightarrow$ tempsum	
	$1 \rightarrow$ step	
	For $i, 1,100$, step	
	tempsum $+i \rightarrow$ tempsum	
	EndFor	
	EndFunc	
$g()$		5050

format（）

Catalog＞国运
format（Expr［，formatString］）\Rightarrow string
Returns Expr as a character string based on the format template．

Expr must simplify to a number．
formatString is a string and must be in the form：＂F［n］＂，＂S［n］＂，＂E［n］＂，＂G［n］［c］＂， where［ ］indicate optional portions．
$\mathrm{F}[\mathrm{n}]$ ：Fixed format． n is the number of digits to display after the decimal point．
$\mathrm{S}[\mathrm{n}]$ ：Scientific format． n is the number of digits to display after the decimal point．
$\mathrm{E}[\mathrm{n}]$ ：Engineering format． n is the number of digits after the first significant digit．The exponent is adjusted to a multiple of three， and the decimal point is moved to the right by zero，one，or two digits．

format $(1.234567, " \mathrm{f3} ")$	$" 1.235 "$
format $(1.234567, " \mathrm{~s} 2 ")$	$" 1.23 \mathrm{E} 0 "$
format $(1.234567, " \mathrm{e} 3 ")$	$" 1.235 \mathrm{E} 0 "$
format $(1.234567, " \mathrm{~g} 3 ")$	$" 1.235 "$
format $(1234.567, " \mathrm{~g} 3 ")$	$" 1,234.567 "$
format $(1.234567, " \mathrm{~g} 3, \mathrm{r}: ")$	$" 1: 235 "$

$\mathrm{G}[\mathrm{n}][\mathrm{c}]$ ：Same as fixed format but also separates digits to the left of the radix into groups of three．c specifies the group separator character and defaults to a comma．If c is a period，the radix will be shown as a comma．
［Rc］：Any of the above specifiers may be suffixed with the Rc radix flag，where c is a single character that specifies what to substitute for the radix point．

fPart（）	Catalog＞国运	
$\mathrm{fPart}(\text { Expr } 1) \Rightarrow \text { expression }$	fPart（－1．234）	0.234
fPart （Matrixl）\Rightarrow matrix	fPart（\｛1，－2．3，7．003\})	\｛0，－0．3，0．003\}

Returns the fractional part of the argument．
For a list or matrix，returns the fractional parts of the elements．

The argument can be a real or a complex number．

FPdf（）
 Catalog＞国

FPdf（XVal，dfNumer，dfDenom）\Rightarrow number if $X V a l$ is a number，list if $X V a l$ is a list

Computes the F distribution probability at XVal for the specified dfNumer（degrees of freedom）and dfDenom．

freqTable $>$ list（）	Catalog＞国 ${ }_{\text {2 }}$
```freqTable list(List1,freqIntegerList) } list```	$\begin{array}{r} \hline \text { freqTable list }(\{1,2,3,4\},\{1,4,3,1\}) \\ \{1,2,2,2,2,3,3,3,4\} \\ \hline \end{array}$
Returns a list containing the elements from	freqTable $>$ list（ $\{1,2,3,4\},\{1,4,0,1\})$
Listl expanded according to the	\｛1，2，2，2，2，4
frequencies in freqIntegerList．This function can be used for building a frequency table for the Data \＆Statistics application．	
Listl can be any valid list．	

freqIntegerList must have the same dimension as Listl and must contain nonnegative integer elements only. Each element specifies the number of times the corresponding Listl element will be repeated in the result list. A value of zero excludes the corresponding List 1 element.

Note: You can insert this function from the computer keyboard by typing freqTable@>list (...).

Empty (void) elements are ignored. For more information on empty elements, see page 236.

## frequency()

Catalog > 国
frequency(Listl,binsList) $\Rightarrow$ list
Returns a list containing counts of the elements in List1. The counts are based on ranges (bins) that you define in binsList.

If binsList is $\{b(1), b(2), \ldots, b(n)\}$, the specified ranges are $\{? \leq b(1), b(1)<? \leq b$ (2), $\ldots, b(n-1)<? \leq b(n), b(n)>?\}$. The resulting list is one element longer than binsList.

Each element of the result corresponds to the number of elements from Listl that are in the range of that bin. Expressed in terms of the countif() function, the result is $\{$ countlf(list, ? $\leq b(1))$, countlf(list, $b(1)<? \leq b$ (2)), ..., countlf(list, $b(n-1)<? \leq b(n))$, countlf (list, $\mathrm{b}(\mathrm{n})>$ ?) \}.

Elements of Listl that cannot be "placed in a bin" are ignored. Empty (void) elements are also ignored. For more information on empty elements, see page 236.

Within the Lists \& Spreadsheet application, you can use a range of cells in place of both arguments.

Note: See also countlf(), page 35.

datalist: $=\{1,2, e, 3, \pi, 4,5,6$, "hello", 7$\}$
$\{1,2,2.71828,3,3.14159,4,5,6$, "hello", 7$\}$
frequency $($ datalist,$\{2.5,4.5\}) \quad\{2,4,3\}$

Explanation of result:
2 elements from Datalist are $\leq 2.5$
4 elements from Datalist are $>2.5$ and $\leq 4.5$
3 elements from Datalist are $>4.5$
The element "hello" is a string and cannot be placed in any of the defined bins.

FTest_2Samp
FTest_2Samp List1,List2[,Freq1[,Freq2
[,Hypoth]]]
FTest_2Samp List1,List2[,Freq1[,Freq2
[,Hypoth]]]
(Data list input)
FTest_2Samp sx1,n1,sx2,n2[,Hypoth]
FTest_2Samp $s x 1, n 1, s x 2, n 2[, H y p o t h]$
(Summary stats input)
Performs a two-sample F test. A summary of results is stored in the stat.results variable. (See page 176.)

For $\mathrm{H}_{\mathrm{a}}: \sigma 1>\sigma 2$, set Hypoth $>0$
For $H^{a}$ : $\sigma 1 \neq \sigma 2$ (default), set Hypoth $=0$
For $H_{a}^{a}$ : $\sigma 1<\sigma 2$, set Hypoth $<0$
For information on the effect of empty elements in a list, see Empty (Void)
Elements, page 236.

Output variable	Description
stat.F	Calculated F statistic for the data sequence
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.dfNumer	numerator degrees of freedom = n1-1
stat.dfDenom	denominator degrees of freedom = n2-1
stat.sx1, stat.sx2	Sample standard deviations of the data sequences in List 1 and List 2
stat.x1_bar	
stat.x2_bar	Sample means of the data sequences in List 1 and List 2
stat.n1, stat.n2	Size of the samples

Func

## Catalog > 国

## Func

Define a piecewise function:
Block
EndFunc
Template for creating a user-defined
function.

Block can be a single statement，a series of statements separated with the＂：＂ character，or a series of statements on separate lines．The function can use the Return instruction to return a specific result．

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

Define $g(x)=$	Func	Done
	If $x<0$ Then	
	Return $3 \cdot \cos (x)$	
	Else	
	Return $3-x$	
	EndIf	
	EndFunc	

Result of graphing $g(x)$


## G

Catalog＞国
$\operatorname{gcd}(18,33)$
3
Returns the greatest common divisor of the two arguments．The gcd of two fractions is the gcd of their numerators divided by the Icm of their denominators．

In Auto or Approximate mode，the gcd of fractional floating－point numbers is 1．0．
$\operatorname{gcd}($ List 1, List 2$) \Rightarrow$ list
Returns the greatest common divisors of the corresponding elements in Listl and List2．
$\operatorname{gcd}($ Matrix 1, Matrix 2$) \Rightarrow$ matrix
Returns the greatest common divisors of the corresponding elements in Matrixl and Matrix2．
$\operatorname{gcd}(\{12,14,16\},\{9,7,5\}) \quad\{3,7,1\}$
$\operatorname{gcd}\left(\left[\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right],\left[\begin{array}{cc}4 & 8 \\ 12 & 16\end{array}\right]\right) \quad\left[\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right]$
geomCdf（p，lowBound，upBound）$\Rightarrow$ number
if lowBound and upBound are numbers, list
if lowBound and upBound are lists
geomCdf( $p$, upBound $)$ for $\mathrm{P}(1 \leq \mathrm{X} \leq$ upBound $)$
$\Rightarrow$ number if upBound is a number, list if upBound is a list

Computes a cumulative geometric probability from lowBound to upBound with the specified probability of success $p$.

For $\mathrm{P}(\mathrm{X} \leq$ upBound $)$, set lowBound $=1$.

## geomPdf()

Catalog > 国
geomPdf $(p, X V a l) \Rightarrow$ number if $X V a l$ is a number, list if $X V a l$ is a list

Computes a probability at $X V a l$, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success $p$.

## Get

Get [promptString,] var[, statusVar]
Get [promptString,] func(arg1, ...argn) [, statusVar]

Programming command: Retrieves a value from a connected TI-Innovator ${ }^{\text {TM }}$ Hub and assigns the value to variable var.

The value must be requested:

- In advance, through a Send "READ ..." command.
- or -
- By embedding a "READ ..." request as the optional promptString argument. This method lets you use a single command to request the value and retrieve it.

Hub Menu
Example: Request the current value of the hub's built-in light-level sensor. Use Get to retrieve the value and assign it to variable lightval.

Send "READ BRIGHTNESS"	Done
Get lightval	Done
lightval	0.347922

Embed the READ request within the Get command.

Get "READ BRIGHTNESS",lightval	Done
lightval	0.378441

Implicit simplification takes place．For example，a received string of＂123＂is interpreted as a numeric value．To preserve the string，use GetStr instead of Get．

If you include the optional argument statusVar，it is assigned a value based on the success of the operation．A value of zero means that no data was received．

In the second syntax，the func（）argument allows a program to store the received string as a function definition．This syntax operates as if the program executed the command：

Define func（arg1，．．．argn）$=$ received string

The program can then use the defined function func（）．

Note：You can use the Get command within a user－defined program but not within a function．

Note：See also GetStr，page 84 and Send， page 158.
getDenom（）
Catalog＞［⿴囗玉心
getDenom $($ Expr1）$\Rightarrow$ expression
Transforms the argument into an expression having a reduced common denominator，and then returns its denominator．

getDenom $\left(\frac{x+2}{y-3}\right)$	$y-3$
$\operatorname{getDenom}\left(\frac{2}{7}\right)$	7
$\operatorname{getDenom}\left(\frac{1}{x}+\frac{y^{2}+y}{y^{2}}\right)$	$x \cdot y$

getKey（）
getKey（［0｜1］）$\Rightarrow$ returnString
Description：getKey（）－allows a TI－Basic program to get keyboard input－ handheld，desktop and emulator on desktop．

## Example：

Catalog＞国
getKey（）
Example：

- keypressed := getKey() will return a key or an empty string if no key has been pressed. This call will return immediately.
- keypressed := getKey(1) will wait till a key is pressed. This call will pause execution of the program till a key is pressed.



## Handling of key presses:

Handheld Device/Emulator   Key	Desktop	Return Value
Esc	Esc	"esc"
Touchpad - Top click	n/a	"up"
On	n/a	"home"
		"scratchpad"
Scratchapps	n/a	"left"
Touchpad - Left click	n/a	"center"
Touchpad - Center click	n/a	"right"
Touchpad - Right click	n/a	"doc"
Doc	n/a	
		"tab"
Tab	Tab	"down"
Touchpad - Bottom click	Down Arrow	"menu"
Menu	n/a	
		no return
Ctrl	Ctrl	no return
Shift	Shift	"var"
Var	n/a	"del"
Del	n/a	
	n/a	"="
$=$	n-9	"trig"
trig		
0 through 9		


Handheld Device/Emulator Key   Templates	Desktop n/a	Return Value "template"
Catalog	n/a	"cat"
$\wedge$	$\wedge$	"^"
$\mathrm{X}^{\wedge} 2$	n/a	"square"
/ (division key)	/	"/"
* (multiply key)	*	"*"
$e^{\wedge} x$	n/a	"exp"
$10^{\wedge} x$	n/a	"10power"
+	+	"+"
-	-	"-"
1	1	"("
)	)	")"
	.	"."
(-)	n/a	"-" (negate sign)
Enter	Enter	"enter"
ee	n/a	"E" (scientific notation E)
a-z	a-z	```alpha = letter pressed (lower case) ("a" - "z")```
shift a-z	shift a-z	$\begin{aligned} & \text { alpha = letter pressed } \\ & \text { "A" - "Z" } \end{aligned}$
		Note: ctrl-shift works to lock caps
?!	n/a	"?!"
pi	n/a	"pi"
Flag	n/a	no return
,	,	","
Return	n/a	"return"


Handheld Device/Emulator Key   Space	Desktop   Space	Return Value   " " (space)
Inaccessible	Special Character Keys like @,!,^, etc.	The character is returned
n/a	Function Keys	No returned character
n/a	Special desktop control keys	No returned character
Inaccessible	Other desktop keys that are not available on the calculator while getkey() is waiting for a keystroke. (\{, \},;, :, ...)	Same character you get in Notes (not in a math box)

Note: It is important to note that the presence of getKey() in a program changes how certain events are handled by the system. Some of these are described below.
Terminate program and Handle event - Exactly as if the user were to break out of program by pressing the ON key
"Support" below means - System works as expected - program continues to run.

Event	Device	Desktop - TI-Nspire ${ }^{\text {TM }}$   Student Software
Quick Poll	Terminate program, handle event	Same as the handheld (TINspire ${ }^{\text {TM }}$ Student Software, TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ NC Teacher Software-only)
Remote file mgmt   (Incl. sending 'Exit Press 2 Test' file from another handheld or desktophandheld)	Terminate program, handle event	Same as the handheld.   (TI-Nspire ${ }^{\text {TM }}$ Student   Software, TI-Nspire ${ }^{\text {TM }}$   Navigator ${ }^{\text {TM }}$ NC Teacher   Software-only)
End Class	Terminate program, handle event	Support   (TI-Nspire ${ }^{\text {TM }}$ Student   Software, TI-Nspire ${ }^{\text {TM }}$   Navigator ${ }^{\text {TM }}$ NC Teacher   Software-only)
Event	Device	Desktop - TI-Nspire ${ }^{\text {TM }}$ All Versions
TI-Innovator ${ }^{\text {TM }}$ Hub connect/disconnect	Support - Can successfully issue commands to the TIInnovator ${ }^{\text {TM }}$ Hub. After you	Same as the handheld

exit the program the TI－ Innovator ${ }^{\text {TM }}$ Hub is still working with the handheld．

## getLangInfo（）

Catalog＞国
getLangInfo（）$\Rightarrow$ string
Returns a string that corresponds to the short name of the currently active language．You can，for example，use it in a program or function to determine the current language．

English＝＂en＂
Danish＝＂da＂
German＝＂de＂
Finnish＝＂fi＂
French＝＂fr＂
Italian＝＂it＂
Dutch＝＂nl＂
Belgian Dutch＝＂nl＿BE＂
Norwegian＝＂no＂
Portuguese＝＂pt＂
Spanish＝＂es＂
Swedish＝＂sv＂

getLockInfo（）	Catalog＞国运	
getLockInfo（Var）$\Rightarrow$ value	$a:=65$	65
Returns the current locked／unlocked state of variable Var．	Lock $a$	Done
	getLockInfo（ $a$ ）	1
value $=0$ ：Var is unlocked or does not exist．	a：＝75	＂Error：Variable is locked．＂
value $=1$ ：Var is locked and cannot be modified or deleted．	DelVar $a$	＂Error：Variable is locked．＂
	Unlock $a$	Done
See Lock page 106，and unlock page 197.	a：＝75	75
106，	DelVar $a$	Done

getMode(ModeNameInteger) $\Rightarrow$ value
getMode(0) $\Rightarrow$ list
getMode(ModeNameInteger) returns a value representing the current setting of the ModeNameInteger mode.

getMode $(0)$   $\{1,7,2,1,3,1,4,1,5,1,6,1,7,1,8,1\}$	
getMode(1)	7
getMode(8)	1

getMode(0) returns a list containing number pairs. Each pair consists of a mode integer and a setting integer.

For a listing of the modes and their settings, refer to the table below.

If you save the settings with getMode(0) $\rightarrow$ var, you can use setMode(var) in a function or program to temporarily restore the settings within the execution of the function or program only. See setMode(), page 162.

Mode Name	Mode Integer	Setting Integers
Display Digits	1	
Angle	2	1=Radian, 2=Degree, 3=Gradian
Exponential Format	3	1=Normal, 2=Scientific, 3=Engineering
Real or Complex	4	1=Real, 2=Rectangular, 3=Polar
Auto or Approx.	5	1=Auto, 2=Approximate, 3=Exact
Vector Format	6	1=Rectangular, 2=Cylindrical, 3=Spherical
Base	7	1=Decimal, 2=Hex, 3=Binary
Unit system	8	1=SI, 2=Eng/US

getNum（Exprl）$\Rightarrow$ expression
Transforms the argument into an expression having a reduced common denominator，and then returns its numerator．

getNum $\left(\frac{x+2}{y-3}\right)$	$x+2$
getNum $\left(\frac{2}{7}\right)$	2
getNum $\left(\frac{1}{x}+\frac{1}{y}\right)$	$x+y$

## GetStr

GetStr［promptString，］var［，statusVar］
For examples，see Get．
GetStr［promptString，］func（arg1，．．．argn）
［，statusVar］
Programming command：Operates identically to the Get command，except that the retrieved value is always interpreted as a string．By contrast，the Get command interprets the response as an expression unless it is enclosed in quotation marks（＂＂）．

Note：See also Get，page 77 and Send，page 158.

## getType（）

getType（var）$\Rightarrow$ string
Returns a string that indicates the data type of variable var．

If $v a r$ has not been defined，returns the string＂NONE＂．

Catalog＞旡

$\{1,2,3\} \rightarrow$ temp	$\{1,2,3\}$
getType $($ temp $)$	＂LIST＂
$3 \cdot \boldsymbol{i} \rightarrow$ temp	$3 \cdot \boldsymbol{i}$
getType $($ temp $)$	＂EXPR＂
DelVar temp	Done
getType $($ temp $)$	＂NONE＂

getVarinfo() $\Rightarrow$ matrix or string
getVarInfo(LibNameString) $\Rightarrow$ matrix or string
getVarinfo() returns a matrix of information (variable name, type, library accessibility, and locked/unlocked state) for all variables and library objects defined in the current problem.

If no variables are defined, getVarinfo() returns the string "NONE".
getVarinfo(LibNameString)returns a matrix of information for all library objects defined in library LibNameString. LibNameString must be a string (text enclosed in quotation marks) or a string variable.

If the library LibNameString does not exist, an error occurs.

Note the example, in which the result of getVarinfo() is assigned to variable $v s$. Attempting to display row 2 or row 3 of $v s$ returns an "Invalid list or matrix" error because at least one of elements in those rows (variable $b$, for example) revaluates to a matrix.

This error could also occur when using Ans to reevaluate a getVarinfo() result.

The system gives the above error because the current version of the software does not support a generalized matrix structure where an element of a matrix can be either a matrix or a list.

getVarInfo()	"NONE"
Define $x=5$	Done
Lock $x$	Done
Define LibP	Priv $y=\{1,2,3\} \quad$ Done
Define LibP	ub $z(x)=3 \cdot x^{2}-x \quad$ Done
getVarInfo	) $\left[\begin{array}{cccc}x & \text { "NUM" } & \text { "İ" } & 1 \\ y & \text { "LIST" } & \text { "LibPriv " } & 0 \\ z & \text { "FUNC" } & \text { "LibPub " } & 0\end{array}\right]$
getVarInfo(tmp3)   "Error: Argument must be a string"	
$\begin{array}{rllll} \hline \text { getVarInfo("tmp3") } & & & \\ {\left[\begin{array}{llll} \text { volcyl2 } & \text { "NONE" } & \text { "LibPub " } & 0 \end{array}\right]} \\ \hline \end{array}$	


$a:=1$	1
$b:=\left[\begin{array}{ll}1 & 2\end{array}\right]$	$\left[\begin{array}{ll}1 & 2\end{array}\right]$
$c:=\left[\begin{array}{lll}1 & 3 & 7\end{array}\right]$	$\left[\begin{array}{lll}1 & 3 & 7\end{array}\right]$
$v s:=$ getVarInfo()	
$v s[1]$	[1 "NUM" "[.]" 0 ]
$v s[1,1]$	1
$v s[2]$	"Error: Invalid list or matrix"
$v s[2,1]$	$\left[\begin{array}{ll}1 & 2\end{array}\right]$

## Goto labelName

Transfers control to the label labelName．
labelName must be defined in the same function using a Lbl instruction．

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

Define $g()=$	Func	Done
	Local temp,$i$	
	$0 \rightarrow$ temp	
	$1 \rightarrow i$	
	Lbl top	
	temp $+i \rightarrow$ temp	
	If $i<10$ Then	
	$i+1 \rightarrow i$	
	Goto top	
	EndIf	
	Return temp	
	EndFunc	

g（） 55

## Grad

Expr1 1 Grad $\Rightarrow$ expression
Converts Expr1 to gradian angle measure．
In Degree angle mode：
$\overline{(1.5)} \quad \mathrm{Grad} \quad(1.66667)^{9}$

Note：You can insert this operator from the computer keyboard by typing $@>$ Grad．

In Radian angle mode：
$\overline{(1.5)} \operatorname{Grad} \quad(95.493)^{9}$

I

identity（）	Catalog＞［1］	
identity（Integer）$\Rightarrow$ matrix   Returns the identity matrix with a dimension of Integer．	identity ${ }^{(4)}$	$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Integer must be a positive integer．		
If	Catalog＞国运	
If BooleanExpr Statement	Define $g(x)=$ Func   If $x<0$ Then	Done
If BooleanExpr Then Block	Return $x^{2}$ EndIf	
Endlf	EndFunc	
	$g(-2)$	4

If BooleanExpr evaluates to true, executes the single statement Statement or the block of statements Block before continuing execution.

If BooleanExpr evaluates to false, continues execution without executing the statement or block of statements.

Block can be either a single statement or a sequence of statements separated with the ":" character.

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

If BooleanExpr Then Block1
Else
Block2
Endlf
If BooleanExpr evaluates to true, executes Block1 and then skips Block2.

If BooleanExpr evaluates to false, skips
Blockl but executes Block2.
Block1 and Block2 can be a single statement.

If BooleanExprl Then Block1
Elself BooleanExpr 2 Then
Block2
:
Elself BooleanExpr $N$ Then BlockN
Endlf
Allows for branching. If BooleanExpr1 evaluates to true, executes Blockl. If BooleanExprl evaluates to false, evaluates BooleanExpr2, and so on.

Define $g(x)=$	Func	Done
	If $x<0$ Then	
	Return $-x$	
	Else	
	Return $x$	
	EndIf	
	EndFunc	
$g(12)$		12
$g(-12)$		12

Define $g(x)=$ Func
If $x<-5$ Then
Return 5
ElseIf $x>-5$ and $x<0$ Then
Return $-x$
ElseIf $x \geq 0$ and $x \neq 10$ Then
Return $x$
ElseIf $x=10$ Then
Return 3
EndIf
EndFunc
Done

$g(-4)$	4
$g(10)$	3

ifFn(BooleanExpr,Value_If_true [,Value_ If_false [,Value_If_unknown]]) $\Rightarrow$ expression, list, or matrix

Evaluates the boolean expression BooleanExpr (or each element from BooleanExpr ) and produces a result based on the following rules:

- BooleanExpr can test a single value, a list, or a matrix.
- If an element of BooleanExpr evaluates to true, returns the corresponding element from Value_If_true.
- If an element of BooleanExpr evaluates to false, returns the corresponding element from Value_If_false. If you omit Value_If_false, returns undef.
- If an element of BooleanExpr is neither true nor false, returns the corresponding element Value_If_unknown. If you omit Value_If_unknown, returns undef.
- If the second, third, or fourth argument of the ifFn() function is a single expression, the Boolean test is applied to every position in BooleanExpr.

Note: If the simplified BooleanExpr statement involves a list or matrix, all other list or matrix arguments must have the same dimension(s), and the result will have the same dimension(s).
imag()
imag(Expr1) $\Rightarrow$ expression
Returns the imaginary part of the argument.
$\operatorname{ifFn}(\{1,2,3\}<2.5,\{5,6,7\},\{8,9,10\})$
$\{5,6,10\}$

Test value of 1 is less than 2.5 , so its corresponding

Value_If_True element of 5 is copied to the result list.

Test value of $\mathbf{2}$ is less than 2.5 , so its corresponding

Value_If_True element of 6 is copied to the result list.

Test value of $\mathbf{3}$ is not less than 2.5 , so its corresponding Value_If_False element of 10 is copied to the result list.
$\overline{\operatorname{ifFn}(\{1,2,3\}<2.5,4,\{8,9,10\}) \quad\{4,4,10\}}$

Value_If_true is a single value and corresponds to any selected position.
ifFn $(\{1,2,3\}<2.5,\{5,6,7\}) \quad\{5,6$, undef $\}$

Value_If_false is not specified. Undef is used.
ifFn $(\{2, " \mathrm{a} "\}<2.5,\{6,7\},\{9,10\}$, "err" $)$
$\{6, "$ err" $\}$

One element selected from Value_If_true. One element selected from Value_If_ unknown.

Note: All undefined variables are treated as real variables. See also real(), page 146
imag(List 1$) \Rightarrow$ list
$\operatorname{imag}(\{-3,4-i, i\}) \quad\{0,-1,1\}$

Returns a list of the imaginary parts of the elements.
$\operatorname{imag}($ Matrix $l) \Rightarrow$ matrix
Returns a matrix of the imaginary parts of
$\operatorname{imag}\left(\left[\begin{array}{cc}a & b \\ i \cdot c & i \cdot d\end{array}\right]\right\} \quad\left[\begin{array}{ll}0 & 0 \\ c & d\end{array}\right]$ the elements.
impDif()
Catalog > 国
impDif(Equation, Var, dependVar[,Ord])
$\Rightarrow$ expression
$\overline{\operatorname{impDif}\left(x^{2}+y^{2}=100, x, y\right) \quad \frac{-x}{y}}$
where the order Ord defaults to 1.
Computes the implicit derivative for equations in which one variable is defined implicitly in terms of another.

inString()	Catalog > [1]	
```inString(srcString, subString[, Start]) } integer```	inString("Hello there","the ")	7
	inString("ABCEFG","D")	0

Returns the character position in string srcString at which the first occurrence of string subString begins.

Start, if included, specifies the character position within srcString where the search begins. Default = 1 (the first character of srcString).

If srcString does not contain subString or Start is > the length of srcString, returns zero.
$\operatorname{int}($ Expr $) \Rightarrow$ integer
$\operatorname{int}($ List 1$) \Rightarrow$ list
$\left.\left.\begin{array}{lr}\hline \operatorname{int}(-2.5) & -3 . \\ \hline \operatorname{int}([-1.234 & 0\end{array} 0.37\right]\right) \quad\left[\begin{array}{lll}-2 . & 0 & 0 .\end{array}\right]$
int（Matrixl）\Rightarrow matrix
Returns the greatest integer that is less than or equal to the argument．This function is identical to floor（）．

The argument can be a real or a complex number．

For a list or matrix，returns the greatest integer of each of the elements．
intDiv（）
Catalog＞国
intDiv（Numberl，Number 2 ）\Rightarrow integer
$\operatorname{intDiv(List1,List2)~} \Rightarrow$ list
intDiv（Matrix1，Matrix 2 ）\Rightarrow matrix

$\operatorname{intDiv}(-7,2)$	-3
$\operatorname{intDiv}(4,5)$	0
$\operatorname{intDiv}(\{12,-14,-16\},\{5,4,-3\})$	$\{2,-3,5\}$

Returns the signed integer part of （Number $1 \div$ Number 2 ）．

For lists and matrices，returns the signed integer part of（argument $1 \div$ argument 2 ） for each element pair．
interpolate x Value，x List，y List， y PrimeList $) \Rightarrow$ list

This function does the following：

Differential equation：
$y^{\prime}=-3 \cdot y+6 \bullet t+5$ and $y(0)=5$
$r k=$ rk $23(-3 \cdot y+6 \cdot t+5, t \cdot y,\{0,10\}, 5,1)$
$\left[\begin{array}{cccccc}0 . & 1 . & 2 . & 3 . & 4 . & \\ 5 . & 3.19499 & 5.00394 & 6.99957 & 9.00593 & 10\end{array}\right.$

To see the entire result， press $\boldsymbol{\Delta}$ and then use $\boldsymbol{<}$ and to move the cursor．

Given x List，y List $\mathbf{f} \mathbf{f}(x$ List $)$ ，and y PrimeList $=\mathbf{f}$＇（xList）for some unknown function \mathbf{f} ，a cubic interpolant is used to approximate the function \mathbf{f} at x Value．It is assumed that $x L i s t$ is a list of monotonically increasing or decreasing numbers，but this function may return a value even when it is not．This function walks through x List looking for an interval ［ x List $[\mathrm{i}], x$ List $[\mathrm{i}+1]]$ that contains x Value． If it finds such an interval，it returns an interpolated value for $\mathrm{f}(x$ Value $)$ ；otherwise， it returns undef．
x List，y List，and y PrimeList must be of equal dimension ≥ 2 and contain expressions that simplify to numbers．
x Value can be an undefined variable，a number，or a list of numbers．

Use the interpolate（）function to calculate the function values for the xvaluelist：
xvaluelist $:=$ seq $(i, i, 0,10,0.5)$
$\left\{0,0.5,1 ., 1.5,2 ., 2.5,3 ., 3.5,4.4 .5,5.5 .5,6.6 .5,{ }^{\prime}\right.$
x list $:=$ mat list $(r k[1])$
$\{0 ., 1 ., 2 ., 3.4 ., 5 \cdot, 6 ., 7 ., 8 ., 9.10$.
y list $:=$ mat $>$ list $(r k[2])$
\｛5．，3．19499，5．00394，6．99957，9．00593，10．997e
yprimelist：$=-3 \cdot y+6 \cdot t+5 \mid y=y$ list and $t=x$ list
\｛－10．，1．41503，1．98819，2．00129，1．98221，2．006＊
interpolate（xvaluelist，xlist，ylist，yprimelist）
$\left\{5 ., 2.67062,3.19499,4.02782,5.00394,6.0001{ }^{\text {P }}\right.$
inv $\chi^{2}()$
inv χ^{2}（Area，$d f$ ）
invChi2（Area，df）
Computes the Inverse cumulative χ^{2}（chi－ square）probability function specified by degree of freedom，$d f$ for a given Area under the curve．
invF（）
Catalog＞国
invF（Area，dfNumer，dfDenom）
invF（Area，dfNumer，dfDenom）
computes the Inverse cumulative F distribution function specified by $d f$ Numer and $d f$ Denom for a given Area under the curve．

invBinom

（CumulativeProb，NumTrials，Prob， OutputForm）\Rightarrow scalar or matrix

Inverse binomial．Given the number of trials （NumTrials）and the probability of success of each trial（Prob），this function returns the minimum number of successes，k ，such that the value，k ，is greater than or equal to the given cumulative probability （CumulativeProb）．

OutputForm＝0，displays result as a scalar （default）．

OutputForm＝1，displays result as a matrix．

Example：Mary and Kevin are playing a dice game．Mary has to guess the maximum number of times 6 shows up in 30 rolls．If the number 6 shows up that many times or less， Mary wins．Furthermore，the smaller the number that she guesses，the greater her winnings．What is the smallest number Mary can guess if she wants the probability of winning to be greater than 77% ？
$\operatorname{invBinom}\left(0.77,30, \frac{1}{6}\right)$
6
$\operatorname{invBinom}\left(0.77,30, \frac{1}{6}, 1\right) \quad\left[\begin{array}{ll}5 & 0.616447 \\ 6 & 0.776537\end{array}\right]$

invBinomN（）

invBinomN（CumulativeProb，Prob， NumSuccess，OutputForm）\Rightarrow scalar or matrix

Inverse binomial with respect to N．Given the probability of success of each trial （Prob），and the number of successes （NumSuccess），this function returns the minimum number of trials，N ，such that the value，N ，is less than or equal to the given cumulative probability（CumulativeProb）．

OutputForm＝0，displays result as a scalar （default）．

OutputForm＝1，displays result as a matrix．

invNorm（）

Catalog＞国合
invNorm（Area［，$\mu[, \sigma]])$
Computes the inverse cumulative normal distribution function for a given Area under the normal distribution curve specified by μ and σ ．

Example：Monique is practicing goal shots for netball．She knows from experience that her chance of making any one shot is 70% ． She plans to practice until she scores 50 goals．How many shots must she attempt to ensure that the probability of making at least 50 goals is more than 0.99 ？

```
invBinomN(0.01,0.7,49)
invBinomN(0.01,0.7,49,1)
```

$\operatorname{invBinomN}(0.01,0.7,49)$	86
$\operatorname{invBinomN}(0.01,0.7,49,1)$	
	$\left[\begin{array}{cc\|}85 & 0.010451 \\ 86 & 0.00709\end{array}\right]$

Catalog＞国远

Computes the inverse cumulative student－t probability function specified by degree of freedom，$d f$ for a given Area under the curve．

iPart（）	Catalog＞［⿴囗玉运	
iPart（Number）\Rightarrow integer	iPart（ -1.234 ）	1.
iPart $($ List 1$) \Rightarrow$ list iPart（Matrix $) \Rightarrow$ matrix	iPart $\left\{\left\{\frac{3}{2},-2.3,7.003\right\}\right\}$	\｛1，－2．，7．\}

Returns the integer part of the argument．
For lists and matrices，returns the integer part of each element．

The argument can be a real or a complex number．
irr（）
irr（CF0，CFList［，CFFreq］）\Rightarrow value
Financial function that calculates internal rate of return of an investment．
$C F 0$ is the initial cash flow at time 0 ；it must be a real number．

CFList is a list of cash flow amounts after the initial cash flow CFO．

CFFreq is an optional list in which each element specifies the frequency of occurrence for a grouped（consecutive）cash flow amount，which is the corresponding element of CFList．The default is 1 ；if you enter values，they must be positive integers $<10,000$ ．

Note：See also mirr（），page 115.

Catalog＞国正
isPrime（Number）\Rightarrow Boolean constant expression

Catalog＞国至
list $:=\{6000,-8000,2000,-3000\}$

	$\{6000,-8000,2000,-3000\}$
list $2:=\{2,2,2,1\}$	$\{2,2,2,1\}$
irr（ $(5000$, list 1, list 2$)$	-4.64484

isPrime（）	Catalog＞［1］	
isPrime（Number）\Rightarrow Boolean constant	isPrime（5）	true
expression	isPrime（6）	false

Returns true or false to indicate if number is a whole number ≥ 2 that is evenly divisible only by itself and 1.

If Number exceeds about 306 digits and has no factors ≤ 1021, isPrime(Number) displays an error message.

If you merely want to determine if Number is prime, use isPrime() instead of factor(). It is much faster, particularly if Number is not prime and has a second-largest factor that exceeds about five digits.

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

Function to find the next prime after a specified number:

Define nextprim $(n)=$	Func	Done
	Loop	
	$n+1 \rightarrow n$	
	If isPrime (n)	
	Return n	
	EndLoop	
	EndFunc	
nextprim(7)		11

isVoid()	Catalog > 国]	
isVoid(Var) \Rightarrow Boolean constant	$\underline{a}={ }^{\text {_ }}$	-
isVoid $($ Expr $) \Rightarrow$ Boolean constant	isVoid(a)	true
expression	isVoid $(\{1, \ldots 3\})$	\{false,true,false \}

Lbl labelName

Defines a label with the name labelName within a function.

You can use a Goto labelName instruction to transfer control to the instruction immediately following the label.
labelName must meet the same naming requirements as a variable name.

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.
lcm()
Icm(Number 1, Number 2) \Rightarrow expression
$\operatorname{lcm}($ List 1, List 2$) \Rightarrow$ list
Icm (Matrix 1, Matrix2) \Rightarrow matrix
Returns the least common multiple of the two arguments. The Icm of two fractions is the Icm of their numerators divided by the gcd of their denominators. The Icm of fractional floating-point numbers is their product.

For two lists or matrices, returns the least common multiples of the corresponding elements.

Define $g()=$	Func	Done
	Local temp,i	
	$0 \rightarrow$ temp	
	$1 \rightarrow i$	
	Lbl top	
	temp $+i \rightarrow$ temp	
	If $i<10$ Then	
	$i+1 \rightarrow i$	
	Goto top	
	EndIf	
	Return temp	
	EndFunc	
$g()$		

$\operatorname{lcm}(6,9)$
$\operatorname{lcm}\left(\left\{\frac{1}{3},-14,16\right\},\left\{\frac{2}{15}, 7,5\right\}\right\}$$\quad\left\{\frac{2}{3}, 14,80\right\}$
left()
Catalog > 国
leff("Hello",2) "He"
Returns the leftmost Num characters contained in character string sourceString.

If you omit Num, returns all of sourceString.
$\operatorname{left}($ List $1[, N u m]) \Rightarrow$ list
leff $(\{1,3,-2,4\}, 3\} \quad\{1,3,-2\}$

Returns the leftmost Num elements contained in Listl．

If you omit Num，returns all of List1．
left（Comparison）\Rightarrow expression
$\overline{\operatorname{left}(x<3)} x$
Returns the left－hand side of an equation or inequality．

libShortcut（）

libShortcut（LibNameString，
ShortcutNameString
［，LibPrivFlag］）\Rightarrow list of variables
Creates a variable group in the current problem that contains references to all the objects in the specified library document libNameString．Also adds the group members to the Variables menu．You can then refer to each object using its ShortcutNameString．

Set LibPrivFlag＝0 to exclude private library objects（default）
Set LibPrivFlag＝1 to include private library objects

To copy a variable group，see CopyVar on page 29.
To delete a variable group，see DelVar on page 48.

Catalog＞国
This example assumes a properly stored and refreshed library document named linalg2 that contains objects defined as clearmat， gauss1，and gauss2．

getVarInfo（＂linalg2＂）
$\left[\begin{array}{ccc}\text { clearmat } & \text {＂FUNC＂} & \text {＂LibPub＂} \\ \text { gauss1 } & \text {＂PRGM＂} & \text {＂LibPriv＂} \\ \text { gauss2 } & \text {＂FUNC＂} & \text {＂LibPub＂}\end{array}\right]$
libShortcut（＂linalg2＂，＂la＂）
\｛la．clearmat，la．gauss2\}
libShortcut（＂linalg2＂，＂la＂，1）
$\{$ la．clearmat，la．gauss1，la．gauss2 \}

limit（）or $\lim ()$
$\operatorname{limit}($ Expr 1，Var，Point $[$ ，Direction $]) \Rightarrow$ expression
$\operatorname{limit}($ List 1, Var，Point［，Direction］）\Rightarrow
list
limit（Matrix 1，Var，Point［，Direction］）\Rightarrow matrix

Returns the limit requested．
Note：See also Limit template，page 6.
Direction：negative＝from left， positive＝from right，otherwise＝both．（If omitted，Direction defaults to both．）

Catalog＞国

$\lim _{x \rightarrow 5}(2 \cdot x+3)$	13
$\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)$	∞
$\lim _{x \rightarrow 0}\left(\frac{\sin (x)}{x}\right)$	1
$\lim _{h \rightarrow 0}\left(\frac{\sin (x+h)-\sin (x)}{h}\right)$	$\cos (x)$
$\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{n}\right)$	e

Limits at positive ∞ and at negative ∞ are always converted to one－sided limits from the finite side．

Depending on the circumstances，limit（） returns itself or undef when it cannot determine a unique limit．This does not necessarily mean that a unique limit does not exist．undef means that the result is either an unknown number with finite or infinite magnitude，or it is the entire set of such numbers．
limit（）uses methods such as L＇Hopital＇s rule，so there are unique limits that it cannot determine．If Exprl contains undefined variables other than Var，you might have to constrain them to obtain a more concise result．

Limits can be very sensitive to rounding error．When possible，avoid the Approximate setting of the Auto or Approximate mode and approximate numbers when computing limits． Otherwise，limits that should be zero or have infinite magnitude probably will not， and limits that should have finite non－zero magnitude might not．

LinRegBx

Catalog＞酋要
LinRegBx X，Y［，［Freq］［，Category，Include］］
Computes the linear regression $\mathrm{y}=\mathrm{a}+\mathrm{b} \cdot \mathrm{x}$ on lists X and Y with frequency Freq．A summary of results is stored in the stat．results variable．（See page 176．）

All the lists must have equal dimension except for Include．
X and Y are lists of independent and dependent variables．

Freq is an optional list of frequency values.
Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat. RegEqn	Regression Equation: a+b•x
stat.a, stat.b	Regression coefficients
stat.r ${ }^{2}$	Coefficient of determination
stat.r	Correlation coefficient
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

LinRegMx

LinRegMx $X, Y[,[$ Freq $][$,Category,Include $]]$
Computes the linear regression $\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{b}$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 176.)

All the lists must have equal dimension except for Include.
X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.

Output variable	Description
stat. RegEqn	Regression Equation: $\mathrm{y}=\mathrm{m} \bullet \mathrm{x}+\mathrm{b}$
stat. m, stat.b	Regression coefficients
stat. r^{2}	Coefficient of determination
stat.r	Correlation coefficient
stat. Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

LinRegtIntervals

LinRegtintervals $X, Y[, F[, 0[, C L e v]]]$
For Slope. Computes a level C confidence interval for the slope.

LinRegtIntervals $X, Y[, F[, 1, X$ val $[, C L e v]]]$

For Response. Computes a predicted y-value, a level C prediction interval for a single observation, and a level C confidence interval for the mean response.

A summary of results is stored in the stat.results variable. (See page 176.)

All the lists must have equal dimension.
X and Y are lists of independent and dependent variables.
F is an optional list of frequency values. Each element in F specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat. RegEqn	Regression Equation: $a+b \bullet x$
stat.a, stat.b	Regression coefficients
stat.df	Degrees of freedom
stat. r^{2}	Coefficient of determination
stat.r	Correlation coefficient
stat.Resid	Residuals from the regression

For Slope type only

Output variable	Description
[stat.CLower, stat.CUpper]	Confidence interval for the slope
stat.ME	Confidence interval margin of error
stat.SESlope	Standard error of slope
stat.s	Standard error about the line

For Response type only

Output variable	Description
[stat.CLower, stat.CUpper]	Confidence interval for the mean response

Output variable	Description
stat.ME	Confidence interval margin of error
stat.SE	Standard error of mean response
[stat.LowerPred, stat.UpperPred]	Prediction interval for a single observation
stat.MEPred	Prediction interval margin of error
stat.SEPred	Standard error for prediction
stat. $\hat{\mathbf{y}}$	$\mathrm{a}+\mathrm{b} \cdot \mathrm{XVal}$

LinRegtTest

Catalog > 运

LinRegtTest $X, Y[$, Freq[,Hypoth $]$]

Computes a linear regression on the X and Y lists and a t test on the value of slope β and the correlation coefficient ρ for the equation $y=\alpha+\beta \mathrm{x}$. It tests the null hypothesis $\mathrm{H}_{0}: \beta=0$ (equivalently, $\rho=0$) against one of three alternative hypotheses.

All the lists must have equal dimension.
X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Hypoth is an optional value specifying one of three alternative hypotheses against which the null hypothesis ($H_{0}: \beta=\rho=0$) will be tested.

For $H_{a}: \beta \neq 0$ and $\rho \neq 0$ (default), set Hypoth=0
For $H^{a}: \beta<0$ and $\rho<0$, set Hypoth <0
For $H_{a}^{a}: \beta>0$ and $\rho>0$, set Hypoth>0
A summary of results is stored in the stat.results variable. (See page 176.)

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.

Output variable	Description
stat. RegEqn	Regression equation: $\mathrm{a}+\mathrm{b} \bullet \mathrm{x}$
stat.t	t-Statistic for significance test
stat. PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom
stat.a, stat.b	Regression coefficients
stat.s	Standard error about the line
stat. SESlope	Standard error of slope
stat. ${ }^{2}$	Coefficient of determination
stat.r	Correlation coefficient
stat.Resid	Residuals from the regression

linSolve()
linSolve(SystemOfLinearEqns, Var1, Var2, ...) \Rightarrow list
linSolve(LinearEqn1 and LinearEqn2 and ..., Var1, Var2, ...) \Rightarrow list
linSolve(\{LinearEqn1, LinearEqn2, ...\}, Var1, Var2, ...) \Rightarrow list
linSolve(SystemOfLinearEqns, \{Varl, Var2, ...\}) \Rightarrow list
linSolve(LinearEqn1 and LinearEqn2 and ..., $\{$ Var 1, Var2, ...\}) \Rightarrow list
linSolve(\{LinearEqn1, LinearEgn2, ...\}, \{Var1, Var2, ...\}) \Rightarrow list

Returns a list of solutions for the variables Var1, Var2, ...

The first argument must evaluate to a system of linear equations or a single linear equation. Otherwise, an argument error occurs.

For example, evaluating linSolve ($x=1$ and $\mathbf{x}=2, \mathbf{x}$) produces an "Argument Error" result.

Catalog > 国
linSolve $\left\{\begin{array}{l}\left\{\begin{array}{l}2 \cdot x+4 \cdot y=3 \\ 5 \cdot x-3 \cdot y=7\end{array},\{x, y\}\right.\end{array}\right) \quad\left\{\frac{37}{26}, \frac{1}{26}\right\}$
linSolve $\left\{\begin{array}{l}\left\{\begin{array}{l}2 \cdot x=3 \\ 5 \cdot x-3 \cdot y=7\end{array},\{x, y\}\right\}\end{array} \quad\left\{\frac{3}{2}, \frac{1}{6}\right\}\right.$
linSolve $\left(\left\{\begin{array}{l}\text { apple }+4 \cdot \text { pear }=23 \\ 5 \cdot \text { apple-pear }=17\end{array},\{\right.\right.$ apple,pear $\left.\}\right\}$ $\left\{\frac{13}{3}, \frac{14}{3}\right\}$
linSolve $\left\{\left\{\begin{array}{l}\text { apple } \cdot 4+\frac{\text { pear }}{3}=14 \\ - \text { apple }+ \text { pear }=6\end{array},\{\right.\right.$ apple,pear $\left.\}\right\}$
$\left\{\frac{36}{13}, \frac{114}{13}\right\}$

Note: You can insert this function from the keyboard by typing deltaList(...).

Returns a list containing the differences between consecutive elements in Listl. Each element of Listl is subtracted from the next element of Listl. The resulting list is always one element shorter than the original Listl.

list > mat()	Catalog > [-2]	
$\text { list }>\text { mat }(\text { List }[, \text { elementsPerRow] }) \Rightarrow$matrix	list $\boldsymbol{m a t}(\{1,2,3\}\}$	$\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
	list mat $(\{1,2,3,4,5\}, 2\}$	$\begin{array}{ll}1 & 2\end{array}$
Returns a matrix filled row-by-row with the elements from List.		$\left[\begin{array}{ll}3 & 4 \\ 5 & 0\end{array}\right]$

elementsPerRow, if included, specifies the number of elements per row. Default is the number of elements in List (one row).

If List does not fill the resulting matrix, zeros are added.

Note: You can insert this function from the computer keyboard by typing list@>mat (...) .

Causes the input Expr to be converted to an expression containing only natural logs (In).

Note: You can insert this operator from the computer keyboard by typing @>1n.
Expr $\mathbf{I n} \Rightarrow$ expression

\[

\]

$\ln ()$		ctri e^{x} keys
$\ln ($ Expr $)$) \Rightarrow expression	$\ln (2$.	0.693147

$\ln ($ List 1$) \Rightarrow$ list

Returns the natural logarithm of the argument.

For a list, returns the natural logarithms of the elements.
In (squareMatrix 1$) \Rightarrow$ squareMatrix
Returns the matrix natural logarithm of squareMatrixl. This is not the same as calculating the natural logarithm of each element. For information about the calculation method, refer to $\cos ()$ on.
squareMatrix 1 must be diagonalizable. The result always contains floating-point numbers.
$\ln (\{-3,1.2,5\})$
"Error: Non-real calculation"

If complex format mode is Rectangular:
$\underline{\ln (\{-3,1.2,5\}) \quad\{\ln (3)+\pi \cdot i, 0.182322, \ln (5)\}}$
In Radian angle mode and Rectangular complex format:
$\ln \left[\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right\}$
$\left[\begin{array}{cc}1.83145+1.73485 \cdot \boldsymbol{i} & 0.009193-1.49086 \\ 0.448761-0.725533 \cdot \boldsymbol{i} & 1.06491+0.623491^{\prime} \\ -0.266891-2.08316 \cdot \boldsymbol{i} & 1.12436+1.79018 \cdot \\ \hline\end{array}\right.$

To see the entire result, press $\boldsymbol{\Delta}$ and then use $\boldsymbol{<}$ and to move the cursor.

LnReg

LnReg X, Y[, [Freq] [, Category, Include]]
Computes the logarithmic regression $\mathrm{y}=$ $\mathrm{a}+\mathrm{b} \cdot \ln (\mathrm{x})$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 176.)

All the lists must have equal dimension except for Include.
X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.

Output variable	Description
stat.RegEqn	Regression equation: $a+b \cdot \ln (\mathrm{x})$
stat.a, stat.b	Regression coefficients
stat. r^{2}	Coefficient of linear determination for transformed data
stat.r	Correlation coefficient for transformed data (In(x), y)
stat. Resid	Residuals associated with the logarithmic model
stat. ResidTrans	Residuals associated with linear fit of transformed data
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat. YReg

Local

Local Varl[, Var2] [, Var3] ...
Declares the specified vars as local variables. Those variables exist only during evaluation of a function and are deleted when the function finishes execution.

Note: Local variables save memory because they only exist temporarily. Also, they do not disturb any existing global variable values. Local variables must be used for For loops and for temporarily saving values in a multi-line function since modifications on global variables are not allowed in a function.

Catalog > 国

Note for entering the example: For

instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

Lock

LockVar1[, Var2] [, Var3] ...
LockVar.
Locks the specified variables or variable group. Locked variables cannot be modified or deleted.

You cannot lock or unlock the system variable Ans, and you cannot lock the system variable groups stat. or tvm.

Note: The Lock command clears the Undo/Redo history when applied to unlocked variables.

See unLock, page 197, and getLockInfo(), page 82.

$\log ()$		ctri $10 \times$ keys
$\log ($ Expr $1[, E x p r 2]) \Rightarrow$ expression	$\log _{10}(2 .)$	0.30103
$\log ($ List $1[, E x p r 2]) \Rightarrow$ list	$\log _{4}(2 .)$	0.5
Returns the base-Expr2 logarithm of the	$\log _{3}(10)-\log _{3}(5)$	$\log _{3}(2)$

Note: See also Log template, page 2.
For a list, returns the base-Expr 2 logarithm of the elements.

If the second argument is omitted, 10 is used as the base.

Catalog > 国

$a:=65$	65
Lock a	Done
getLockInfo (a)	1
$a:=75$	"Error: Variable is locked."
DelVar a	"Error: Variable is locked."
Unlock a	Done
$a:=75$	75
DelVar a	Done

If complex format mode is Real:
$\log _{10}(\{-3,1.2,5\}) \quad$ Error: Non - real result

If complex format mode is Rectangular:

$\log ($ squareMatrix $1[, E x p r]) \Rightarrow$ squareMatrix

Returns the matrix base－Expr logarithm of squareMatrixl．This is not the same as calculating the base－Expr logarithm of each element．For information about the calculation method，refer to $\cos ()$ ．
squareMatrix 1 must be diagonalizable．The result always contains floating－point numbers．

If the base argument is omitted， 10 is used as base．

In Radian angle mode and Rectangular complex format：

$$
\begin{aligned}
& \log _{10}\left[\left[\begin{array}{lll}
1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1
\end{array}\right]\right) \\
& {\left[\begin{array}{cl}
0.795387+0.753438 \cdot \boldsymbol{i} & 0.003993-0.6474: \\
0.194895-0.315095 \cdot \boldsymbol{i} & 0.462485+0.2707 \cdot \boldsymbol{r} \\
-0.115909-0.904706 \cdot \boldsymbol{i} & 0.488304+0.7774 \boldsymbol{t} \\
\hline
\end{array}\right.}
\end{aligned}
$$

To see the entire result，
press $\boldsymbol{\Delta}$ and then use $\boldsymbol{4}$ and to move the cursor．

logbase

Catalog＞［⿴囗玉心
Expr logbase（Exprl）\Rightarrow expression
Causes the input Expression to be simplified to an expression using base Exprl．

Note：You can insert this operator from the computer keyboard by typing＠＞logbase （．．．）．

Logistic

Catalog＞国
Logistic $X, Y[,[$ Freq $][$, Category，Include $]]$
Computes the logistic regression $\mathrm{y}=(\mathrm{c} /$ $\left(1+a \cdot e^{-b x}\right)$ ）on lists X and Y with frequency Freq．A summary of results is stored in the stat．results variable．（See page 176．）

All the lists must have equal dimension except for Include．
X and Y are lists of independent and dependent variables．

Freq is an optional list of frequency values． Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point．The default value is 1 ．All elements must be integers ≥ 0 ．

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.

Output variable	Description
stat.RegEqn	Regression equation: c/(1+a•e-bx $)$
stat.a, stat.b, stat.c	Regression coefficients
stat. Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

LogisticD

Catalog > 国
LogisticD X, Y [, [Iterations] , [Freq] [, Category, Include]]

Computes the logistic regression $\mathrm{y}=$ (c) $\left.\left(1+a \cdot e^{-b x}\right)+\mathrm{d}\right)$ on lists X and Y with frequency
Freq, using a specified number of Iterations. A summary of results is stored in the stat.results variable. (See page 176.)

All the lists must have equal dimension except for Include.
X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the
frequency of occurrence for each
corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat.RegEqn	Regression equation: $\left.\mathrm{c} /\left(1+\mathrm{a} \bullet \mathrm{e}^{-\mathrm{bx}}\right)+\mathrm{d}\right)$
stat.a, stat.b, stat.c, stat.d	Regression coefficients
stat. Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat. YReg

Loop

Block
EndLoop
Repeatedly executes the statements in Block. Note that the loop will be executed endlessly, unless a Goto or Exit instruction is executed within Block.

Block is a sequence of statements separated with the ":" character.

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

LU

Catalog > 国
LU Matrix, lMatrix, uMatrix, pMatrix [,Tol]

Calculates the Doolittle LU (lower-upper) decomposition of a real or complex matrix. The lower triangular matrix is stored in lMatrix, the upper triangular matrix in uMatrix, and the permutation matrix (which describes the row swaps done during the calculation) in pMatrix.
l Matrix \bullet uatrix $=p$ Matrix \bullet matrix
Optionally, any matrix element is treated as zero if its absolute value is less than Tol. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, Tol is ignored.

- If you use ctrr| enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.
- If Tol is omitted or not used, the default tolerance is calculated as:
 (Matrix)

```
    Define rollcount()=Func
    Local i
    1->i
    Loop
    If randInt(1,6)=\operatorname{randInt(1,6)}
    Goto end
    i+1->i
    EndLoop
    Lbl end
    Return i
    EndFunc
Define rollcount ()\(=\) Func
Local \(i\)
\(1 \rightarrow i\)
Loop
If randInt \((1,6)=\) randInt \((1,6)\)
Goto end
\(i+1 \rightarrow i\)
EndLoop
Lbl end
Return \(i\)
EndFunc
```

Done
rollcount () 16
rollcount () 3

	Done
rollcount ()	16
rollcount $)$	3

 3

The LU factorization algorithm uses partial pivoting with row interchanges.

$\left[\begin{array}{cc}m & n \\ o & p\end{array}\right] \rightarrow m 1$	$\left[\begin{array}{cc}m & n \\ o & p\end{array}\right]$
LU m1,lower,upper,perm	$\left.\begin{array}{cc}1 & 0 \\ \frac{m}{o} & 1 \\ o\end{array}\right]$
upper	$\left[\begin{array}{cc}o & p \\ 0 & n-\frac{m \cdot p}{o}\end{array}\right]$
perm	$\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]$

M

mat list()	Catalog > 国	
mat $>$ list(Matrix) \Rightarrow list	mat list $\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)$	\{1,2,3\}
Returns a list filled with the elements in Matrix. The elements are copied from	$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] \rightarrow m 1$	$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$
Matrix row by row.	mat list ($m 1$)	\{1,2,3,4,5,6\}

Note: You can insert this function from the computer keyboard by typing mat@>list (...) .

$\max ()$	Catalog > [1]	
$\boldsymbol{\operatorname { m a x }}($ Expr 1, Expr 2$) \Rightarrow$ expression	max(2.3,1.4)	2.3
(List1, List 2) \Rightarrow list	$\max (\{1,2\},\{-4,3\})$	\{1,3\}

$\max ($ Matrix1, Matrix2) \Rightarrow matrix
Returns the maximum of the two arguments. If the arguments are two lists or matrices, returns a list or matrix containing the maximum value of each pair of corresponding elements.
$\boldsymbol{\operatorname { m a x }}($ List $) \Rightarrow$ expression

$\max (\{0,1,-7,1.3,0.5\})$	1.3

Returns the maximum element in list.
$\max ($ Matrix 1$) \Rightarrow$ matrix
Returns a row vector containing the

| $\max \left(\left[\begin{array}{ccc}1 & -3 & 7 \\ -4 & 0 & 0.3\end{array}\right]\right) \quad\left[\begin{array}{lll}1 & 0 & 7\end{array}\right]$ |
| :--- | maximum element of each column in Matrixl.

Empty（void）elements are ignored．For more information on empty elements，see page 236.

Note：See also $\mathrm{f} \operatorname{Max}()$ and $\min ()$ ．
mean（）
Catalog＞［⿴囗玉心］
mean（List $[$ ，freqList $]) \Rightarrow$ expression
Returns the mean of the elements in List．
Each freqList element counts the number of consecutive occurrences of the corresponding element in List．
mean（Matrix $1[$ ，freqMatrix］$) \Rightarrow$ matrix
Returns a row vector of the means of all the columns in Matrix 1 ．

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrix 1 ．

Empty（void）elements are ignored．For more information on empty elements，see page 236.

$\operatorname{mean}(\{0.2,0,1,-0.3,0.4\})$	0.26
$\operatorname{mean}(\{1,2,3\},\{3,2,1\})$	$\frac{5}{3}$

In Rectangular vector format：

mean $\left[\begin{array}{ll}0.2 & 0 \\ -1 & 3 \\ 0.4 & -0.5\end{array}\right]$
mean $\left[\begin{array}{ll}\frac{1}{5} & 0 \\ 5 & 3 \\ -1 & 3 \\ \frac{2}{5} & \frac{-1}{2}\end{array}\right]$
mean $\left.\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right],\left[\begin{array}{ll}5 & 3 \\ 4 & 1 \\ 6 & 2\end{array}\right]\right)$

median（）
median（List［，freqList］）\Rightarrow expression
Returns the median of the elements in List．
Each freqList element counts the number of consecutive occurrences of the corresponding element in List．
median（Matrix $1[$, freqMatrix］$) \Rightarrow$ matrix
Returns a row vector containing the medians of the columns in Matrix 1 ．

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrixl．

Notes：

－All entries in the list or matrix must simplify to numbers．
－Empty（void）elements in the list or matrix are ignored．For more information on empty elements，see page 236.

MedMed

Catalog＞［⿴囗玉心
MedMed X, Y［，Freq］［，Category，Include］］
Computes the median－median line $\mathrm{y}=$ （ $m \cdot x+\mathrm{b}$ ）on lists X and Y with frequency Freq．A summary of results is stored in the stat．results variable．（See page 176．）

All the lists must have equal dimension except for Include．
X and Y are lists of independent and dependent variables．

Freq is an optional list of frequency values．
Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point．The default value is 1 ．All elements must be integers ≥ 0 ．

Category is a list of category codes for the corresponding X and Y data．

Include is a list of one or more of the category codes．Only those data items whose category code is included in this list are included in the calculation．

For information on the effect of empty elements in a list，see＂Empty（Void）
Elements，＂page 236.

Output variable	Description
stat．RegEqn	Median－median line equation：$m \bullet x+b$
stat．m， stat．b	Model coefficients

Output variable	Description
stat. Resid	Residuals from the median-median line
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

mid()

mid(sourceString, Start[, Count]) \Rightarrow string

Returns Count characters from character string sourceString, beginning with character number Start.

If Count is omitted or is greater than the dimension of sourceString, returns all characters from sourceString, beginning with character number Start.

Count must be ≥ 0. If Count $=0$, returns an empty string.

$$
\operatorname{mid}(\text { sourceList }, \text { Start }[, \text { Count }]) \Rightarrow \text { list }
$$

Returns Count elements from sourceList, beginning with element number Start.

If Count is omitted or is greater than the dimension of sourceList, returns all elements from sourceList, beginning with element number Start.

Count must be ≥ 0. If Count $=0$, returns an empty list.

$$
\text { mid(sourceStringList, Start }[, \text { Count }]) \Rightarrow
$$ list

Returns Count strings from the list of strings sourceStringList, beginning with element number Start.

Catalog >

mid("Hello there",2)	"ello there"
mid("Hello there",7,3)	"the"
mid("Hello there",1,5)	"Hello"
mid("Hello there",1,0)	" ${ }^{-1}$

$\operatorname{mid}(\{9,8,7,6\}, 3)$	$\{7,6\}$
$\operatorname{mid}(\{9,8,7,6\}, 2,2\}$	$\{8,7\}$
$\operatorname{mid}(\{9,8,7,6\}, 1,2\}$	$\{9,8\}$
$\operatorname{mid}(\{9,8,7,6\}, 1,0\}$	$\{\square\}$

$\min ($ Expr 1, Expr 2$) \Rightarrow$ expression
$\min ($ List 1, List 2$) \Rightarrow$ list
$\min ($ Matrix 1, Matrix2) \Rightarrow matrix
Returns the minimum of the two arguments. If the arguments are two lists or matrices, returns a list or matrix containing the minimum value of each pair of corresponding elements.

$$
\min (\text { List }) \Rightarrow \text { expression }
$$

Returns the minimum element of List.
$\min ($ Matrix 1$) \Rightarrow$ matrix
Returns a row vector containing the

$\min (2.3,1.4)$	1.4
$\min (\{1,2\},\{-4,3\})$	$\{-4,2\}$

Note: See also fMin() and $\max ()$.
financeRate is the interest rate that you pay on the cash flow amounts.
reinvestRate is the interest rate at which the cash flows are reinvested.

CF0 is the initial cash flow at time 0 ; it must be a real number.

CFList is a list of cash flow amounts after the initial cash flow CFO.

CFFreq is an optional list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding
element of CFList. The default is 1 ; if you flow amount, which is the corresponding enter values, they must be positive integers < 10,000.

$\min (\{0,1,-7,1.3,0.5\})$	-7

$\left.\min \left[\begin{array}{ccc}1 & -3 & 7 \\ -4 & 0 & 0.3\end{array}\right]\right) \quad\left[\begin{array}{lll}-4 & -3 & 0.3\end{array}\right]$

mirr()
mirr
(financeRate,reinvestRate,CF0,CFList
[,CFFreq])

Financial function that returns the modified internal rate of return of an investment.
mirr()
mirr
(financeRate,reinvestRate,CF0,CFList [,CFFreq])

Note：See also irr（），page 93.
$\bmod ()$
Catalog＞国
$\bmod ($ Expr1，Expr2）\Rightarrow expression
$\bmod ($ List1，List2）\Rightarrow list
$\bmod ($ Matrix 1, Matrix 2 ）\Rightarrow matrix
Returns the first argument modulo the second argument as defined by the identities：
$\bmod (x, 0)=x$
$\bmod (x, y)=x-y$ floor (x / y)
When the second argument is non－zero，the result is periodic in that argument．The result is either zero or has the same sign as the second argument．

If the arguments are two lists or two matrices，returns a list or matrix containing the modulo of each pair of corresponding elements．

Note：See also remain（），page 149

mRow（）

Catalog＞国
mRow（Expr，Matrix1，Index）\Rightarrow matrix
Returns a copy of Matrixl with each element in row Index of Matrix 1 multiplied

$\bmod (7,0)$	7
$\bmod (7,3)$	1
$\bmod (-7,3)$	$\mathbf{2}$
$\bmod (7,-3)$	$-\mathbf{2}$
$\bmod (-7,-3)$	-1
$\bmod (\{12,-14,16\},\{9,7,-5\})$	$\{3,0,-4\}$

MultReg $Y, X 1[, X 2[, X 3, \ldots[, X 10]]]$
Calculates multiple linear regression of list Y
on lists $X 1, X 2, \ldots, X 10$. A summary of results is stored in the stat.results variable.
(See page 176.)
All the lists must have equal dimension.
For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat. RegEqn	Regression Equation: $\mathrm{b} 0+\mathrm{b} 1 \cdot \times 1+\mathrm{b} 2 \cdot \times 2+\ldots$
stat.b0, stat.b1, \ldots	Regression coefficients
stat. R^{2}	Coefficient of multiple determination
stat. $\hat{\mathrm{y}}$ List	$\hat{\mathrm{y}}$ List $=\mathrm{b} 0+\mathrm{b} 1 \bullet \times 1+\ldots$
stat. Resid	Residuals from the regression

MultRegintervals

MultRegIntervals $Y, X 1[, X 2[, X 3, \ldots[$,
X10]]], XValList[, CLevel]
Computes a predicted y-value, a level C prediction interval for a single observation, and a level C confidence interval for the mean response.

A summary of results is stored in the stat.results variable. (See page 176.)

All the lists must have equal dimension.
For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat.RegEqn	Regression Equation: $\mathrm{b} 0+\mathrm{b} 1 \bullet \times 1+\mathrm{b} 2 \bullet \times 2+\ldots$
stat. $\hat{\mathbf{y}}$	A point estimate: $\hat{\mathbf{y}}=\mathrm{b} 0+\mathrm{b} 1 \bullet \times \mathrm{l}+\ldots$ for XV alList
stat.dfError	Error degrees of freedom

Output variable	Description
stat.CLower, stat.CUpper	Confidence interval for a mean response
stat.ME	Confidence interval margin of error
stat.SE	Standard error of mean response
stat.LowerPred, stat.UpperrPred	Prediction interval for a single observation
stat.MEPred	Prediction interval margin of error
stat.SEPred	Standard error for prediction
stat.bList	List of regression coefficients, \{b0,b1,b2,...\}
stat.Resid	Residuals from the regression

MultRegTests

Catalog > 国
MultRegTests $Y, X 1[, X 2[, X 3, \ldots[, X 10]]]$
Multiple linear regression test computes a multiple linear regression on the given data and provides the global F test statistic and t test statistics for the coefficients.

A summary of results is stored in the stat.results variable. (See page 176.)

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Outputs

Output variable	Description
stat. RegEqn	Regression Equation: b0+b1•×1+b2•×2+ \ldots
stat.F	Global F test statistic
stat.PVal	P-value associated with global F statistic
stat. R ${ }^{2}$	Coefficient of multiple determination
stat.AdjR ${ }^{2}$	Adjusted coefficient of multiple determination
stat.s	Standard deviation of the error
stat.DW	Durbin-Watson statistic; used to determine whether first-order auto correlation is present in the model

Output variable	Description
stat.dfReg	Regression degrees of freedom
stat.SSReg	Regression sum of squares
stat. MSReg	Regression mean square
stat.dfError	Error degrees of freedom
stat.SSError	Error sum of squares
stat. MSError	Error mean square
stat.bList	\{b0,b1,...\} List of coefficients
stat.tList	List of t statistics, one for each coefficient in the bList
stat.PList	List P-values for each t statistic
stat.SEList	List of standard errors for coefficients in bList
stat. \hat{y} List	\hat{y} List = b0+b1•x1+ . . .
stat.Resid	Residuals from the regression
stat.sResid	Standardized residuals; obtained by dividing a residual by its standard deviation
stat.CookDist	Cook's distance; measure of the influence of an observation based on the residual and leverage
stat.Leverage	Measure of how far the values of the independent variable are from their mean values

N

nand

BooleanExpr1 nand BooleanExpr2 returns
Boolean expression
BooleanList1 nand BooleanList 2 returns Boolean list
BooleanMatrix 1 nand BooleanMatrix2 returns Boolean matrix

Returns the negation of a logical and operation on the two arguments. Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Integer 1 nand Integer $2 \Rightarrow$ integer
Compares two real integers bit-by-bit using a nand operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 0 if both bits are 1 ; otherwise, the result is 1 . The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the Ob or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

nCr()

$\mathrm{nCr}($ Expr1, Expr2) \Rightarrow expression
For integer Expr1 and Expr2 with Expr $1 \geq$ $\operatorname{Expr} 2 \geq 0, \mathrm{nCr}()$ is the number of combinations of Exprl things taken Expr 2 at a time. (This is also known as a binomial coefficient.) Both arguments can be integers or symbolic expressions.
$\mathrm{nCr}($ Expr, $\mathbf{0}) \Rightarrow \mathbf{1}$
$\mathrm{nCr}($ Expr, negInteger $) \Rightarrow \mathbf{0}$
$\mathrm{nCr}($ Expr, posInteger $) \Rightarrow$ Expr $\bullet($ Expr -1$)$... (Expr-posInteger +1) / posInteger!
$\mathrm{ncr}($ Expr, nonInteger $) \Rightarrow$ expression $!/$ ((Expr-nonInteger)!•nonInteger!)
$\mathrm{nCr}($ List 1, List 2$) \Rightarrow$ list
Returns a list of combinations based on the corresponding element pairs in the two lists. The arguments must be the same size list.
$\mathrm{nCr}($ Matrix 1, Matrix 2$) \Rightarrow$ matrix

3 and 4	0
3 nand 4	-1
$\{1,2,3\}$ and $\{3,2,1\}$	$\{1,2,1\}$
$\{1,2,3\}$ nand $\{3,2,1\}$	$\{-2,-3,-2\}$

Returns a matrix of combinations based on the corresponding element pairs in the two matrices．The arguments must be the same size matrix．

nDerivative（）	Catalog＞国］	
$\begin{aligned} & \text { nDerivative(Expr1,Var=Value[,Order }] \text {) } \\ & \Rightarrow \text { value } \end{aligned}$	nDerivative $(\|x\|, x=1)$	1
	nDerivative $(\|x\|, x) \mid x=0$	undef
nDerivative（Expr1，Var［，Order］） ｜Var $=$ Value \Rightarrow value	$\underline{\text { nDerivative }(\sqrt{x-1}, x) \mid x=1}$	undef

Returns the numerical derivative calculated using auto differentiation methods．

When Value is specified，it overrides any prior variable assignment or any current＂｜＂ substitution for the variable．

Order of the derivative must be $\mathbf{1}$ or $\mathbf{2}$ ．

newList（）	Catalog＞国 ${ }^{2}$	
newList（numElements）\Rightarrow list	newList（4）	$\{0,0,0,0\}$

Returns a list with a dimension of numElements．Each element is zero．

newMat（）	Catalog＞国 ${ }_{\text {c }}$	
$\begin{aligned} & \text { newMat(numRows, numColumns) } \Rightarrow \\ & \text { matrix } \end{aligned}$	newMat（2，3）	$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

Returns a matrix of zeros with the dimension numRows by numColumns．

nfMax（）	Catalog＞［1］	
$\begin{aligned} & \mathrm{nfMax}(\text { Expr, Var }) \Rightarrow \text { value } \\ & \mathrm{nfMax}(\text { Expr }, \text { Var, lowBound }) \Rightarrow \text { value } \end{aligned}$	$\operatorname{nfMax}\left(-x^{2}-2 \cdot x-1, x\right)$	－1．
nfMax（Expr，Var，lowBound，upBound）\Rightarrow value	$n f M a x\left(0.5 \cdot x^{3}-x-2, x,-5,5\right)$	5.

nfMax（Expr，Var）｜
lowBound \leq Var \leq upBound \Rightarrow value

Returns a candidate numerical value of variable Var where the local maximum of Expr occurs.

If you supply lowBound and upBound, the function looks in the closed interval [lowBound,upBound] for the local maximum.

Note: See also $\mathrm{f} \operatorname{Max}()$ and d() .

nfMin()	Catalog > [a]	
nfMin(Expr, Var) \Rightarrow value nfMin(Expr, Var, lowBound $) \Rightarrow$ value	$\operatorname{nfMin}\left(x^{2}+2 \cdot x+5, x\right)$	-1.
nfMin(Expr, Var, lowBound, upBound) \Rightarrow value	$\operatorname{nfMin}\left(0.5 \cdot x^{3}-x-2, x,-5,5\right)$	-5.
nfMin(Expr, Var) \|		
lowBound \leq Var \leq upBound \Rightarrow value		
Returns a candidate numerical value of variable Var where the local minimum of Expr occurs.		
If you supply lowBound and upBound, the function looks in the closed interval [lowBound,upBound] for the local minimum.		

Note: See also fMin() and d().
nint()
Catalog > 国
nint(Exprl, Var, Lower, Upper) \Rightarrow expression
$\operatorname{nInt}\left(e^{-x^{2}}, x,-1,1\right)$
If the integrand Exprl contains no variable other than Var, and if Lower and Upper are constants, positive ∞, or negative ∞, then $\operatorname{nint}()$ returns an approximation of \int (Expr1, Var, Lower, Upper). This approximation is a weighted average of some sample values of the integrand in the interval Lower<Var<Upper.

The goal is six significant digits. The adaptive algorithm terminates when it seems likely that the goal has been achieved, or when it seems unlikely that additional samples will yield a worthwhile improvement.

A warning is displayed ("Questionable accuracy") when it seems that the goal has not been achieved.
Nest nint() to do multiple numeric integration. Integration limits can depend on integration variables outside them.

Note: See also (), page 221.

nom()	Catalog > [a]	
nom(effectiveRate, $\mathrm{Cp} Y$) \Rightarrow value	nom(5.90398,12)	5.75

Financial function that converts the annual effective interest rate effectiveRate to a nominal rate, given $C p Y$ as the number of compounding periods per year.
effectiveRate must be a real number, and $C p Y$ must be a real number >0.

Note: See also eff(), page 58.

nor		ctri $=$ keys
BooleanExpr1 nor BooleanExpr 2 returns	$x \geq 3$ or $x \geq 4$	$x \geq 3$
Boolean expression BooleanListl nor BooleanList 2 returns	$x \geq 3$ nor $x \geq 4$	$x<3$
BooleanList 1 nor BooleanList 2 returns Boolean list	$x \geq 3$ nor $x \geq 4$	$x<3$
BooleanMatrix 1 nor BooleanMatrix 2 returns Boolean matrix		
Returns the negation of a logical or operation on the two arguments. Returns true, false, or a simplified form of the equation.		
For lists and matrices, returns comparisons element by element.		

Integer 1 nor Integer $2 \Rightarrow$ integer
Compares two real integers bit-by-bit using a nor operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1 ; otherwise, the result is 0 . The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the Ob or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).
norm()
norm(Matrix $) \Rightarrow$ expression
norm(Vector $) \Rightarrow$ expression

Returns the Frobenius norm.

normalline()

normalLine(Expr1,Var,Point) \Rightarrow
expression
normalLine(Expr1,Var=Point) \Rightarrow
expression
Returns the normal line to the curve represented by Exprl at the point specified in Var=Point .

Make sure that the independent variable is not defined. For example, If $f 1(x):=5$ and $x:=3$, then normalLine $(f 1(x), x, 2)$ returns "false."

3 or 4	7
3 nor 4	-8
$\{1,2,3\}$ or $\{3,2,1\}$	$\{3,2,3\}$
$\{1,2,3\}$ nor $\{3,2,1\}$	$\{-4,-3,-4\}$

normCdf（lowBound，upBound $[, \mu[, \sigma]]) \Rightarrow$
number if lowBound and upBound are numbers，list if lowBound and upBound are lists

Computes the normal distribution probability between lowBound and upBound for the specified μ（default＝0）and σ（default＝1）．

For $\mathrm{P}(\mathrm{X} \leq$ upBound $)$ ，set lowBound $=-\infty$ ．

normPdf（）

Catalog＞国
normPdf $(X \operatorname{Val}[, \mu[, \sigma]]) \Rightarrow$ number if $X V a l$ is
a number，list if $X V$ Val is a list
Computes the probability density function for the normal distribution at a specified $X V a l$ value for the specified μ and σ ．
not
not BooleanExpr \Rightarrow Boolean expression
Returns true，false，or a simplified form of
the argument．
not Integerl \Rightarrow integer
Returns the one＇s complement of a real
integer．Internally，Integerl is converted to
a signed， 64 －bit binary number．The value of
each bit is flipped（0 becomes 1，and vice
versa）for the one＇s complement．Results
are displayed according to the Base mode．

You can enter the integer in any number base．For a binary or hexadecimal entry，you must use the Ob or Oh prefix，respectively． Without a prefix，the integer is treated as decimal（base 10）．

If you enter a decimal integer that is too large for a signed，64－bit binary form，a symmetric modulo operation is used to bring the value into the appropriate range． For more information，see Base2，page 17.

Catalog＞国合

not $(2 \geq 3)$	true
not $(x<2)$	$x \geq 2$
not not innocent	innocent

In Hex base mode：
Important：Zero，not the letter O．
not 0h7AC36 0hFFFFFFFFFFF853C9

In Bin base mode：

Ob100101 Base10	37
not 0b100101	
Ob1111111111111111111111111111111111111	
not 0b100101 \downarrow Base10	

To see the entire result，
press $\boldsymbol{\Delta}$ and then use $\boldsymbol{\triangleleft}$ and to move the cursor．

Note：A binary entry can have up to 64 digits （not counting the Ob prefix）．A hexadecimal entry can have up to 16 digits．
$\mathrm{nPr}($ Expr 1 , Expr2) \Rightarrow expression
For integer Expr1 and Expr2 with Expr $1 \geq$ Expr $2 \geq 0, \mathrm{nPr}()$ is the number of permutations of Exprl things taken Expr 2 at a time. Both arguments can be integers or symbolic expressions.
$\mathbf{n P r}(\operatorname{Expr}, \mathbf{0} \Rightarrow \mathbf{1}$
$\mathrm{nPr}($ Expr, negInteger $) \Rightarrow 1 /(($ Expr $\mathbf{+ 1}) \cdot$ (Expr+2) ... (expression-negInteger))
$\mathrm{nPr}($ Expr, posInteger $) \Rightarrow \operatorname{Expr} \bullet($ Expr $-\mathbf{1}) \ldots$ (Expr-posInteger +1)
$\mathrm{nPr}($ Expr, nonInteger $) \Rightarrow$ Expr! /
(Expr-nonInteger)!
nPr(List1, List 2$) \Rightarrow$ list
Returns a list of permutations based on the corresponding element pairs in the two lists. The arguments must be the same size list.
$n \operatorname{Pr}($ Matrix 1, Matrix 2$) \Rightarrow$ matrix
Returns a matrix of permutations based on the corresponding element pairs in the two matrices. The arguments must be the same size matrix.

$\mathrm{nPr}(z, 3)$	$z \cdot(z-2) \cdot(z-1)$
$A n s(z=5$	60
$\mathrm{nPr}(z,-3)$	$\frac{1}{(z+1) \cdot(z+2) \cdot(z+3)}$
$\mathrm{nPr}(z, c)$	$\frac{z!}{(z-c)!}$
$A n s \cdot n \operatorname{Pr}(z-c,-c)$	1

$\operatorname{nPr}(\{5,4,3\},\{2,4,2\}) \quad\{20,24,6\}$
$\operatorname{nPr}\left[\left[\begin{array}{ll}6 & 5 \\ 4 & 3\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]\right) \quad\left[\begin{array}{cc}30 & 20 \\ 12 & 6\end{array}\right]$

Catalog >
list $:=\{6000,-8000,2000,-3000\}$

	$\{6000,-8000,2000,-3000\}$
list $2:=\{2,2,2,1\}$	$\{2,2,2,1\}$
$\mathrm{npv}(10,5000$, list 1, list 2$)$	4769.91

CFFreq is a list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of CFList. The default is 1 ; if you enter values, they must be positive integers < 10,000.
nSolve()
nSolve(Equation,V_Var[=Guess]) \Rightarrow number
or error_string
nSolve(Equation,_Var[=Guess],lowBound $)$
\Rightarrow number or error_string
nSolve(Equation, Var
[=Guess],lowBound,upBound) \Rightarrow number or error_string
nSolve(Equation,Var[=Guess]) | lowBound \leq Var \leq upBound \Rightarrow number or error_string

Iteratively searches for one approximate real numeric solution to Equation for its one variable. Specify the variable as:
variable

- or -
variable $=$ real number
For example, x is valid and so is $\mathrm{x}=3$.
nSolve() is often much faster than solve() or zeros(), particularly if the "|" operator is used to constrain the search to a small interval containing exactly one simple solution.
nSolve() attempts to determine either one point where the residual is zero or two relatively close points where the residual has opposite signs and the magnitude of the residual is not excessive. If it cannot achieve this using a modest number of sample points, it returns the string "no solution found."

Note: See also cSolve(), cZeros(), solve(), and zeros().

0

OneVar

Catalog > [and $_{2}^{2}$

OneVar [1,]X[,[Freq][,Category,Include]]
OneVar [n, $] X 1, X 2[X 3[, \ldots[, X 20]]]$
Calculates 1 -variable statistics on up to 20 lists. A summary of results is stored in the stat.results variable. (See page 176.)

All the lists must have equal dimension except for Include.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers ≥ 0.

Category is a list of numeric category codes for the corresponding X values.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

An empty (void) element in any of the lists X, Freq, or Category results in a void for the corresponding element of all those lists. An empty element in any of the lists X1 through $X 20$ results in a void for the corresponding element of all those lists. For more information on empty elements, see page 236.

Output variable	Description
stat. \bar{x}	Mean of x values
stat. Σx	Sum of x values
stat. Σx^{2}	Sum of x^{2} values

Output variable	Description
stat.sx	Sample standard deviation of x
stat. σx	Population standard deviation of x
stat. n	Number of data points
stat. MinX	Minimum of x values
stat. $Q_{1} X$	1st Quartile of x
stat. MedianX	Median of x
stat. $Q_{3} X$	3rd Quartile of x
stat.MaxX	Maximum of x values
stat. XSX	Sum of squares of deviations from the mean of x

or

In Hex base mode:

> 0h7AC36 or 0h3D5F

0h7BD7F

Important: Zero, not the letter O.

In Bin base mode:
0b100101 or 0b100
0b100101

Compares two real integers bit－by－bit using an or operation．Internally，both integers are converted to signed，64－bit binary numbers．When corresponding bits are compared，the result is 1 if either bit is 1 ； the result is 0 only if both bits are 0 ．The returned value represents the bit results， and is displayed according to the Base mode．

You can enter the integers in any number base．For a binary or hexadecimal entry，you must use the Ob or Oh prefix，respectively． Without a prefix，integers are treated as decimal（base 10）．

If you enter a decimal integer that is too large for a signed，64－bit binary form，a symmetric modulo operation is used to bring the value into the appropriate range． For more information，see Base2，page 17.

Note：See xor．

Note：A binary entry can have up to 64 digits （not counting the $0 b$ prefix）．A hexadecimal entry can have up to 16 digits．

Returns the numeric code of the first character in character string String，or a list of the first characters of each list element．

Catalog＞国

ord（＂hello＂）	104
char（104）	＂h＂
ord（char（24）$)$	24
ord（\｛＂alpha＂，＂beta＂\})	$\{97,98\}$

P

$P>R x()$

Catalog＞国
$\mathbf{P} \boldsymbol{R} \mathbf{x}(r E x p r, \theta E x p r) \Rightarrow$ expression
$\mathbf{P}>\mathbf{R x}(r$ List,θ List $) \Rightarrow$ list
$\mathbf{P}>\mathbf{R x}($ rMatrix,θ Matrix $) \Rightarrow$ matrix
Returns the equivalent x－coordinate of the (r, θ) pair．

In Radian angle mode：

$\mathrm{P}>\mathrm{Rx}(r, \theta)$	$\cos (\theta) \cdot r$
$\mathrm{P}>\mathrm{Rx}\left(4,60^{\circ}\right)$	
$\begin{aligned} & P \vee \operatorname{Rx}\left\{\{-3,10,1.3\},\left\{\frac{\pi}{3}, \frac{-\pi}{4}, 0\right\}\right] \\ & \left\{\frac{-3}{2}, 5 \cdot \sqrt{2}, 1.3\right\} \end{aligned}$	

Note：The θ argument is interpreted as either a degree，gradian or radian angle， according to the current angle mode．If the argument is an expression，you can use ${ }^{\circ}, \mathrm{G}$ ， or ${ }^{r}$ to override the angle mode setting temporarily．

Note：You can insert this function from the computer keyboard by typing P＠$>\operatorname{Rx}(\ldots)$ ．
$\mathbf{P}>\mathbf{R y}(\mathbf{)}$
$\mathbf{P}>\mathbf{R y}($ rExpr,θ Expr $) \Rightarrow$ expression
$\mathbf{P}>\mathbf{R y}(r$ List,θ List $) \Rightarrow$ list
$\mathbf{P}>\mathbf{R y}($ rMatrix,θ Matrix $) \Rightarrow$ matrix

Returns the equivalent y－coordinate of the (r, θ) pair．

Note：The θ argument is interpreted as either a degree，radian or gradian angle， according to the current angle mode．If the argument is an expression，you can use ${ }^{\circ}, \mathrm{G}$ ， or ${ }^{r}$ to override the angle mode setting temporarily．

Note：You can insert this function from the computer keyboard by typing P＠$>$ Ry（．．．）．

PassErr

Catalog＞国

PassErr

Passes an error to the next level．
If system variable errCode is zero，PassErr does not do anything．

The Else clause of the Try．．．Else．．．EndTry block should use CIrErr or PassErr．If the error is to be processed or ignored，use CIrErr．If what to do with the error is not known，use PassErr to send it to the next error handler．If there are no more pending Try．．．Else．．．EndTry error handlers，the error dialog box will be displayed as normal．

In Radian angle mode：

$\mathrm{P} \triangleright \mathrm{Ry}(r, \theta)$	$\sin (\theta) \cdot r$
$\mathrm{P} \triangleright \mathrm{Ry}\left(4,60^{\circ}\right)$	$2 \cdot \sqrt{3}$
$\mathrm{P} \triangleright \operatorname{Ry}\left(\{-3,10,1.3\},\left\{\frac{\pi}{3}, \frac{\pi}{4}, 0\right\}\right)$	

$$
\left\{\frac{-3 \cdot \sqrt{3}}{2},-5 \cdot \sqrt{2}, 0 .\right\}
$$

Catalog＞国至

Note：See also ClrErr，page 25，and Try，page 191.

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

piecewise（）	Catalog＞国 ${ }_{2}$	
piecewise（Expr 1［，Cond1［，Expr2［，Cond2 ［，．．．］］］］）	Define $p(x)=\left\{\begin{array}{lr}x, & x>0 \\ \text { undef，} x \leq 0\end{array}\right.$	Done
Returns definitions for a piecewise function in the form of a list．You can also create	$p(1)$	1
	$p(-1)$	undef

Note：See also Piecewise template，page 3.

```
poissCdf()
Catalog > 国[2]
poissCdf(\lambda,lowBound,upBound)}=>\mathrm{ number
if lowBound and upBound are numbers, list
if lowBound and upBound are lists
poissCdf( }\lambda,\mathrm{ upBound )for }\textrm{P}(0\leq\textrm{X}\lequp\mathrm{ Bound })
number if upBound is a number, list if
upBound is a list
Computes a cumulative probability for the discrete Poisson distribution with specified mean \(\lambda\) ．
For \(\mathrm{P}(\mathrm{X} \leq\) upBound \()\) ，set lowBound \(=0\)
```

```
poissPdf()
```

poissPdf()
Catalog > 目[2
Catalog > 目[2
poissPdf(}\lambda,X,X\mathrm{ Val) }=>\mathrm{ number if XVal is a
poissPdf(}\lambda,X,X\mathrm{ Val) }=>\mathrm{ number if XVal is a
number, list if XVal is a list
number, list if XVal is a list
Computes a probability for the discrete
Computes a probability for the discrete
Poisson distribution with the specified mean
Poisson distribution with the specified mean
\lambda.

```
\lambda.
```


Vector Polar

Note: You can insert this operator from the computer keyboard by typing @>Polar.

Displays vector in polar
$\left[\begin{array}{ll}1 & 3 .\end{array}\right]$ Polar $\quad\left[\begin{array}{ll}3.16228 & \angle 1.24905\end{array}\right]$
$\left[\begin{array}{ll}x & y\end{array}\right]>$ Polar

$$
\left[\sqrt{x^{2}+y^{2}}<\frac{\pi \cdot \operatorname{sign}(y)}{2}-\tan ^{-1}\left(\frac{x}{y}\right)\right]
$$ form [$\mathrm{r} \angle \theta$]. The vector must be of dimension 2 and can be a row or a column.

Note: Polar is a display-format instruction, not a conversion function. You can use it only at the end of an entry line, and it does not update ans.

Note: See also Rect, page 146.
complexValue $>$ Polar
Displays
complexVector in polar form.

- Degree angle mode returns ($\mathrm{r} \angle \theta$).
- Radian angle mode returns re ${ }^{i \theta}$.
complexValue can have any complex form. However, an re ${ }^{i \theta}$ entry causes an error in Degree angle mode.

Note: You must use the parentheses for an ($\mathrm{r} \angle \theta$) polar entry.

In Radian angle mode:

$$
\begin{array}{lr}
\hline(3+4 \cdot i)>\text { Polar } & e^{i \cdot\left(\frac{\pi}{2}-\tan ^{-1}\left(\frac{3}{4}\right)\right)} \cdot 5 \\
\left(\left(4<\frac{\pi}{3}\right)\right)>\text { Polar } & e^{\frac{i \cdot \pi}{3} \cdot 4}
\end{array}
$$

In Gradian angle mode:
$(4 \cdot i) \downarrow$ Polar $\quad(4 \angle 100$.

In Degree angle mode:
$(3+4 \cdot i) \stackrel{\text { Polar }}{ } \quad\left(5 \angle 90-\tan ^{-1}\left(\frac{3}{4}\right)\right)$
polyCoeffs $\left(4 \cdot x^{2}-3 \cdot x+2, x\right) \quad\{4,-3,2\}$

Returns a list of the coefficients of polynomial Poly with respect to variable Var．

Poly must be a polynomial expression in Var．We recommend that you do not omit Var unless Poly is an expression in a single variable．
polyCoeffs $\left((x-1)^{2} \cdot(x+2)^{3}\right)$ $\{1,4,1,-10,-4,8\}$

Expands the polynomial and selects x for the omitted Var．

polyCoeffs $\left((x+y+z)^{2}, x\right)$	
	$\left\{1,2 \cdot(y+z),(y+z)^{2}\right\}$
polyCoeffs $\left((x+y+z)^{2}, y\right)$	
	$\left\{1,2 \cdot(x+z),(x+z)^{2}\right\}$
polyCoeffs $\left((x+y+z)^{2}, z\right)$	
	$\left\{1,2 \cdot(x+y),(x+y)^{2}\right\}$

polyDegree（）

polyDegree（Poly $[, V a r]) \Rightarrow$ value
Returns the degree of polynomial expression Poly with respect to variable Var．If you omit Var，the polyDegree（） function selects a default from the variables contained in the polynomial Poly．

Poly must be a polynomial expression in Var．We recommend that you do not omit Var unless Poly is an expression in a single variable．

Catalog＞婜
polyDegree（5） 0
polyDegree $(\ln (2)+\pi, x) \quad 0$

Constant polynomials

polyDegree $\left(4 \cdot x^{2}-3 \cdot x+2, x\right)$	2
polyDegree $\left((x-1)^{2} \cdot(x+2)^{3}\right)$	5

polyDegree $\left(\left(x+y^{2}+z^{3}\right)^{2}, x\right)$	2
polyDegree $\left(\left(x+y^{2}+z^{3}\right)^{2}, y\right)$	4
polyDegree $\left((x-1)^{10000}, x\right)$	10000

The degree can be extracted even though the coefficients cannot．This is because the degree can be extracted without expanding the polynomial．
polyEval(List1, Exprl) \Rightarrow expression polyEval(List1, List 2) \Rightarrow expression

Interprets the first argument as the coefficient of a descending-degree polynomial, and returns the polynomial evaluated for the value of the second argument.
polyGcd()
polyGcd(Expr 1,Expr2) \Rightarrow expression
Returns greatest common divisor of the two arguments.

Expr1 and Expr 2 must be polynomial expressions.

List, matrix, and Boolean arguments are not allowed.
polyQuotient()
polyQuotient(Polyl,Poly2 [,Var]) \Rightarrow expression

Returns the quotient of polynomial Poly1 divided by polynomial Poly2 with respect to the specified variable Var.

Poly1 and Poly2 must be polynomial expressions in Var. We recommend that you do not omit Var unless Polyl and Poly2 are expressions in the same single variable.

$\operatorname{polyEval}[\{a, b, c\}, x\}$	$a \cdot x^{2}+b \cdot x+c$
$\operatorname{polyEval}(\{1,2,3,4\}, 2\}$	26
$\operatorname{polyEval}(\{1,2,3,4\},\{2,-7\}\}$	$\{26,-262\}$

polyRemainder（Poly1，Poly2［，Var］）\Rightarrow expression

Returns the remainder of polynomial Poly1 divided by polynomial Poly2 with respect to the specified variable Var．

Poly1 and Poly 2 must be polynomial expressions in Var．We recommend that you do not omit Var unless Polyl and Poly 2 are expressions in the same single variable．

polyRemainder $(x-1, x-3)$	2
polyRemainder $\left(x-1, x^{2}-1\right)$	$x-1$
polyRemainder $\left(x^{2}-1, x-1\right)$	0

polyRemainder $((x-y) \cdot(y-z), x+y+z, x)$
$-(y-z) \cdot(2 \cdot y+z)$

$$
-2 \cdot x^{2}-5 \cdot x \cdot z-2 \cdot z^{2}
$$

$$
\text { polyRemainder }((x-y) \cdot(y-z), x+y+z, z)
$$

$$
(x-y) \cdot(x+2 \cdot y)
$$

polyRoots（）
Catalog＞国远
polyRoots（Poly，Var）\Rightarrow list
polyRoots（ListOfCoeffs）\Rightarrow list
The first syntax，polyRoots（Poly，Var）， returns a list of real roots of polynomial Poly with respect to variable Var．If no real roots exist，returns an empty list：\｛ \}.
Poly must be a polynomial in one variable．
The second syntax，polyRoots （ListOfCoeffs），returns a list of real roots for the coefficients in ListOfCoeffs．

Note：See also cPolyRoots（），page 36.

PowerReg
PowerReg X，Y［，Freq］［，Category，Include］］
Computes the power regressiony $=\left(a \cdot(x)^{b}\right)$ on lists X and Y with frequency Freq．A summary of results is stored in the stat．results variable．（See page 176．）

All the lists must have equal dimension except for Include．
X and Y are lists of independent and dependent variables．

Freq is an optional list of frequency values.
Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat. RegEqn	Regression equation: $\mathrm{a} \cdot(\mathrm{x})^{\mathrm{b}}$
stat.a, stat.b	Regression coefficients
stat.r ${ }^{2}$	Coefficient of linear determination for transformed data
stat.r	Correlation coefficient for transformed data (In(x), In(y))
stat. Resid	Residuals associated with the power model
stat. ResidTrans	Residuals associated with linear fit of transformed data
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat. YReg

Prgm
Prgm
Block
EndPrgm

Catalog > 国
Calculate GCD and display intermediate results.

Template for creating a user-defined program. Must be used with the Define, Define LibPub, or Define LibPriv command.

Block can be a single statement, a series of statements separated with the ":" character, or a series of statements on separate lines.

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

Define proggcd $(a, b)=$	Prgm
	Local d
	While $b \neq 0$
	$d:=\bmod (a, b)$
	$a:=b$
	$b:=d$
	Disp $a, "{ }^{\prime \prime}, b$
	EndWhile
	Disp "GCD $=", a$
	EndPrgm

Done
$\operatorname{proggcd}(4560,450)$
45060
6030
300
$G C D=30$
Done
product()
product(List $[$, Start $[$, End $]]) \Rightarrow$ expression
Returns the product of the elements
contained in List. Start and End are
optional. They specify a range of elements.
product(Matrix $l[$, Start $[$, End $]]) \Rightarrow$ matrix
Returns a row vector containing the
products of the elements in the columns of
Matrixl. Start and end are optional. They
specify a range of rows.
Empty (void) elements are ignored. For
more information on empty elements, see
page 236 .
$\operatorname{propFrac}($ Expr $1[, V a r]) \Rightarrow$ expression propFrac（rational＿number）returns rational＿number as the sum of an integer and a fraction having the same sign and a greater denominator magnitude than numerator magnitude．
propFrac（rational＿expression，Var）returns the sum of proper ratios and a polynomial with respect to Var．The degree of Var in the denominator exceeds the degree of Var in the numerator in each proper ratio． Similar powers of Var are collected．The terms and their factors are sorted with Var as the main variable．

If Var is omitted，a proper fraction expansion is done with respect to the most main variable．The coefficients of the polynomial part are then made proper with respect to their most main variable first and so on．

For rational expressions，propFrac（）is a faster but less extreme alternative to expand（）．

You can use the propFrac（）function to represent mixed fractions and demonstrate addition and subtraction of mixed fractions．

$\operatorname{propFrac}\left(\frac{4}{3}\right)$	$1+\frac{1}{3}$
$\operatorname{propFrac}\left(\frac{-4}{3}\right)$	$-1-\frac{1}{3}$

$\operatorname{propFrac}\left(\frac{x^{2}+x+1}{x+1}+\frac{y^{2}+y+1}{y+1}, x\right)$
$\frac{\frac{1}{x+1}+x+\frac{y^{2}+y+1}{y+1}}{\operatorname{propFrac}(A n s)} \frac{1}{x+1}+x+\frac{1}{y+1}+y$,

$\operatorname{propFrac}\left(\frac{11}{7}\right)$	$1+\frac{4}{7}$
$\operatorname{propFrac}\left(3+\frac{1}{11}+5+\frac{3}{4}\right)$	$8+\frac{37}{44}$
$\operatorname{propFrac}\left(3+\frac{1}{11}-\left(5+\frac{3}{4}\right)\right)$	$-2-\frac{29}{44}$

Q

QR
Catalog＞国远
The floating－point number（9．）in m 1 causes results to be calculated in floating－point form．

Optionally，any matrix element is treated as zero if its absolute value is less than Tol． This tolerance is used only if the matrix has floating－point entries and does not contain any symbolic variables that have not been assigned a value．Otherwise，Tol is ignored．
－If you use ctrl enter or set the Auto or
Approximate mode to Approximate， computations are done using floating－ point arithmetic．
－If Tol is omitted or not used，the default tolerance is calculated as：
5E－14 •max（dim（Matrix））•rowNorm （Matrix）
The QR factorization is computed numerically using Householder transformations．The symbolic solution is computed using Gram－Schmidt．The columns in qMatName are the orthonormal basis vectors that span the space defined by matrix．

$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 .\end{array}\right] \rightarrow m 1$		$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 .\end{array}\right]$
QR $m 1, q m, r m$	Done	
$q m$	$\left[\begin{array}{lll}0.123091 & 0.904534 & 0.408248 \\ 0.492366 & 0.301511 & -0.816497 \\ 0.86164 & -0.301511 & 0.408248\end{array}\right]$	
$m m$	$\left[\begin{array}{ccc}8.12404 \\ 0 . & 9.60114 & 11.0782 \\ 0 . & 0.904534 & 1.80907 \\ 0 . & 0 .\end{array}\right]$	

$\left[\begin{array}{cc}m & n \\ o & p\end{array}\right] \rightarrow m 1 \quad\left[\begin{array}{cc}m & n \\ o & p\end{array}\right]$

QR m1，qm，rm Done
$\frac{q m}{r m} \frac{\left[\begin{array}{cc}\frac{m}{\sqrt{m^{2}+o^{2}}} & \frac{-\operatorname{sign}(m \cdot p-n \cdot o) \cdot o}{\sqrt{m^{2}+o^{2}}} \\ \frac{o}{\sqrt{m^{2}+o^{2}}} & \frac{m \cdot \operatorname{sign}(m \cdot p-n \cdot o)}{\sqrt{m^{2}+o^{2}}}\end{array}\right]}{\left[\begin{array}{cc}\sqrt{m^{2}+o^{2}} & \frac{m \cdot n+o \cdot p}{\sqrt{m^{2}+o^{2}}} \\ 0 & \frac{|m \cdot p-n \cdot o|}{\sqrt{m^{2}+o^{2}}}\end{array}\right]}$

QuadReg

Catalog＞国血
QuadReg X，Y［，Freq］［，Category，Include］］
Computes the quadratic polynomial regression $y=a \bullet x^{2}+b \cdot x+c$ on lists X and Y with frequency Freq．A summary of results is stored in the stat．results variable．（See page 176．）

All the lists must have equal dimension except for Include．
X and Y are lists of independent and dependent variables．

Freq is an optional list of frequency values.
Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat. RegEqn	Regression equation: $\mathrm{a} \times \mathrm{x}^{2}+\mathrm{b} \bullet \times+\mathrm{c}$
stat.a, stat.b, stat.c	Regression coefficients
stat. R^{2}	Coefficient of determination
stat. Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat. YReg

QuartReg

QuartReg $X, Y[$, Freq][, Category, Include]]
Computes the quartic polynomial regression $\mathrm{y}=\mathrm{a} \cdot \mathrm{x}^{4}+\mathrm{b} \cdot \mathrm{x}^{3}+\mathrm{c} \cdot \mathrm{x}^{2}+\mathrm{d} \cdot \mathrm{x}+\mathrm{e}$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 176.)

All the lists must have equal dimension except for Include.
X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1 . All elements must be integers ≥ 0.

Category is a list of category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 236.

Output variable	Description
stat. RegEqn	Regression equation: $\mathrm{a} \cdot \mathrm{x}^{4}+\mathrm{b} \cdot \mathrm{x}^{3}+\mathrm{c} \cdot \mathrm{x}^{2}+\mathrm{d} \bullet \mathrm{x}+\mathrm{e}$
stat.a, stat.b, stat.c, stat.d, stat.e	Regression coefficients
stat. R^{2}	Coefficient of determination
stat. Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat. FreqReg	List of frequencies corresponding to stat.XReg and stat. YReg

R

$\mathbf{R}>\mathbf{P} \theta()$		Catalog > 国]
$\mathbf{R} \triangleright \mathbf{P} \theta(x E x p r, y E x p r) \Rightarrow$ expression	In Degree angle mode:	
$\begin{aligned} & \mathbf{R} \boldsymbol{P} \theta(x \text { List }, y \text { List }) \Rightarrow \text { list } \\ & \mathbf{R} \boldsymbol{P} \theta(x \text { Matrix }, y \text { Matrix }) \Rightarrow \text { matrix } \end{aligned}$	$\overline{\mathrm{R}}$ Р $\mathrm{P}(\underline{x}, \mathrm{y})$	$90 \cdot \operatorname{sign}(y)-\tan ^{-1}\left(\frac{x}{y}\right)$

Returns the equivalent θ－coordinate of the (x, y) pair arguments．

Note：The result is returned as a degree， gradian or radian angle，according to the current angle mode setting．

Note：You can insert this function from the computer keyboard by typing R＠$>$ Ptheta （．．．）．

In Gradian angle mode：
$\mathrm{R}>\mathrm{P} \theta(x, y) \quad 100 \cdot \operatorname{sign}(y)-\tan ^{-1}\left(\frac{x}{y}\right)$

In Radian angle mode：

$R \vee P \theta(3,2)$	$\tan ^{-1}\left(\frac{2}{3}\right)$
$R \triangleright P \theta\left(\left[\begin{array}{lll}3 & -4 & 2\end{array}\right],\left[\begin{array}{lll}0 & \frac{\pi}{4} & 1.5\end{array}\right]\right)$	
	$\left[\begin{array}{ll}0 & \tan ^{-1}\left(\frac{16}{\pi}\right)+\frac{\pi}{2} \\ & 0.643501\end{array}\right]$

Catalog＞国
In Radian angle mode：
 $\left[\begin{array}{ll}3 & \frac{\sqrt{\pi^{2}+256}}{4} \\ 2.5\end{array}\right]$

Catalog＞［⿴囗玉心
In Degree angle mode：

$(1.5) \bullet \operatorname{Rad}$	$(0.02618)^{r}$

In Gradian angle mode：
$\underline{(1.5) \bullet \operatorname{Rad}} \quad(0.023562)^{r}$

Catalog＞［⿴囗玉心
Set the random－number seed．
rand（\＃Trials）\Rightarrow list
rand（）returns a random value between 0 and 1.
rand（\＃Trials）returns a list containing

| rand $(2) \quad\{0.158206,0.717917\}$ |
| :--- | \＃Trials random values between 0 and 1.

randlnt（）			Catalog＞国运
randInt （lowBound，upBound）	randInt（ 3,10 ）	5	
\Rightarrow expression randInt	randint（ $3,10,4$ ）	\｛9，7，5，8\}	
（lowBound，upBound ，\＃Trials）\Rightarrow list			
randint			
（lowBound，upBound）			
integer within the			
lowBound and			
upBound integer			
randlnt			
（lowBound，upBound			
list containing			
\＃Trials random			
integers within the			

randMat（numRows，numColumns）\Rightarrow matrix

Returns a matrix of integers between－9 and 9 of the specified dimension．

Both arguments must simplify to integers．

RandSeed 1147	
randMat $(3,3)$	$\left[\begin{array}{ccc}8 & -3 & 6 \\ -2 & 3 & -6 \\ 0 & 4 & -6\end{array}\right]$

Note：The values in this matrix will change each time you press enter．
randNorm（）
Catalog＞国
randNorm $(\mu, \sigma) \Rightarrow$ expression
randNorm $(\mu, \sigma, \#$ Trials $) \Rightarrow$ list
randNorm (μ, σ) returns a decimal number from the specified normal distribution．It could be any real number but will be heavily concentrated in the interval $[\mu-3 \cdot \sigma, \mu+3 \cdot \sigma$ ］．
randNorm（ $\mu, \sigma, \#$ Trials）returns a list containing \＃Trials decimal numbers from the specified normal distribution．
randPoly（）
randPoly（Var，Order）\Rightarrow expression
Returns a polynomial in Var of the specified Order．The coefficients are random integers in the range -9 through 9. The leading coefficient will not be zero．

Order must be 0－99．

Catalog＞［⿴囗玉心］

RandSeed 1147	Done
randPoly $(x, 5)$	$-2 \cdot x^{5}+3 \cdot x^{4}-6 \cdot x^{3}+4 \cdot x-6$

RandSeed Number

If Number $=0$ ，sets the seeds to the factory defaults for the random－number generator． If Number $\neq 0$ ，it is used to generate two seeds，which are stored in system variables seed1 and seed2．

RandSeed 1147	Done
rand ()	0.158206

real（）
real（Expr1）\Rightarrow expression
Returns the real part of the argument．
Note：All undefined variables are treated as real variables．See also imag（），page 88.
real（Listl）\Rightarrow list
Returns the real parts of all elements．
real（Matrixl）\Rightarrow matrix
Returns the real parts of all elements．

Rect
Vector Rect
Note：You can insert this operator from the computer keyboard by typing＠＞Rect．

Displays Vector in rectangular form［ x, y ， z］．The vector must be of dimension 2 or 3 and can be a row or a column．

Note：Rect is a display－format instruction， not a conversion function．You can use it only at the end of an entry line，and it does not update ans．

Note：See also Polar，page 133. complexValue - Rect

Displays complexValue in rectangular form $\mathrm{a}+\mathrm{bi}$ ．The complexValue can have any complex form．However，an re ${ }^{\mathrm{i} \theta}$ entry causes an error in Degree angle mode．

Note：You must use parentheses for an （ $\mathrm{r} \angle \theta$ ）polar entry．

Catalog＞国

real $(2+3 \cdot i)$	2
real (z)	z
real $(x+i \cdot y)$	x

$\operatorname{real}(\{a+i \cdot b, 3, i\}) \quad\{a, 3,0\}$
$\operatorname{real}\left(\left[\begin{array}{cc}a+i \cdot b & 3 \\ c & i\end{array}\right]\right) \quad\left[\begin{array}{ll}a & 3 \\ c & 0\end{array}\right]$

Catalog＞国

$$
\begin{aligned}
& \left.\left[\begin{array}{lll}
{\left[3<\frac{\pi}{4}\right.} & \angle \frac{\pi}{6}
\end{array}\right]\right) \text { Rect } \\
& {\left[\begin{array}{lll}
\frac{3 \cdot \sqrt{2}}{4} & \frac{3 \cdot \sqrt{2}}{4} & \frac{3 \cdot \sqrt{3}}{2}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
a<b & \angle c] \\
{[a \cdot \cos (b) \cdot \sin (c)} & a \cdot \sin (b) \cdot \sin (c) & a \cdot \cos (c)]
\end{array}\right.}
\end{aligned}
$$

In Radian angle mode：

Rect

In Gradian angle mode:
\square

In Degree angle mode:
$((4 \angle 60))\rangle$ Rect $\quad 2+2 \cdot \sqrt{3} \cdot i$

Note: To type \angle, select it from the symbol list in the Catalog.

ref()

$\operatorname{ref}($ Matrix $l[$, Tol $]) \Rightarrow$ matrix
Returns the row echelon form of Matrixl.
Optionally, any matrix element is treated as zero if its absolute value is less than Tol.
This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, Tol is ignored.

- If you use ctrr| enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.
- If Tol is omitted or not used, the default tolerance is calculated as:
5E-14 •max(dim(Matrixl)) •rowNorm (Matrixl)

Avoid undefined elements in Matrixl. They can lead to unexpected results.

For example, if a is undefined in the following expression, a warning message appears and the result is shown as:
$\operatorname{ref}\left\{\left[\begin{array}{lll}a & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right\} \quad\left[\begin{array}{ccc}1 & \frac{1}{a} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Catalog > 国

The warning appears because the generalized element $1 / a$ would not be valid for $a=0$.

You can avoid this by storing a value to a beforehand or by using the constraint ("।") operator to substitute a value, as shown in the following example.
$\left.\operatorname{ref}\left\{\left[\begin{array}{lll}a & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right\} \right\rvert\, a=0 \quad\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

Note: See also rref(), page 156.

RefreshProbeVars

Catalog > 国

RefreshProbeVars

Allows you to access sensor data from all connected sensor probes in your TI-Basic program.

StatusVar
Value

statusVar	
$=0$	Normal (continue with the
program)	

The Vernier DataQuest ${ }^{\text {TM }}$
application is in data collection
mode.

$=1$ | StatusVar |
| :--- |
| Note: The Vernier DataQuest ${ }^{\text {M }}$ |
| application must be in meter |
| mode for this command to work. |

\square
statusVar The Vernier DataQuest ${ }^{T M}$
=2 application is not launched.
statusVar The Vernier DataQuest ${ }^{\text {M }}$
=3
application is launched, but you have not connected any probes.

Example

```
Define temp()=
Prgm
(c) Check if system is ready
RefreshProbeVars status
If status=0 Then
Disp "ready"
For n,1,50
RefreshProbeVars status
temperature:=meter.temperature
Disp "Temperature:
",temperature
If temperature>30 Then
Disp "Too hot"
EndIf
C) Wait for 1 second between
samples
Wait 1
EndFor
```

```
Else
    Disp "Not ready. Try again
    later"
    EndIf
EndPrgm
```

Note：This can also be used with TI－ Innovator ${ }^{\text {TM }}$ Hub．

remain（）	Catalog＞国］	
remain（Expr 1，Expr 2$) \Rightarrow$ expression	remain（7，0）	7
$\begin{aligned} & \text { remain(List1, List } 2) \Rightarrow \text { list } \\ & \text { remain }(\text { Matrix1, Matrix2 }) \Rightarrow \text { matrix } \end{aligned}$	remain $(7,3)$	1
	remain（－7，3）	－1
	remain $(7,-3)$	1
Returns the remainder of the first argument with respect to the second argument as defined by the identities：	remain（ $-7,-3$ ）	1
	$\operatorname{remain}(\{12,-14,16\},\{9,7,-5\})$	\｛3，0，1\}

```
remain(x,0) x
remain(x,y) x-y*iPart(x/y)
```

As a consequence，note that remain（ $-x, y$ ）－ remain (x, y) ．The result is either zero or it has the same sign as the first argument．
$\operatorname{remain}\left(\left[\begin{array}{cc}9 & -7 \\ 6 & 4\end{array}\right],\left[\begin{array}{cc}4 & 3 \\ 4 & -3\end{array}\right]\right) \quad\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]$

Note：See also mod（），page 116.

Request

Catalog＞国2］

Request promptString，var［，DispFlag ［，statusVar］］

Request promptString，func（arg1，．．．argn） ［，DispFlag［，statusVar］］

Programming command：Pauses the program and displays a dialog box containing the message promptString and an input box for the user＇s response．

When the user types a response and clicks $\mathbf{O K}$ ，the contents of the input box are assigned to variable var．

Define a program：
Define request＿demo（）＝Prgm
Request＂Radius：＂，r
Disp＂Area $=", p i *{ }^{2}$
EndPrgm

Run the program and type a response：
request＿demo（）

If the user clicks Cancel, the program proceeds without accepting any input. The program uses the previous value of var if var was already defined.

The optional DispFlag argument can be any expression.

- If DispFlag is omitted or evaluates to $\mathbf{1}$, the prompt message and user's response are displayed in the Calculator history.
- If DispFlag evaluates to $\mathbf{0}$, the prompt and response are not displayed in the history.
The optional statusVar argument gives the program a way to determine how the user dismissed the dialog box. Note that statusVar requires the DispFlag argument.
- If the user clicked OK or pressed Enter or Ctrl+Enter, variable statusVar is set to a value of 1 .
- Otherwise, variable statusVar is set to a value of $\mathbf{0}$.

The func () argument allows a program to store the user's response as a function definition. This syntax operates as if the user executed the command:

Define func $(\arg 1, \ldots \operatorname{argn})=$ user's response

The program can then use the defined function func (). The promptString should guide the user to enter an appropriate user's response that completes the function definition.

Note: You can use the Request command within a user-defined program but not within a function.

To stop a program that contains a Request command inside an infinite loop:

- Handheld: Hold down the an on key and press enter repeatedly.

Radius: $6 / 2$

Cancel

Result after selecting OK:
Radius: 6/2
Area $=28.2743$

Define a program:

```
Define polynomial()=Prgm
    Request "Enter a polynomial in
x:",p(x)
    Disp "Real roots are:",polyRoots
(p(x),x)
EndPrgm
```

Run the program and type a response:
polynomial()

Result after entering $x^{\wedge} 3+3 x+1$ and selecting OK:

Real roots are: $\{-0.322185\}$

- Windows ${ }^{\circledR}$: Hold down the $\mathbf{F 1 2}$ key and press Enter repeatedly.
- Macintosh ${ }^{\oplus}$: Hold down the F5 key and press Enter repeatedly.
- iPad ${ }^{\oplus}$: The app displays a prompt. You can continue waiting or cancel.

Note: See also RequestStr, page 151.

RequestStr

Catalog > 国

RequestStr promptString, var[, DispFlag]
Programming command: Operates identically to the first syntax of the Request command, except that the user's response is always interpreted as a string. By contrast, the Request command interprets the response as an expression unless the user encloses it in quotation marks ("").

Note: You can use the RequestStr command within a user-defined program but not within a function.

To stop a program that contains a RequestStr command inside an infinite loop:

- Handheld: Hold down the non key and press enter repeatedly.
- Windows ${ }^{\circledR}$: Hold down the $\mathbf{F 1 2}$ key and press Enter repeatedly.
- Macintosh ${ }^{\oplus}$: Hold down the F5 key and press Enter repeatedly.
- iPad ${ }^{\oplus}$: The app displays a prompt. You can continue waiting or cancel.

Note: See also Request, page 149.

Define a program:
Define requestStr_demo()=Prgm
RequestStr "Your name:", name,0
Disp "Response has ",dim(name)," characters."
EndPrgm

Run the program and type a response:
requestStr_demo()

Result after selecting OK (Note that the DispFlag argument of $\mathbf{0}$ omits the prompt and response from the history):

```
requestStr_demo()
    Response has 5 characters.
```

Return［Expr］
Returns Expr as the result of the function．
Use within a Func．．．EndFunc block．
Note：Use Return without an argument within a Prgm．．．EndPrgm block to exit a program．

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

```
Define factorial (nn)=
Func
Local answer,counter
1->answer
For counter,1,nn
answer. counter }->\mathrm{ answer
EndFor
Return answer\
EndFunc
```

 factorial (3)
 6
 right（） Catalog＞酋远
right（List $1[, N u m]) \Rightarrow$ list
right $(\{1,3,-2,4\}, 3\} \quad\{3,-2,4\}$

Returns the rightmost Num elements contained in List1．

If you omit Num，returns all of List1．
right（sourceString［，Num］）\Rightarrow string
right（＂Hello＂，2）＂lo＂

Returns the rightmost Num characters contained in character string sourceString．

If you omit Num，returns all of sourceString．
right（Comparison）\Rightarrow expression
$\overline{\operatorname{right}(x<3)} 3$

Returns the right side of an equation or inequality．

rk23（）

Catalog＞国
rk23（Expr，Var，depVar，\｛Var0，VarMax\},
Differential equation：
depVar0，VarStep［，diftol］）\Rightarrow matrix
rk23（SystemOfExpr，Var，ListOfDepVars， \｛Var0，VarMax\}, ListOfDepVars0, VarStep［，diftol］）\Rightarrow matrix
rk23（ListOfExpr，Var，ListOfDepVars， \｛Var0，VarMax\}, ListOfDepVars0, VarStep［，diftol］）\Rightarrow matrix
$y^{\prime}=0.001^{*} y^{*}(100-y)$ and $y(0)=10$

$\operatorname{rk2} 2(0.001 \cdot y \cdot(100-y), t, y,\{0,100\}, 10,1\}$
$\left[\begin{array}{ccccr}0 . & 1 . & 2 . & 3 . & 4 \\ 10 . & 10.9367 & 11.9493 & 13.042 & 14.2 \\ \hline\end{array}\right.$

To see the entire result，
press $\boldsymbol{\Delta}$ and then use $\boldsymbol{\triangleleft}$ and to move the cursor．

Uses the Runge-Kutta method to solve the system

$$
\frac{d d e p V a r}{d V a r}=\operatorname{Expr}(V a r, d e p V a r)
$$

with $\operatorname{dep} \operatorname{Var}(\operatorname{Var} 0)=d e p \operatorname{Var} 0$ on the interval [Var0,VarMax]. Returns a matrix whose first row defines the Var output values as defined by VarStep. The second row defines the value of the first solution component at the corresponding Var values, and so on.

Expr is the right hand side that defines the ordinary differential equation (ODE).

SystemOfExpr is a system of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

Var is the independent variable.
ListOfDepVars is a list of dependent variables.
$\{$ Var $0, \operatorname{VarMax}\}$ is a two-element list that tells the function to integrate from Var0 to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.
If VarStep evaluates to a nonzero number: $\operatorname{sign}($ VarStep $)=\operatorname{sign}($ VarMax-Var 0) and solutions are returned at Var0+i*VarStep for all $i=0,1,2, \ldots$ such that Var $0+i^{*}$ VarStep is in [var0,VarMax] (may not get a solution value at VarMax).
if VarStep evaluates to zero, solutions are returned at the "Runge-Kutta" Var values.
diftol is the error tolerance (defaults to 0.001).

Same equation with diftol set to $1 . \mathrm{E}-6$

rk23 $\left(0.001 \cdot y \cdot(100-y), t_{2} y,\{0,100\}, 10,1,1 . \mathrm{E}-6\right)$
$\left[\begin{array}{ccccc}0 . & 1 . & 2 . & 3 . & 4 . \\ 10 . & 10.9367 & 11.9495 & 13.0423 & 14.2189\end{array}\right.$

Compare above result with CAS exact solution obtained using deSolve() and seqGen():

$$
\begin{aligned}
& \text { deSolve }\left(y^{\prime}=0.001 \cdot y \cdot(100-y) \text { and } y(0)=10, t y\right) \\
& y=\frac{100 \cdot(1.10517)^{t}}{(1.10517)^{t}+9 .} \\
& \text { seqGen }\left(\frac{100 \cdot(1.10517)^{t}}{(1.10517)^{t}+9 .}, t, y,\{0,100\}\right) \\
& \{10 ., 10.9367,11.9494,13.0423,14.2189,15.4 \varphi \\
& \hline
\end{aligned}
$$

System of equations:
$\left\{\begin{array}{l}y 1^{\prime}=-y 1+0.1 \cdot y 1 \cdot y 2 \\ y 2=3 \cdot y 2-y 1 \cdot y 2\end{array}\right.$
with $y l(0)=2$ and $y 2(0)=5$
$\operatorname{rk} 23\left(\begin{array}{l}-y 1+0.1 \cdot y 1 \cdot y 2 \\ 3 \cdot y 2-y 1 \cdot y 2\end{array}, t,\{y 1, y 2\},\{0,5\},\{2,5\}, 1\right\}$
$\left[\begin{array}{ccccc}0 . & 1 . & 2 . & 3 . & 4 . \\ 2 . & 1.94103 & 4.78694 & 3.25253 & 1.82848 \\ 5 . & 16.8311 & 12.3133 & 3.51112 & 6.27245 \\ \hline\end{array}\right.$
$\operatorname{root}($ Expr $) \Rightarrow$ root
$\operatorname{root}($ Expr1, Expr2) \Rightarrow root
$\boldsymbol{r o o t}(E x p r)$ returns the square root of Expr.
root(Expr1, Expr2) returns the Expr 2 root of Exprl. Exprl can be a real or complex floating point constant, an integer or complex rational constant, or a general symbolic expression.

Note: See also Nth root template, page 1.

rotate()

rotate(Integerl[,\#ofRotations]) \Rightarrow integer
Rotates the bits in a binary integer. You can enter Integerl in any number base; it is converted automatically to a signed, 64-bit binary form. If the magnitude of Integerl is too large for this form, a symmetric modulo operation brings it within the range. For more information, see Base2, page 17.

If \#ofRotations is positive, the rotation is to the left. If \#ofRotations is negative, the rotation is to the right. The default is -1 (rotate right one bit).

For example, in a right rotation:
Each bit rotates right.
Ob000000000000001111010110000110101
Rightmost bit rotates to leftmost.
produces:
Ob100000000000000111101011000011010
The result is displayed according to the Base mode.
rotate(List1[,\#ofRotations]) \Rightarrow list
Returns a copy of List 1 rotated right or left by \#of Rotations elements. Does not alter List1.

Catalog > 国
In Bin base mode:
$\overline{\text { rotate (} 0 \text { b111111111111111111111111111111111) }}$
0b10000000000000000000000000000000001t
rotate $(256,1) \quad 0 b 1000000000$

To see the entire result,
press $\boldsymbol{\Delta}$ and then use $\boldsymbol{\triangleleft}$ and to move the cursor.

In Hex base mode:

rotate $(0 \mathrm{~h} 78 \mathrm{E})$	0 h 3 C 7
rotate $(0 \mathrm{~h} 78 \mathrm{E},-2)$	0 h 800000000000001 E 3
rotate $(0 \mathrm{~h} 78 \mathrm{E}, 2)$	0 h 1 E 38

Important: To enter a binary or hexadecimal number, always use the Ob or Oh prefix (zero, not the letter O).

In Dec base mode:

$\operatorname{rotate}(\{1,2,3,4\})$	$\{4,1,2,3\}$
$\operatorname{rotate}(\{1,2,3,4\},-2\}$	$\{3,4,1,2\}$
$\operatorname{rotate}(\{1,2,3,4\}, 1\}$	$\{2,3,4,1\}$

If \＃ofRotations is positive，the rotation is to the left．If \＃of Rotations is negative，the rotation is to the right．The default is -1 （rotate right one element）．
rotate（String1［，\＃ofRotations］）\Rightarrow string
Returns a copy of Stringl rotated right or left by \＃ofRotations characters．Does not alter String1．

If \＃ofRotations is positive，the rotation is to the left．If \＃ofRotations is negative，the rotation is to the right．The default is -1 （rotate right one character）．

| round () | Catalog $>$ 国 $(2]$ |
| :--- | ---: | ---: |

Returns the argument rounded to the specified number of digits after the decimal point．
digits must be an integer in the range $0-$ 12．If digits is not included，returns the argument rounded to 12 significant digits．

Note：Display digits mode may affect how this is displayed．
round（List $1[$, digits $]) \Rightarrow$ list
Returns a list of the elements rounded to the specified number of digits．
round（Matrix $1[$, digits $]) \Rightarrow$ matrix
Returns a matrix of the elements rounded
round $\{\{\pi, \sqrt{2}, \ln (2)\}, 4\}$
$\{3.1416,1.4142,0.6931\}$
$\operatorname{round}\left(\left[\begin{array}{cc}\ln (5) & \ln (3) \\ \pi & e^{1}\end{array}\right], 1\right\} \quad\left[\begin{array}{ll}1.6 & 1.1 \\ 3.1 & 2.7\end{array}\right]$
$\operatorname{round}\left(\left[\begin{array}{cc}\ln (5) & \ln (3) \\ \pi & e^{1}\end{array}\right], 1\right\} \quad\left[\begin{array}{ll}1.6 & 1.1 \\ 3.1 & 2.7\end{array}\right]$ to the specified number of digits．

rotate（（＂abcd＂）	＂dabc＂
rotate（＂abcd＂，－2）	＂cdab＂
rotate（＂abcd＂，1）	＂bcda＂

rowAdd（）
rowAdd（Matrix 1，rIndex1，rIndex2）\Rightarrow
matrix
Returns a copy of Matrix 1 with row
rIndex 2 replaced by the sum of rows
rIndex1 and rIndex2．

Catalog＞［9⽟ㄹㄹ
$\left.\begin{array}{ll}\hline \operatorname{rowAdd}\left(\left[\begin{array}{cc}3 & 4 \\ -3 & -2\end{array}\right], 1,2\right) & {\left[\begin{array}{ll}3 & 4 \\ 0 & 2\end{array}\right]} \\ \hline \operatorname{rowAdd}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], 1,2\right.\end{array}\right] \quad\left[\begin{array}{cc}a & b \\ a+c & b+d\end{array}\right]$. rIndex 1 and rIndex 2.
rowDim（Matrix）\Rightarrow expression
Returns the number of rows in Matrix．
Note：See also colDim（），page 26.
$\xrightarrow{\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] \rightarrow m 1} \underset{3}{ }$
rowNorm（）
rowNorm（Matrix）\Rightarrow expression
Returns the maximum of the sums of the absolute values of the elements in the rows Catalog＞酋 in Matrix．

Note：All matrix elements must simplify to numbers．See also colNorm（），page 26.
$\operatorname{rowNorm}\left(\left[\begin{array}{ccc}-5 & 6 & -7 \\ 3 & 4 & 9 \\ 9 & -9 & -7\end{array}\right]\right) \quad 25$
rowSwap（）
rowSwap（Matrix1，rIndex1，rIndex 2）\Rightarrow
matrix
Returns Matrix1 with rows rIndex1 and
rIndex2 exchanged．

Catalog＞国

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] \rightarrow$ mat	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
rowSwap $($ mat $, 1,3)$	$\left[\begin{array}{ll}5 & 6 \\ 3 & 4 \\ 1 & 2\end{array}\right]$

rref（）
$\operatorname{rref}($ Matrix $[$［，Tol $]) \Rightarrow$ matrix
Returns the reduced row echelon form of Matrixl．

Optionally，any matrix element is treated as zero if its absolute value is less than Tol． This tolerance is used only if the matrix has floating－point entries and does not contain any symbolic variables that have not been assigned a value．Otherwise，Tol is ignored．
－If you use ctrl enter or set the Auto or Approximate mode to Approximate， computations are done using floating－ point arithmetic．

Catalog＞国
$\operatorname{rref}\left(\left[\begin{array}{cccc}-2 & -2 & 0 & -6 \\ 1 & -1 & 9 & -9 \\ -5 & 2 & 4 & -4\end{array}\right]\right)\left[\begin{array}{cccc}1 & 0 & 0 & \frac{66}{71} \\ 0 & 1 & 0 & \frac{147}{71} \\ 0 & 0 & 1 & \frac{-62}{71}\end{array}\right]$
（1） $\operatorname{rref}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right) \quad\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- If $T o l$ is omitted or not used, the default tolerance is calculated as:
5E-14 •max(dim(Matrix 1)) •rowNorm (Matrix 1)

Note: See also ref(), page 147.

S

$\sec ($ Expr 1$) \Rightarrow$ expression
$\mathbf{s e c}($ List 1$) \Rightarrow$ list
Returns the secant of Exprl or returns a list containing the secants of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode setting. You can use ${ }^{\circ}, \mathrm{G}$, or ${ }^{r}$ to override the angle mode temporarily.

In Degree angle mode:
$\frac{\sec (45)}{\sec (\{1,2.3,4\}) \quad\left\{\frac{1}{\cos (1)}, 1.00081, \frac{1}{\cos (4)}\right\}}$
$\sec ^{-1}()$
$\sec ^{-1}($ Expr 1$) \Rightarrow$ expression
$\mathbf{s e c}^{-1}($ List 1$) \Rightarrow$ list

Returns the angle whose secant is Exprl or returns a list containing the inverse secants of each element of Listl.

Note: The result is returned as a degree, gradian, or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arcsec (...).

In Degree angle mode:

$$
\sec ^{-1}(1) \quad 0
$$

In Gradian angle mode:

$$
\sec ^{-1}(\sqrt{2}) \quad 50
$$

In Radian angle mode:
$\sec ^{-1}(\{1,2,5\}) \quad\left\{0, \frac{\pi}{3}, \cos ^{-1}\left(\frac{1}{5}\right)\right\}$
$\operatorname{sech}($ Exprl $) \Rightarrow$ expression
$\operatorname{sech}($ List 1$) \Rightarrow$ list
Returns the hyperbolic secant of Exprl or returns a list containing the hyperbolic secants of the List 1 elements.
$\operatorname{sech}^{-1}()$
$\operatorname{sech}^{-1}($ Expr 1$) \Rightarrow$ expression
$\operatorname{sech}^{-1}($ List 1$) \Rightarrow$ list
Returns the inverse hyperbolic secant of Exprl or returns a list containing the inverse hyperbolic secants of each element of List 1 .

Note: You can insert this function from the keyboard by typing arcsech (...) .

Send

Send exprOrStringl [, exprOrString2] ..
Programming command: Sends one or more TI-Innovator ${ }^{\text {TM }}$ Hub commands to a connected hub.
exprOrString must be a valid TI-Innovator ${ }^{\text {TM }}$ Hub Command. Typically, exprOrString contains a "SET ..." command to control a device or a "READ ..." command to request data.

The arguments are sent to the hub in succession.

Note: You can use the Send command within a user-defined program but not within a function.

Note: See also Get (page 77), GetStr (page 84), and eval() (page 61).

Catalog > 国
In Radian angle and Rectangular complex mode:

$$
\begin{aligned}
& \hline \operatorname{sech}^{-1}(1) \\
& \operatorname{sech}^{-1}(\{1,-2,2.1\}) \\
& \left\{0, \frac{2 \cdot \pi}{3} \cdot i, 8 \cdot \mathrm{E}-15+1.07448 \cdot i\right\}
\end{aligned}
$$

Hub Menu

Example: Turn on the blue element of the built-in RGB LED for 0.5 seconds.

```
Send "SET COLOR.BLUE ON TIME .5"
```

 Done
 Example: Request the current value of the hub's built-in light-level sensor. A Get command retrieves the value and assigns it to variable lightval.

Send "READ BRIGHTNESS"	Done
Get lightval	Done
lightval	0.347922

Example: Send a calculated frequency to the hub's built-in speaker. Use special variable iostr.SendAns to show the hub command with the expression evaluated.

$n:=50$	50
$m:=4$	4
Send "SET SOUND eval(m•n)"	Done
iostr.SendAns	"SET SOUND 200"

seq()
seq(Expr, Var, Low, High[, Step]) \Rightarrow list
Increments Var from Low through High by an increment of Step, evaluates Expr, and returns the results as a list. The original contents of Var are still there after seq() is completed.

The default value for Step $=1$.

seqGen()

seqGen(Expr, Var, depVar, \{Var0, VarMax\}[, ListOfInitTerms [, VarStep[, CeilingValue]]]) \Rightarrow list

Generates a list of terms for sequence dep $\operatorname{Var}(\operatorname{Var})=E x p r$ as follows: Increments independent variable Var from Var0 through VarMax by VarStep, evaluates depVar(Var) for corresponding values of Var using the Expr formula and ListOfInitTerms, and returns the results as a list.
seqGen(ListOrSystemOfExpr, Var, ListOfDepVars, \{Var0, VarMax\} [, MatrixOfInitTerms[, VarStep[, CeilingValue]]]) \Rightarrow matrix

Catalog > [12]

$\operatorname{seq}\left(n^{2}, n, 1,6\right)$	$\{1,4,9,16,25,36\}$
$\operatorname{seq}\left(\frac{1}{n}, n, 1,10,2\right)$	$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}\right\}$
$\operatorname{sum}\left(\operatorname{seq}\left(\frac{1}{n^{2}}, n, 1,10,1\right)\right)$	$\frac{1968329}{1270080}$

Note: To force an approximate result,
Handheld: Press ctril enter.
Windows ${ }^{\oplus}$: Press Ctrl+Enter.
Macintosh ${ }^{\oplus}$: Press $\mathscr{H}+$ Enter.
iPad ${ }^{\circledR}$: Hold enter, and select \approx.
$\operatorname{sum}\left(\operatorname{seq}\left(\frac{1}{n^{2}}, n, 1,10,1\right)\right)$
1.54977

Catalog > 国

Generate the first 5 terms of the sequence u $(n)=u(n-1)^{2} / 2$, with $u(1)=\mathbf{2}$ and $\operatorname{VarStep}=\mathbf{1}$.
$\operatorname{seqGen}\left(\frac{(u(n-1))^{2}}{n}, n, u,\{1,5\},\{2\}\right)$ $\left\{2,2, \frac{4}{3}, \frac{4}{9}, \frac{16}{405}\right\}$

Example in which Var0 $=2$:

$$
\begin{array}{r}
\operatorname{seqGen}\left\{\frac{u(n-1)+1}{n}, n, u,\{2,5\},\{3\}\right\} \\
\left\{3, \frac{4}{3}, \frac{7}{12}, \frac{19}{60}\right\}
\end{array}
$$

Generates a matrix of terms for a system (or list) of sequences ListOfDepVars(Var) =ListOrSystemOfExpr as follows:
Increments independent variable Var from Var0 through VarMax by VarStep, evaluates ListOfDepVars(Var) for corresponding values of Var using ListOrSystemOfExpr formula and MatrixOfInitTerms, and returns the results as a matrix.

The original contents of Var are unchanged after seqGen() is completed.

The default value for $\operatorname{VarStep}=\mathbf{1}$.

Example in which initial term is symbolic:

$$
\begin{aligned}
& \operatorname{seqGen}(u(n-1)+2, n, u,\{1,5\},\{a\}) \\
& \{a, a+2, a+4, a+6, a+8\}
\end{aligned}
$$

System of two sequences:
$\operatorname{seqGen}\left\{\left\{\frac{1}{n}, \frac{u 2(n-1)}{2}+u 1(n-1)\right\}, n,\{u 1, u 2\},\{1,5\},\left[\frac{1}{2}\right]\right\}$
$\left[\begin{array}{ccccc}1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ 2 & 2 & \frac{3}{2} & \frac{13}{12} & \frac{19}{24}\end{array}\right]$

Note: The Void (_) in the initial term matrix above is used to indicate that the initial term for $u 1(n)$ is calculated using the explicit sequence formula $u 1(n)=1 / n$.

Catalog > 国
Generate the first 6 terms of the sequence u (n) $=u(n-1) / 2$, with $u(1)=2$.

$$
\begin{aligned}
& \text { seqn }\left(\frac{u(n-1)}{n},\{2\}, 6\right) \\
& \operatorname{seqn}\left(\frac{1}{n^{2}}, 6\right) \quad\left\{2,1, \frac{1}{3}, \frac{1}{12}, \frac{1}{60}, \frac{1}{360}\right\} \\
& \hline
\end{aligned}
$$

Generates a list of terms for a nonrecursive sequence $u(n)=\operatorname{Expr}(n)$ as follows: Increments n from 1 through $n M a x$ by 1 , evaluates $u(n)$ for corresponding values of n using the $\operatorname{Expr}(n)$ formula, and returns the results as a list.

If $n M a x$ is missing, $n M a x$ is set to 2500
If $n M a x=0, n M a x$ is set to 2500
Note: seqn() calls seqGen() with $n 0=1$ and nstep $=1$
series(Expr1, Var, Order $[$, Point $]) \Rightarrow$ expression
series(Expr1, Var, Order[, Point]) ।
Var>Point \Rightarrow expression
series(Expr1, Var, Order[, Point])।
Var $<$ Point \Rightarrow expression

Returns a generalized truncated power series representation of Exprl expanded about Point through degree Order. Order can be any rational number. The resulting powers of (Var - Point) can include negative and/or fractional exponents. The coefficients of these powers can include logarithms of (Var - Point) and other functions of Var that are dominated by all powers of (Var - Point) having the same exponent sign.

Point defaults to 0 . Point can be ∞ or $-\infty$, in which cases the expansion is through degree Order in 1/(Var - Point).
series (...) returns "series(...)" if it is unable to determine such a representation, such as for essential singularities such as $\sin (1 / z)$ at $z=0, e^{-1 / z}$ at $z=0$, or e^{2} at $z=\infty$ or $-\infty$.

If the series or one of its derivatives has a jump discontinuity at Point, the result is likely to contain sub-expressions of the form sign(...) or abs(...) for a real expansion variable or ($(-1)^{\text {floor (...angle(...)...) }}$ for a complex expansion variable, which is one ending with " ${ }^{\prime}$ ". If you intend to use the series only for values on one side of Point, then append the appropriate one of " | Var> Point", "| Var < Point", "| "Var \geq Point", or "Var \leq Point" to obtain a simpler result.
series() can provide symbolic approximations to indefinite integrals and definite integrals for which symbolic solutions otherwise can't be obtained.

$$
\begin{aligned}
& \operatorname{series}\left(\frac{1-\cos (x-1)}{(x-1)^{2}}, x, 4,1\right) \quad \frac{1}{2}-\frac{(x-1)^{2}}{24}+\frac{(x-1)^{4}}{720} \\
& \text { series }\left(\frac{-1}{z_{2}}, z_{-}, 1\right) \quad z_{-}-1 \\
& \text { series }\left(\left(1+\frac{1}{n}\right)^{n}, n, 2, \infty\right) \quad \mathbf{e}-\frac{\mathbf{e}}{2 \cdot n}+\frac{11 \cdot \mathbf{e}}{24 \cdot n^{2}} \\
& \left.\operatorname{series}\left(\tan ^{-1}\left(\frac{1}{x}\right), x, 5\right) \right\rvert\, x>0 \quad \frac{\pi}{2}-x+\frac{x^{3}}{3}-\frac{x^{5}}{5} \\
& \operatorname{series}\left(\int \frac{\sin (x)}{x} \mathrm{~d} x, x, 6\right) \quad x-\frac{x^{3}}{18}+\frac{x^{5}}{600} \\
& \operatorname{series}\left(\int_{0}^{x} \sin (x \cdot \sin (t)) \mathrm{d} t, x, 7\right) \quad \frac{x^{3}}{2}-\frac{x^{5}}{24}-\frac{29 \cdot x^{7}}{720} \\
& \operatorname{series}\left(\left(1+\boldsymbol{e}^{x}\right)^{2}, x, 2,1\right) \\
& (\mathbf{e}+1)^{2}+2 \cdot \mathbf{e} \cdot(\mathbf{e}+1) \cdot(x-1)+\mathbf{e} \cdot(2 \cdot \mathbf{e}+1) \cdot(x-1)^{2}
\end{aligned}
$$

series() distributes over 1st-argument lists and matrices.
series() is a generalized version of taylor().
As illustrated by the last example to the right, the display routines downstream of the result produced by series(...) might rearrange terms so that the dominant term is not the leftmost one.

Note: See also dominantTerm(), page 55.

setMode()

Catalog > 国
setMode(modeNameInteger, settingInteger) \Rightarrow integer setMode(list) \Rightarrow integer list

Valid only within a function or program.
setMode(modeNameInteger, settingInteger) temporarily sets mode modeNameInteger to the new setting settingInteger, and returns an integer corresponding to the original setting of that mode. The change is limited to the duration of the program/function's execution.
modeNameInteger specifies which mode you want to set. It must be one of the mode integers from the table below.
settingInteger specifies the new setting for the mode. It must be one of the setting integers listed below for the specific mode you are setting.
setMode(list) lets you change multiple settings. list contains pairs of mode integers and setting integers. setMode(list) returns a similar list whose integer pairs represent the original modes and settings.

If you have saved all mode settings with getMode(0) \rightarrow var, you can use setMode (var) to restore those settings until the function or program exits. See getMode(), page 83.

Display approximate value of π using the default setting for Display Digits, and then display π with a setting of Fix2. Check to see that the default is restored after the program executes.

Define $\operatorname{prog} 1()=$	Prgm
	Disp approx (π)
	setMode $(1,16)$
	Disp approx (π) EndPrgm
$\operatorname{prog} 1()$	3.14159
	3.14

Note：The current mode settings are passed to called subroutines．If any subroutine changes a mode setting，the mode change will be lost when control returns to the calling routine．

Note for entering the example：For instructions on entering multi－line program and function definitions，refer to the Calculator section of your product guidebook．

| Mode
 Name | Mode
 Integer | Setting Integers |
| :--- | :--- | :--- | | Display
 Digits | 1 | 1＝Float，2＝Float1，3＝Float2，4＝Float3，5＝Float4，6＝Float5，
 7＝Float6，8＝Float7，9＝Float8，10＝Float9，11＝Float10，
 12＝Float11，13＝Float12，14＝Fix0，15＝Fix1，16＝Fix2，
 $\mathbf{1 7}=$ Fix3，18＝Fix4，19＝Fix5，20＝Fix6，21＝Fix7，22＝Fix8，
 $\mathbf{2 3}=$ Fix9，24＝Fix10，25＝Fix11，26＝Fix12 |
| :--- | :--- | :--- |
| Angle | 2 | 1＝Radian，2＝Degree，3＝Gradian |
| Exponential
 Format | 3 | 1＝Normal，2＝Scientific，3＝Engineering |
| Real or
 Complex | 4 | 1＝Real，2＝Rectangular，3＝Polar |
| Auto or
 Approx． | 5 | $\mathbf{1 = A u t o , ~ 2 = A p p r o x i m a t e , ~ 3 = E x a c t ~}$ |
| Vector
 Format | 6 | 1＝Rectangular，2＝Cylindrical，3＝Spherical |
| Base | 7 | 1＝Decimal，2＝Hex，3＝Binary |
| Unit
 system | 8 | 1＝SI，2＝Eng／US |

shift（）
shift（Integer1［，\＃ofShifts］）\Rightarrow integer
Shifts the bits in a binary integer．You can enter Integerl in any number base；it is converted automatically to a signed，64－bit binary form．If the magnitude of Integerl is too large for this form，a symmetric modulo operation brings it within the range．For more information，see Base2，page 17.

In Bin base mode：
shift（0b1111010110000110101） 0b111101011000011010
$\overline{\text { shift }(256,1) \quad 0 b 1000000000}$

In Hex base mode：

If \#ofShifts is positive, the shift is to the left. If \#ofShifts is negative, the shift is to the right. The default is -1 (shift right one bit).

In a right shift, the rightmost bit is dropped and 0 or 1 is inserted to match the leftmost bit. In a left shift, the leftmost bit is dropped and 0 is inserted as the rightmost bit.

For example, in a right shift:
Each bit shifts right.
Ob0000000000000111101011000011010
Inserts 0 if leftmost bit is 0 , or 1 if leftmost bit is 1 .
produces:
Ob000000000000000111101011000011010
The result is displayed according to the Base mode. Leading zeros are not shown.
shift(List $1[\# 0 f$ Shifts] $) \Rightarrow$ list
Returns a copy of List 1 shifted right or left by \#ofShifts elements. Does not alter Listl.

If \#ofShifts is positive, the shift is to the left. If \#ofShifts is negative, the shift is to the right. The default is -1 (shift right one element).

Elements introduced at the beginning or end of list by the shift are set to the symbol "undef".
shift(Stringl[,\#ofShifts]) \Rightarrow string
Returns a copy of Stringl shifted right or left by \#ofShifts characters. Does not alter Stringl.

If \#ofShifts is positive, the shift is to the left. If \#ofShifts is negative, the shift is to the right. The default is -1 (shift right one character).

shift $(0 \mathrm{Oh} 78 \mathrm{E})$	0h3C7
shift $($ Oh78E,-2)	0h1E3
shif($($ Oh78E,2)	0h1E38

Important: To enter a binary or hexadecimal number, always use the Ob or Oh prefix (zero, not the letter O).

In Dec base mode:

$\operatorname{shift}(\{1,2,3,4\})$	$\{$ undef, $1,2,3\}$
$\operatorname{shift}(\{1,2,3,4\},-2)$	$\{$ undef,undef,1,2\}
$\operatorname{shift}(\{1,2,3,4\}, 2\}$	$\{3,4$, undef,undef $\}$

shift("abcd")	" abc"
shift("abcd",-2)	" ab"
shift("abcd",1)	"bcd "

Characters introduced at the beginning or end of string by the shift are set to a space．
sign（）
$\operatorname{sign}($ Expr 1$) \Rightarrow$ expression
$\operatorname{sign}($ List 1$) \Rightarrow$ list
$\boldsymbol{\operatorname { s i g n }}($ Matrix 1$) \Rightarrow$ matrix
For real and complex Expr1，returns
Exprl／abs（Exprl）when Expr $1 \neq 0$ ．
Returns 1 if Exprl is positive．Returns－1 if Exprlis negative．
$\operatorname{sign}(0)$ represents the unit circle in the complex domain．

For a list or matrix，returns the signs of all the elements．

Catalog＞国

$\operatorname{sign}(-3.2)$	-1.
$\operatorname{sign}(\{2,3,4,-5\})$	$\{1,1,1,-1\}$
$\operatorname{sign}(1+\mid x)$	1

If complex format mode is Real：

simult（）

simult（coeffMatrix，constVector $[$, Tol $]) \Rightarrow$ matrix

Returns a column vector that contains the solutions to a system of linear equations．

Note：See also linSolve（），page 102.
coeffMatrix must be a square matrix that contains the coefficients of the equations．
constVector must have the same number of rows（same dimension）as coeffMatrix and contain the constants．

Optionally，any matrix element is treated as zero if its absolute value is less than Tol． This tolerance is used only if the matrix has floating－point entries and does not contain any symbolic variables that have not been assigned a value．Otherwise，Tol is ignored．
－If you set the Auto or Approximate mode to Approximate，computations are done using floating－point arithmetic．

- If Tol is omitted or not used, the default tolerance is calculated as:
5E-14 •max(dim(coeffMatrix))
-rowNorm(coeffMatrix)
simult(coeffMatrix, constMatrix[, Tol]) \Rightarrow Solve:
matrix
Solves multiple systems of linear equations, where each system has the same equation coefficients but different constants.

Each column in constMatrix must contain the constants for a system of equations. Each column in the resulting matrix contains the solution for the corresponding system.

$$
\begin{aligned}
& x+2 y=1 \\
& 3 x+4 y=-1 \\
& x+2 y=2 \\
& 3 x+4 y=-3 \\
& \text { simult }\left[\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right],\left[\begin{array}{rr}
1 & 2 \\
-1 & -3
\end{array}\right]\right]
\end{aligned}
$$

For the first system, $x=-3$ and $y=2$. For the second system, $x=-7$ and $\mathrm{y}=9 / 2$.

Catalog > 国
Expr-sin
Note: You can insert this operator from the computer keyboard by typing @>sin.

Represents Expr in terms of sine. This is a display conversion operator. It can be used only at the end of the entry line.
$>\sin$ reduces all powers of $\cos (\ldots)$ modulo $1-\sin (\ldots)^{\wedge} 2$ so that any remaining powers of $\sin (\ldots)$ have exponents in the range (0,2). Thus, the result will be free of cos(...) if and only if $\cos (. .$.$) occurs in the given expression only$ to even powers.

Note: This conversion operator is not supported in Degree or Gradian Angle modes. Before using it, make sure that the Angle mode is set to Radians and that Expr does not contain explicit references to degree or gradian angles.
$\boldsymbol{\operatorname { s i n }}($ List 1$) \Rightarrow$ list
$\boldsymbol{\operatorname { s i n }}($ Expr 1$)$ returns the sine of the argument as an expression.
$\boldsymbol{\operatorname { s i n }}$ (List1) returns a list of the sines of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode. You can use ${ }^{\circ}, \mathrm{g}$, or ${ }^{\mathbf{r}}$ to override the angle mode setting temporarily.

In Gradian angle mode:

$\sin (50)$
$\frac{\sqrt{2}}{2}$

In Radian angle mode:

In Radian angle mode:

$$
\begin{gathered}
\sin \left(\left[\begin{array}{ccc}
1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1
\end{array}\right]\right. \\
{\left[\begin{array}{ccc}
0.9424 & -0.04542 & -0.031999 \\
-0.045492 & 0.949254 & -0.020274 \\
-0.048739 & -0.00523 & 0.961051
\end{array}\right]}
\end{gathered}
$$

result always contains floating-point numbers.
$\sin ($ squareMatrixl $) \Rightarrow$ squareMatrix
Returns the matrix sine of squareMatrixl. This is not the same as calculating the sine of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix 1 must be diagonalizable. The

$\sin \left(\frac{\pi}{4}\right)$	$\frac{\sqrt{2}}{2}$
$\sin \left(45^{\circ}\right)$	$\frac{\sqrt{2}}{2}$

$\boldsymbol{\operatorname { s i n }}^{-1}()$

$\boldsymbol{\operatorname { s i n }}^{-1}($ Expr 1$) \Rightarrow$ expression
$\boldsymbol{\operatorname { s i n }}^{-1}($ List 1$) \Rightarrow$ list
$\sin ^{-1}(E x p r 1)$ returns the angle whose sine is Exprl as an expression.
$\boldsymbol{\operatorname { s i n }}^{-1}$ (Listl) returns a list of the inverse sines of each element of Listl.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

In Degree angle mode:
$\sin ^{-1}(1) \quad 90$

In Gradian angle mode:

```
sin

In Radian angle mode:
\(\sin ^{-1}(\{0,0.2,0.5\}) \quad\{0,0.201358,0.523599\}\)

Note: You can insert this function from the keyboard by typing arcsin (...).
\(\boldsymbol{\operatorname { s i n }}^{-1}\) (squareMatrixl) \(\Rightarrow\) squareMatrix
Returns the matrix inverse sine of squareMatrixl. This is not the same as calculating the inverse sine of each element. For information about the calculation method, refer to \(\cos ()\).

In Radian angle mode and Rectangular complex format mode:
```

\mp@subsup{\operatorname{sin}}{}{-1}}([$$
\begin{array}{ll}{1}&{5}\\{4}&{2}\end{array}
$$]
-0.174533-0.12198\cdot\boldsymbol{i}}1.7.74533-2.35591\cdot\boldsymbol{i
1.39626-1.88473\cdot\boldsymbol{i}}0.174533-0.593162\cdot\boldsymbol{i

```
squareMatrixl must be diagonalizable. The result always contains floating-point numbers.
\(\sinh ()\)
Catalog > 国至
\(\sinh (\) Expr 1\() \Rightarrow\) expression
\(\sinh (\) List 1\() \Rightarrow\) list
sinh (Exprl) returns the hyperbolic sine of the argument as an expression.
\(\sinh\) (Listl) returns a list of the hyperbolic sines of each element of Listl.
\(\sinh (\) squareMatrix 1\() \Rightarrow\) squareMatrix
Returns the matrix hyperbolic sine of squareMatrixl. This is not the same as calculating the hyperbolic sine of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrix 1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode:
\(\sinh \left(\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)\)
\(\left[\begin{array}{llll}360.954 & 305.708 & 239.604 \\ 352.912 & 233.495 & 193.564 \\ 298.632 & 154.599 & 140.251\end{array}\right]\)
\begin{tabular}{|c|c|c|}
\hline \(\sinh ^{-1}()\) & \multicolumn{2}{|r|}{Catalog > [1]} \\
\hline \(\sinh ^{-1}(\) Expr 1\() \Rightarrow\) expression & \(\sinh ^{-1}(0)\) & 0 \\
\hline \(\sinh ^{-1}(\) List \()=\) list & \(\sinh ^{-1}(\{0,2.1,3\})\) & \(\left\{0,1.48748, \sinh ^{-1}(3)\right\}\) \\
\hline
\end{tabular}

Note：You can insert this function from the keyboard by typing arcsinh（．．．）．
\(\boldsymbol{\operatorname { s i n h }}^{-1}(\) squareMatrix 1\() \Rightarrow\) squareMatrix
Returns the matrix inverse hyperbolic sine of squareMatrixl．This is not the same as calculating the inverse hyperbolic sine of each element．For information about the calculation method，refer to \(\cos ()\) ．
squareMatrix 1 must be diagonalizable．The result always contains floating－point numbers．

In Radian angle mode：
\(\sinh ^{-1}\left(\left[\begin{array}{lll}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right\}\)
\(\left[\begin{array}{ccc}0.041751 & 2.15557 & 1.1582 \\ 1.46382 & 0.926568 & 0.112557 \\ 2.75079 & -1.5283 & 0.57268\end{array}\right]\)

SinReg
SinReg \(X, Y[\) ，［Iterations］，［Period］［， Category，Include］］

Computes the sinusoidal regression on lists \(X\) and \(Y\) ．A summary of results is stored in the stat．results variable．（See page 176．）

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Iterations is a value that specifies the maximum number of times（ 1 through 16）a solution will be attempted．If omitted， 8 is used．Typically，larger values result in better accuracy but longer execution times，and vice versa．

Period specifies an estimated period．If omitted，the difference between values in \(X\) should be equal and in sequential order．If you specify Period，the differences between x values can be unequal．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes．Only those data items whose category code is included in this list are included in the calculation．

The output of SinReg is always in radians, regardless of the angle mode setting.

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat. RegEqn & Regression Equation: a•sin(bx+c)+d \\
\hline \begin{tabular}{l} 
stat.a, stat.b, \\
stat.c, stat.d
\end{tabular} & Regression coefficients \\
\hline stat. Resid & Residuals from the regression \\
\hline stat.XReg & \begin{tabular}{l} 
List of data points in the modified X List actually used in the regression based on \\
restrictions of Freq, Category List, and Include Categories
\end{tabular} \\
\hline stat.YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression based on \\
restrictions of Freq, Category List, and Include Categories
\end{tabular} \\
\hline stat. FreqReg & List of frequencies corresponding to stat.XReg and stat. YReg \\
\hline
\end{tabular}
solve()
Catalog > 島
solve(Equation, Var) \(\Rightarrow\) Boolean
expression
solve(Equation, Var \(=\) Guess \() \Rightarrow\) Boolean expression
solve(Inequality, Var) \(\Rightarrow\) Boolean
expression
Returns candidate real solutions of an equation or an inequality for Var. The goal is to return candidates for all solutions. However, there might be equations or inequalities for which the number of solutions is infinite.

Solution candidates might not be real finite solutions for some combinations of values for undefined variables.
\[
\begin{aligned}
& \text { solve }\left(a \cdot x^{2}+b \cdot x+c=0, x\right) \\
& \qquad x=\frac{\sqrt{b^{2}-4 \cdot a \cdot c-b}}{2 \cdot a} \text { or } x=\frac{\left(\sqrt{b^{2}-4 \cdot a \cdot c}+b\right)}{2 \cdot a}
\end{aligned}
\]
\[
\begin{aligned}
& \text { Ans } \mid a=1 \text { and } b=1 \text { and } c=1 \\
& \qquad x=\frac{-1}{2}+\frac{\sqrt{3}}{2} \cdot i \text { or } x=\frac{-1}{2}-\frac{\sqrt{3}}{2} \cdot i
\end{aligned}
\]

For the Auto setting of the Auto or
Approximate mode, the goal is to produce exact solutions when they are concise, and supplemented by iterative searches with approximate arithmetic when exact solutions are impractical.

Due to default cancellation of the greatest common divisor from the numerator and denominator of ratios, solutions might be solutions only in the limit from one or both sides.

For inequalities of types \(\geq, \leq,<\), or \(>\), explicit solutions are unlikely unless the inequality is linear and contains only Var.
For the Exact mode, portions that cannot be solved are returned as an implicit equation or inequality.

Use the constraint (" \(\mid\) ") operator to restrict the solution interval and/or other variables that occur in the equation or inequality. When you find a solution in one interval, you can use the inequality operators to exclude that interval from subsequent searches.
false is returned when no real solutions are found. true is returned if solve() can determine that any finite real value of Var satisfies the equation or inequality.
Since solve() always returns a Boolean result, you can use "and," "or," and "not" to combine results from solve() with each other or with other Boolean expressions.

Solutions might contain a unique new undefined constant of the form \(\mathbf{n} j\) with \(j\) being an integer in the interval 1-255. Such variables designate an arbitrary integer.
\[
\begin{aligned}
& \text { solve }\left((x-a) \cdot e^{x}=-x \cdot(x-a), x\right) \\
& x=a \text { or } x=-0.567143
\end{aligned}
\]
\begin{tabular}{ll}
\((x+1) \cdot \frac{x-1}{x-1}+x-3\) & \(2 \cdot x-2\) \\
\hline
\end{tabular}
solve \((5 \cdot x-2 \geq 2 \cdot x, x) \quad x \geq \frac{2}{3}\)
\[
\begin{array}{r}
\operatorname{exact}\left(\text { solve }\left((x-a) \cdot e^{x}=-x \cdot(x-a), x\right)\right) \\
e^{x+x=0} \text { or } x=a
\end{array}
\]

In Radian angle mode:
solve \(\left.\left(\tan (x)=\frac{1}{x}, x\right) \right\rvert\, x>0\) and \(x<1\)
\[
x=0.860334
\]
\begin{tabular}{lc}
\hline solve \((x=x+1, x)\) & false \\
\hline solve \((x=x, x)\) & true \\
\hline
\end{tabular}
\(2 \cdot x-1 \leq 1\) and solve \(\left(x^{2} \neq 9, x\right) \quad x \neq-3\) and \(x \leq 1\)

In Radian angle mode:
solve \((\sin (x)=0, x) \quad x=n 1 \cdot \pi\)

In Real mode, fractional powers having odd denominators denote only the real branch. Otherwise, multiple branched expressions such as fractional powers, logarithms, and inverse trigonometric functions denote only the principal branch. Consequently, solve() produces only solutions corresponding to that one real or principal branch.

Note: See also cSolve(), cZeros(), nSolve(), and zeros().
solve(Eqn1 and Eqn2[and ...],
VarOrGuess 1, VarOrGuess 2[, ...])
\(\Rightarrow\) Boolean expression
solve(SystemOfEqns, VarOrGuess1, VarOrGuess2[, ...])
\(\Rightarrow\) Boolean expression
solve(\{Eqn1, Eqn2 [,...]\}
\{VarOrGuess1,VarOrGuess2 [, ... ]\})
\(\Rightarrow\) Boolean expression
Returns candidate real solutions to the simultaneous algebraic equations, where each VarOrGuess specifies a variable that you want to solve for.

You can separate the equations with the and operator, or you can enter a SystemOfEqns using a template from the Catalog. The number of VarOrGuess arguments must match the number of equations. Optionally, you can specify an initial guess for a variable. Each VarOrGuess must have the form:
variable
- or -
variable \(=\) real or non-real number
For example, x is valid and so is \(\mathrm{x}=3\).
\begin{tabular}{lr}
\hline solve \(\left(\frac{1}{3}, x^{3}=-1, x\right)\) & \(x=-1\) \\
\hline solve \((\sqrt{x}=-2, x)\) & false \\
\hline solve \((-\sqrt{x}=-2, x)\) & \(x=4\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { solve }\left(y=x^{2}-2 \text { and } x+2 \cdot y=-1,\{x, y\}\right) \\
& x=\frac{-3}{2} \text { and } y=\frac{1}{4} \text { or } x=1 \text { and } y=-1
\end{aligned}
\]

If all of the equations are polynomials and if you do NOT specify any initial guesses, solve() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all real solutions.

For example, suppose you have a circle of radius \(r\) at the origin and another circle of radius \(r\) centered where the first circle crosses the positive \(x\)-axis. Use solve() to find the intersections.

As illustrated by \(r\) in the example to the right, simultaneous polynomial equations can have extra variables that have no values, but represent given numeric values that could be substituted later.

You can also (or instead) include solution variables that do not appear in the equations. For example, you can include \(z\) as a solution variable to extend the previous example to two parallel intersecting cylinders of radius \(r\).

The cylinder solutions illustrate how families of solutions might contain arbitrary constants of the form \(\mathrm{c} k\), where \(k\) is an integer suffix from 1 through 255.

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list solution variables. If your initial choice exhausts memory or your patience, try rearranging the variables in the equations and/or varOrGuess list.

If you do not include any guesses and if any equation is non-polynomial in any variable but all equations are linear in the solution variables, solve() uses Gaussian elimination to attempt to determine all real solutions.

\[
\begin{aligned}
& \text { solve }\left(x^{2}+y^{2}=r^{2} \text { and }(x-r)^{2}+y^{2}=r^{2},\{x, y\}\right) \\
& x=\frac{r}{2} \text { and } y=\frac{\sqrt{3} \cdot r}{2} \text { or } x=\frac{r}{2} \text { and } y=\frac{-\sqrt{3} \cdot r}{2}
\end{aligned}
\]
\[
\text { solve }\left(x^{2}+y^{2}=r^{2} \text { and }(x-r)^{2}+y^{2}=r^{2},\{x, y, z\}\right)
\]
\[
x=\frac{r}{2} \text { and } y=\frac{\sqrt{3} \cdot r}{2} \text { and } z=c 1 \text { or } x=\frac{r}{2} \text { and } y=
\]

To see the entire result, press \(\boldsymbol{\Delta}\) and then use \(\boldsymbol{\triangleleft}\) and to move the cursor.
\[
\begin{array}{r}
\text { solve }\left(x+e^{z} \cdot y=1 \text { and } x-y=\sin (z),\{x, y\}\right) \\
x=\frac{e^{z} \cdot \sin (z)+1}{e^{z+1}} \text { and } y=\frac{-(\sin (z)-1)}{e^{z+1}}
\end{array}
\]

If a system is neither polynomial in all of its variables nor linear in its solution variables， solve（）determines at most one solution using an approximate iterative method．To do so，the number of solution variables must equal the number of equations，and all other variables in the equations must simplify to numbers．
Each solution variable starts at its guessed value if there is one；otherwise，it starts at 0．0．

Use guesses to seek additional solutions one by one．For convergence，a guess may have to be rather close to a solution．
solve \(\left(e^{z} \cdot y=1\right.\) and \(\left.-y=\sin (z),\{y, z\}\right)\)
\(\underline{y=2.812 \mathrm{E}^{-10} \text { and } z=21.9911 \text { or } y=0.001871}\)
To see the entire result，
press \(\boldsymbol{\Delta}\) and then use \(\boldsymbol{⿶}\) and \(\downarrow\) to move the cursor．
\[
\begin{array}{r}
\text { solve }\left(e^{z} \cdot y=1 \text { and }-y=\sin (z),\{y, z=2 \cdot \pi\}\right) \\
y=0.001871 \text { and } z=6.28131 \\
\hline
\end{array}
\]

\section*{SortA}

SortA List1［，List2］［，List3］．．． SortA Vectorl［，Vector2］［，Vector3］．．．

Sorts the elements of the first argument in ascending order．

If you include additional arguments，sorts the elements of each so that their new positions match the new positions of the elements in the first argument．

All arguments must be names of lists or vectors．All arguments must have equal dimensions．

Empty（void）elements within the first argument move to the bottom．For more information on empty elements，see page 236.

Catalog＞国
\begin{tabular}{lr}
\hline\(\{2,1,4,3\} \rightarrow\) list 1 & \(\{2,1,4,3\}\) \\
\hline SortA list1 & Done \\
\hline list1 & \(\{1,2,3,4\}\) \\
\hline\(\{4,3,2,1\} \rightarrow\) list 2 & \(\{4,3,2,1\}\) \\
\hline SortA list2，list1 & Done \\
\hline list 2 & \(\{1,2,3,4\}\) \\
\hline list 1 & \(\{4,3,2,1\}\) \\
\hline
\end{tabular}

SortD List1[, List2][, List3]...
SortD Vector1[,Vector2][,Vector3]...
Identical to SortA, except SortD sorts the elements in descending order.

Empty (void) elements within the first argument move to the bottom. For more information on empty elements, see page 236.
\begin{tabular}{lr}
\hline\(\{2,1,4,3\} \rightarrow\) list 1 & \(\{2,1,4,3\}\) \\
\hline\(\{1,2,3,4\} \rightarrow\) list 2 & \(\{1,2,3,4\}\) \\
\hline SortD listl, list 2 & Done \\
\hline list 1 & \(\{4,3,2,1\}\) \\
\hline list 2 & \(\{3,4,1,2\}\)
\end{tabular}

\section*{Sphere}

\section*{Vector Sphere}

Note: You can insert this operator from the computer keyboard by typing @>Sphere.

Displays the row or column vector in spherical form [ \(\rho \angle \theta \angle \varphi\) ].

Vector must be of dimension 3 and can be either a row or a column vector.

Note: Sphere is a display-format instruction, not a conversion function. You can use it only at the end of an entry line.

Note: To force an approximate result,
Handheld: Press ctrl enter.
Windows \({ }^{\circledR}\) : Press Ctrl+Enter.
Macintosh \({ }^{\ominus}\) : Press \(\mathscr{H}+E n t e r\).
iPad \({ }^{\circledR}\) : Hold enter, and select \(\approx\).
```

[lll}
[3.74166 <1.10715 <0.640522]

```
\(\left(\left[\left[\begin{array}{lll}2 & \angle \frac{\pi}{4} & 3\end{array}\right]\right)\right.\) Sphere
\(\left[\begin{array}{lll}3.60555 & \angle 0.785398 & \angle 0.588003\end{array}\right]\)

Press enter
\(\left(\left[\begin{array}{lll}2 & \angle \frac{\pi}{4} & 3\end{array}\right]\right)\) Sphere
\(\left[\sqrt{13}<\frac{\pi}{4}<\sin ^{-1}\left(\frac{2 \cdot \sqrt{13}}{13}\right)\right]\)


\section*{sqrt（）}

Catalog＞［－2］
sqrt（Exprl）\(\Rightarrow\) expression
\(\mathbf{s q r t}(\) List 1\() \Rightarrow\) list
\begin{tabular}{lr}
\(\sqrt{4}\) & 2 \\
\(\sqrt{\{9, a, 4\}}\) & \(\{3, \sqrt{a}, 2\}\) \\
\hline
\end{tabular}

Returns the square root of the argument．
For a list，returns the square roots of all the elements in List1．

Note：See also Square root template，page 1.

\section*{stat．results}

\section*{stat．results}

Displays results from a statistics calculation．

The results are displayed as a set of name－ value pairs．The specific names shown are dependent on the most recently evaluated statistics function or command．

You can copy a name or value and paste it into other locations．

Note：Avoid defining variables that use the same names as those used for statistical analysis．In some cases，an error condition could occur．Variable names used for statistical analysis are listed in the table below．

Catalog＞国远
\begin{tabular}{|c|c|}
\hline xlist：\(=\{1,2,3,4\) & ，\(\quad\) ， \(1,2,3,4,5\}\) \\
\hline ylist：\(=\{4,8,11\), & ， 14,17\(\} \quad\{4,8,11,14,17\}\) \\
\hline \multicolumn{2}{|l|}{LinRegMx xlist，ylist，1：stat．results} \\
\hline ＂Title＂ & ＂Linear Regression（mx +b ）\({ }^{\text {＂}}\) \\
\hline ＂RegEqn＂ & ＂m＊x＋b＂ \\
\hline ＂m＂ & 3.2 \\
\hline ＂b＂ & 1.2 \\
\hline ＂r2＂ & 0.996109 \\
\hline ＂r＂ & 0.998053 \\
\hline ＂Resid＂ & ＂\(\{. .\).\(\} ＂\) \\
\hline stat．values & ［＂Linear Regression（mx＋b）＂ \\
\hline & ＂m＊x＋b＂ \\
\hline & 3.2 \\
\hline & 1.2 \\
\hline & 0.996109 \\
\hline & 0.998053 \\
\hline & ＂\(\{-0.4,0.4,0.2,0 .,-0.2\}\)＂ \\
\hline
\end{tabular}
stat.a
stat.AdjR \({ }^{2}\)
stat.b
stat.b0
stat.b1
stat.b2
stat.b3
stat.b4
stat.b5
stat.b6
stat.b7
stat.b8
stat.b9
stat.b10
stat.bList
stat. \(\chi^{2}\)
stat.c
stat.CLower
stat.CLowerList
stat.CompList
stat.CompMatrix
stat.CookDist
stat.CUpper
stat.CUpperList
stat.d
\begin{tabular}{ll} 
stat.dfDenom & stat.MedianY \\
stat.dfBlock & stat.MEPred \\
stat.dfCol & stat.MinX \\
stat.dfError & stat.MinY \\
stat.dfInteract & stat.MS \\
stat.dfReg & stat.MSBlock \\
stat.dfNumer & stat.MSCol \\
stat.dfRow & stat.MSError \\
stat.DW & stat.MSInteract \\
stat.e & stat.MSReg \\
stat.ExpMatrix & stat.MSRow \\
stat.F & stat.n \\
stat.FBlock & Stat. \(\hat{p}\) \\
stat.Fcol & stat. \(\hat{p} 1\) \\
stat.FInteract & stat. \(\hat{P} 2\) \\
stat.FreqReg & stat. \(\hat{p}\) Diff \\
stat.Frow & stat.PList \\
stat.Leverage & stat.PVal \\
stat.LowerPred & stat.PValBlock \\
stat.LowerVal & stat.PValCol \\
stat.m & stat.PValInteract \\
stat.MaxX & stat.PValRow \\
stat.MaxY & stat.Q1X \\
stat.ME & stat.Q1Y \\
stat.MedianX & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline stat.Q3X & stat.SSBlock \\
\hline stat.Q3Y & stat.SSCol \\
\hline stat.r & stat.SSX \\
\hline stat. \(\mathrm{r}^{2}\) & stat.SSY \\
\hline stat.RegEqn & stat.SSError \\
\hline stat.Resid & stat.SSInteract \\
\hline stat.ResidTrans & stat.SSReg \\
\hline stat. \(\sigma x\) & stat.SSRow \\
\hline stat. \(\sigma \mathrm{y}\) & stat.tList \\
\hline stat. \(\sigma \times 1\) & stat.UpperPred \\
\hline stat. \(\sigma \times 2\) & stat.UpperVal \\
\hline stat. \(\sum \mathrm{x}\) & stat. \(\bar{X}\) \\
\hline stat. \(\Sigma \mathrm{x}^{2}\) & stat. \(\overline{\mathrm{X}} 1\) \\
\hline stat. \(\sum x y\) & stat. \(\overline{\mathrm{X}} 2\) \\
\hline stat. \(\Sigma \mathrm{y}\) & stat. \(\bar{X}\) Diff \\
\hline stat. \(\Sigma \mathrm{y}^{2}\) & stat. \(\bar{X}\) List \\
\hline stat.s & stat.XReg \\
\hline stat.SE & stat.XVal \\
\hline stat.SEList & stat.XValList \\
\hline stat.SEPred & stat. \(\overline{\mathrm{y}}\) \\
\hline stat.sResid & stat. \(\hat{\mathbf{y}}\) \\
\hline stat.SEslope & stat. \(\hat{y}\) List \\
\hline stat.sp & \\
\hline stat.SS & \\
\hline
\end{tabular}

Note: Each time the Lists \& Spreadsheet application calculates statistical results, it copies the "stat." group variables to a "stat\#." group, where \# is a number that is incremented automatically. This lets you maintain previous results while performing multiple calculations.

\section*{stat.values}

\section*{Catalog > [- \(\mathrm{I}_{2}^{2}\)}
stat.values See the stat.results example.

Displays a matrix of the values calculated for the most recently evaluated statistics function or command.

Unlike stat.results, stat.values omits the names associated with the values.

You can copy a value and paste it into other locations.
stDevPop(List \([\), freqList \(]\) ) \(\Rightarrow\) expression
Returns the population standard deviation of the elements in List.

Each freqList element counts the number of consecutive occurrences of the corresponding element in List.

Note:List must have at least two elements. Empty (void) elements are ignored. For more information on empty elements, see page 236.
stDevPop(Matrix \([\) [, freqMatrix] \() \Rightarrow\) matrix

Returns a row vector of the population standard deviations of the columns in Matrixl.

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrixl.

Note:Matrix lmust have at least two rows. Empty (void) elements are ignored. For more information on empty elements, see page 236.

\section*{stDevSamp()}
stDevSamp(List \([\), freqList \(]) \Rightarrow\) expression
Returns the sample standard deviation of the elements in List.

Each freqList element counts the number of consecutive occurrences of the corresponding element in List.
Note:List must have at least two elements. Empty (void) elements are ignored. For more information on empty elements, see page 236.

In Radian angle and auto modes:
\begin{tabular}{l} 
stDevPop \((\{a, b, c\})\) \\
\(\frac{\sqrt{2 \cdot\left(a^{2}-a \cdot(b+c)+b^{2}-b \cdot c+c^{2}\right)}}{3}\) \\
stDevPop \((\{1,2,5,-6,3,-2\})\) \\
stDevPop \((\{1.3,2.5,-6.4\},\{3,2,5\})\) \\
\hline
\end{tabular}
stDevPop \(\left.\left[\begin{array}{ccc}1 & 2 & 5 \\ -3 & 0 & 1 \\ 5 & 7 & 3\end{array}\right]\right)\left[\begin{array}{lll}4 \cdot \sqrt{6} & \frac{\sqrt{78}}{3} & \frac{2 \cdot \sqrt{6}}{3}\end{array}\right]\)
\(\operatorname{stDevPop}\left(\left[\begin{array}{cc}-1.2 & 5.3 \\ 2.5 & 7.3 \\ 6 & -4\end{array}\right],\left[\begin{array}{ll}4 & 2 \\ 3 & 3 \\ 1 & 7\end{array}\right]\right)\)
\(\left[\begin{array}{ll}2.52608 & 5.21506\end{array}\right]\)

Catalog > 国
stDevSamp \((\{a, b, c\})\)
\(\frac{\sqrt{3 \cdot\left(a^{2}-a \cdot(b+c)+b^{2}-b \cdot c+c^{2}\right)}}{3}\)
stDevSamp \((\{1,2,5,-6,3,-2\}) \quad \frac{\sqrt{62}}{2}\)
stDevSamp \((\{1.3,2.5,-6.4\},\{3,2,5\})\)
stDevSamp（Matrix \(1[\) ，freqMatrix \(]) \Rightarrow\) matrix

Returns a row vector of the sample standard deviations of the columns in Matrix 1 ．

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrixl．
\(\left.\begin{array}{l}\text { stDevSamp }\left(\left[\begin{array}{ccc}1 & 2 & 5 \\ -3 & 0 & 1 \\ 5 & 7 & 3\end{array}\right]\right) \quad\left[\begin{array}{lll}4 & \sqrt{13} & 2\end{array}\right] \\ \text { stDevSamp }\left(\left[\begin{array}{cc}-1.2 & 5.3 \\ 2.5 & 7.3 \\ 6 & -4\end{array}\right],\left[\begin{array}{ll}4 & 2 \\ 3 & 3 \\ 1 & 7\end{array}\right]\right. \\ {[2.7005} \\ 5.44695\end{array}\right] \quad\).

Note：Matrix lmust have at least two rows． Empty（void）elements are ignored．For more information on empty elements，see page 236.
\begin{tabular}{|c|c|c|}
\hline Stop & \multicolumn{2}{|r|}{Catalog＞国 \({ }^{2}\)} \\
\hline Stop & \(i:=0\) & 0 \\
\hline Programming command：Terminates the program． & \[
\begin{aligned}
\text { Define } \operatorname{prog} 1() & =\operatorname{Prgm} \\
& \text { For } i, 1,10,1 \\
& \text { If } i=5
\end{aligned}
\] & Done \\
\hline Stop is not allowed in functions． & Stop & \\
\hline Note for entering the example：For & EndFor EndPrgm & \\
\hline and function definitions，refer to the & \(\operatorname{prog} 1()\) & Done \\
\hline Calculator section of your product & \(i\) & 5 \\
\hline
\end{tabular}
Store See \(\rightarrow\)（store），page 233.
\begin{tabular}{|c|c|c|}
\hline string（） & \multicolumn{2}{|r|}{Catalog＞国运} \\
\hline string（Expr）\(\Rightarrow\) string & string（1．2345） & ＂1．2345＂ \\
\hline Simplifies Expr and returns the result as a & string（ \(1+2\) ） & ＂3＂ \\
\hline character string． & string \((\cos (x)+\sqrt{3})\) & \(" \cos (\mathrm{x})+\sqrt{ }(3) "\) \\
\hline
\end{tabular}
subMat（Matrix l［，startRow］［，startCol］［， endRow］［，endCol］）\(\Rightarrow\) matrix

Returns the specified submatrix of Matrix1．
Defaults： startRow＝1， start Col＝1， endRow＝last row，endCol＝last column．

Sum（Sigma）
See \(\Sigma()\) ，page 224.
\begin{tabular}{ll}
{\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9\end{array}\right] \rightarrow m 1\)} & {\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9\end{array}\right]\)} \\
\hline subMat \((m 1,2,1,3,2)\) & {\(\left[\begin{array}{ll}4 & 5 \\
7 & 8\end{array}\right]\)} \\
\hline subMat \((m 1,2,2)\) & {\(\left[\begin{array}{ll}5 & 6 \\
8 & 9\end{array}\right]\)}
\end{tabular}

Catalog＞国远
\(\operatorname{sum}(\) List \([, \operatorname{Start}[, E n d]]) \Rightarrow\) expression Returns the sum of all elements in List．

Start and End are optional．They specify a range of elements．

Any void argument produces a void result． Empty（void）elements in List are ignored． For more information on empty elements， see page 236.
\(\operatorname{sum}(\) Matrix l［，Start \([, E n d]]) \Rightarrow\) matrix
Returns a row vector containing the sums of all elements in the columns in Matrixl．

Start and End are optional．They specify a range of rows．

Any void argument produces a void result． Empty（void）elements in Matrixl are ignored．For more information on empty elements，see page 236.
sumlf（）
sumlf（List，Criteria［，SumList］）\(\Rightarrow\) value
Returns the accumulated sum of all elements in List that meet the specified Criteria．Optionally，you can specify an alternate list，sumList，to supply the elements to accumulate．
\begin{tabular}{lr}
\hline \(\operatorname{sum}(\{1,2,3,4,5\})\) & 15 \\
\hline \(\operatorname{sum}(\{a, 2 \cdot a, 3 \cdot a\})\) & \(6 \cdot a\) \\
\hline \(\operatorname{sum}(\operatorname{seq}(n, n, 1,10)\}\) & 55 \\
\hline \(\operatorname{sum}(\{1,3,5,7,9\}, 3)\) & 21 \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{lc}\operatorname{sum}\left(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\right.\end{array}\right] \begin{array}{lll}5 & 7 & 9\end{array}\right]\)

List can be an expression，list，or matrix．
SumList，if specified，must have the same dimension（s）as List．

Criteria can be：
－A value，expression，or string．For example， \(\mathbf{3 4}\) accumulates only those elements in List that simplify to the value 34 ．
－A Boolean expression containing the symbol ？as a placeholder for each element．For example，？＜10 accumulates only those elements in List that are less than 10.

When a List element meets the Criteria， the element is added to the accumulating sum．If you include sumList，the corresponding element from sumList is added to the sum instead．

Within the Lists \＆Spreadsheet application， you can use a range of cells in place of List and sumList．

Empty（void）elements are ignored．For more information on empty elements，see page 236.

Note：See also countlf（），page 35.
sumSeq（） See \(\Sigma()\) ，page 224.
system（Eqn1［，Eqn2［，Eqn3［，．．．］］］）
system（Expr \(1[\), Expr \(2[, \operatorname{Expr} 3[, \ldots]]\) ）
solve \(\left(\left\{\begin{array}{l}\left\{\begin{array}{l}x+y=0 \\ x-y=8\end{array}, x, y\right.\end{array}\right) \quad x=4\right.\) and \(y=-4\)

Returns a system of equations，formatted as a list．You can also create a system by using a template．

Note：See also System of equations，page 3.

T (transpose)
Catalog > 国
Matrix \(1 \mathbf{T} \Rightarrow\) matrix
Returns the complex conjugate transpose of Matrixl.

Note: You can insert this operator from the computer keyboard by typing @t.
\begin{tabular}{lr}
\hline\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9\end{array}\right]^{\top}\) & {\(\left[\begin{array}{lll}1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9\end{array}\right]\)} \\
\hline\(\left[\begin{array}{ll}a & b \\
c & d\end{array}\right]^{\top}\) & {\(\left[\begin{array}{cc}a & c \\
b & d\end{array}\right]\)} \\
\hline\(\left[\begin{array}{ll}1+i & 2+i \\
3+i & 4+i\end{array}\right]^{\top}\) & {\(\left[\begin{array}{cc}1-i & 3-i \\
2-i & 4-i\end{array}\right]\)} \\
\hline
\end{tabular}

\section*{\(\tan ()\)}

\section*{trig key}
\(\boldsymbol{\operatorname { t a n }}(\) Expr 1\() \Rightarrow\) expression
\(\boldsymbol{\operatorname { t a n }}(\) List 1\() \Rightarrow\) list
\(\boldsymbol{\operatorname { t a n }}(\operatorname{Expr} 1)\) returns the tangent of the argument as an expression.
\(\boldsymbol{\operatorname { t a n }}\) (Listl) returns a list of the tangents of all elements in Listl.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode. You can use \({ }^{\circ}, \mathrm{g}\) or \({ }^{r}\) to override the angle mode setting temporarily.
\(\boldsymbol{\operatorname { t a n }}(\) squareMatrix 1\() \Rightarrow\) squareMatrix
Returns the matrix tangent of squareMatrixl. This is not the same as calculating the tangent of each element. For information about the calculation method, refer to \(\boldsymbol{\operatorname { c o s } ( )}\).

In Degree angle mode:
\begin{tabular}{lr}
\hline \(\tan \left(\frac{\pi}{4} r\right)\) & 1 \\
\hline \(\tan (45)\) & 1 \\
\hline \(\tan (\{0,60,90\})\) & \(\{0, \sqrt{3}\), undef \(\}\) \\
\hline
\end{tabular}

In Gradian angle mode:
\begin{tabular}{lr}
\hline \(\tan \left(\frac{\pi}{4} r\right)\) & 1 \\
\hline \(\tan (50)\) & 1 \\
\hline \(\tan (\{0,50,100\})\) & \(\{0,1\), undef \(\}\) \\
\hline
\end{tabular}

In Radian angle mode:
\begin{tabular}{lr}
\hline \(\tan \left(\frac{\pi}{4}\right)\) & 1 \\
\hline \(\tan \left(45^{\circ}\right)\) & 1 \\
\hline \(\tan \left(\left\{\pi, \frac{\pi}{3},-\pi, \frac{\pi}{4}\right\}\right)\) & \(\{0, \sqrt{3}, 0,1\}\) \\
\hline
\end{tabular}

In Radian angle mode:

squareMatrix 1 must be diagonalizable. The result always contains floating-point numbers.
\begin{tabular}{llll}
\(\boldsymbol{\operatorname { t a n }}^{-1}()\) & & trig key \\
\(\boldsymbol{\operatorname { t a n }}^{-1}(\) Expr 1\() \Rightarrow\) expression & In Degree angle mode: & \\
\({ }^{-1}(\) List 1\() \Rightarrow\) list \(} }\) & \(\overline{\tan ^{-1}(1)}\) & 45
\end{tabular}
\(\boldsymbol{\operatorname { t a n }}^{-1}\) (Exprl) returns the angle whose tangent is Exprl as an expression.
\(\boldsymbol{\operatorname { t a n }}^{-1}\) (Listl) returns a list of the inverse tangents of each element of Listl.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arctan (...).
\(\boldsymbol{\operatorname { t a n }}^{-1}(\) squareMatrix \(\boldsymbol{l}) \Rightarrow\) squareMatrix
Returns the matrix inverse tangent of squareMatrixl. This is not the same as calculating the inverse tangent of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrix 1 must be diagonalizable. The result always contains floating-point numbers.

\section*{tangentLine()}
tangentLine(Exprl,Var,Point) \(\Rightarrow\) expression
tangentLine(Expr1,Var \(=\) Point \() \Rightarrow\)
expression
Returns the tangent line to the curve represented by Exprl at the point specified in Var \(=\) Point .

Catalog > 国
\begin{tabular}{lr}
\hline tangentLine \(\left(x^{2}, x, 1\right)\) & \(2 \cdot x-1\) \\
\hline tangentLine \(\left((x-3)^{2}-4, x=3\right)\) & -4 \\
\hline tangentLine \(\left(\frac{1}{3}\right)\) & \(x=0\) \\
\hline tangentLine \(\left(\sqrt{x^{2}-4}, x=2\right)\) & undef \\
\hline\(x:=3:\) tangentLine \(\left(x^{2}, x, 1\right)\) & 5 \\
\hline
\end{tabular}

Make sure that the independent variable is not defined．For example，If \(f 1(x):=5\) and \(\mathrm{x}:=3\) ，then tangentline（ \(\mathrm{f} 1(\mathrm{x}), \mathrm{x}, 2\) ）returns ＂false．＂
\begin{tabular}{|c|c|c|}
\hline tanh（） & \multicolumn{2}{|r|}{Catalog＞国} \\
\hline \(\boldsymbol{\operatorname { t a n h }}(\) Expr 1\() \Rightarrow\) expression & \(\tanh (1.2)\) & 0.833655 \\
\hline  & \(\tanh (\{0,1\})\) & \(\{0, \tanh (1)\}\) \\
\hline
\end{tabular}
\(\boldsymbol{t a n h}(\) Expr 1\()\) returns the hyperbolic tangent of the argument as an expression．
\(\boldsymbol{\operatorname { t a n h }}(\) List 1）returns a list of the hyperbolic tangents of each element of Listl．
\(\boldsymbol{\operatorname { t a n h }}(\) squareMatrixl \() \Rightarrow\) squareMatrix
Returns the matrix hyperbolic tangent of squareMatrixl．This is not the same as calculating the hyperbolic tangent of each element．For information about the calculation method，refer to \(\cos ()\) ．
squareMatrix 1 must be diagonalizable．The In Radian angle mode：
\begin{tabular}{rl}
\(\tanh \left(\left[\begin{array}{lll}1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1\end{array}\right]\right)\) \\
& {\(\left[\begin{array}{ccc}-0.097966 & 0.933436 & 0.425972 \\
0.488147 & 0.538881 & -0.129382 \\
1.28295 & -1.03425 & 0.428817\end{array}\right]\)} \\
\hline
\end{tabular} result always contains floating－point numbers．
\(\boldsymbol{\operatorname { t a n h }}^{-1}()\)

Catalog＞国远
In Rectangular complex format：
\begin{tabular}{lr}
\hline \(\tanh ^{-1}(0)\) & 0 \\
\(\tanh ^{-1}(\{1,2.1,3\})\) \\
\(\quad\left\{\right.\) undef \(\left., 0.518046-1.5708 \cdot \boldsymbol{i}, \frac{\ln (2)}{2}-\frac{\pi}{2} \cdot \boldsymbol{i}\right\}\) \\
\hline
\end{tabular}

In Radian angle mode and Rectangular complex format：

Returns the matrix inverse hyperbolic tangent of squareMatrixl．This is not the same as calculating the inverse hyperbolic tangent of each element．For information about the calculation method，refer to cos （）．
squareMatrix 1 must be diagonalizable．The result always contains floating－point numbers．
\(\tanh ^{-1}\left(\left[\begin{array}{lll}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right\}\)
\[
\left[\begin{array}{cc}
-0.099353+0.164058 \cdot \boldsymbol{i} & 0.267834-1.4908 \\
-0.087596-0.725533 \cdot \boldsymbol{i} & 0.479679-0.94731 \\
0.511463-2.08316 \cdot \boldsymbol{i} & -0.878563+1.7901
\end{array}\right.
\]

To see the entire result， press \(\Delta\) and then use \(\boldsymbol{\triangleleft}\) and to move the cursor．
taylor（）
Catalog＞［⿴囗玉心］
taylor（Expr1，Var，Order［，Point］）\(\Rightarrow\) expression

Returns the requested Taylor polynomial． The polynomial includes non－zero terms of integer degrees from zero through Order in （Var minus Point）．taylor（）returns itself if there is no truncated power series of this order，or if it would require negative or fractional exponents．Use substitution and／or temporary multiplication by a power of（Var minus Point）to determine more general power series．

Point defaults to zero and is the expansion point．
\(\operatorname{tCdf}(\) lowBound，upBound，\(d f) \Rightarrow\) number if lowBound and upBound are numbers，list if lowBound and upBound are lists

Computes the Student－\(t\) distribution probability between lowBound and upBound for the specified degrees of freedom \(d f\) ．

For \(\mathrm{P}(\mathrm{X} \leq\) upBound \()\) ，set lowBound \(=-\infty\) ．
tCollect（Exprl）\(\Rightarrow\) expression
Returns an expression in which products and integer powers of sines and cosines are converted to a linear combination of sines and cosines of multiple angles，angle sums， and angle differences．The transformation converts trigonometric polynomials into a linear combination of their harmonics．

Sometimes tCollect（）will accomplish your goals when the default trigonometric simplification does not．tCollect（）tends to reverse transformations done by tExpand（）． Sometimes applying tExpand（）to a result from tCollect（），or vice versa，in two separate steps simplifies an expression．
\begin{tabular}{lr}
\hline \(\mathrm{t} \operatorname{Collect}\left((\cos (\alpha))^{2}\right)\) & \(\frac{\cos (2 \cdot \alpha)+1}{2}\) \\
\hline \(\mathrm{t} \operatorname{Collect}(\sin (\alpha) \cdot \cos (\beta))\) & \(\frac{\sin (\alpha-\beta)+\sin (\alpha+\beta)}{2}\) \\
\hline
\end{tabular}
\(\longrightarrow\)

\section*{tExpand（）}
tExpand \((\) Expr 1\() \Rightarrow\) expression
Returns an expression in which sines and cosines of integer－multiple angles，angle sums，and angle differences are expanded． Because of the identity \((\sin (x)) 2+(\cos (x))\) \(2=1\) ，there are many possible equivalent results．Consequently，a result might differ from a result shown in other publications．

Sometimes tExpand（）will accomplish your goals when the default trigonometric simplification does not．tExpand（）tends to reverse transformations done by tCollect（）． Sometimes applying tCollect（）to a result from tExpand（），or vice versa，in two separate steps simplifies an expression．

Note：Degree－mode scaling by \(\pi / 180\) interferes with the ability of \(\mathbf{t E x p a n d}()\) to recognize expandable forms．For best results，tExpand（）should be used in Radian mode．

\section*{Catalog＞国运}
\begin{tabular}{|c|c|}
\hline tExpand \((\sin (3 \cdot \varphi))\) & \(4 \cdot \sin (\varphi) \cdot(\cos (\varphi))^{2}-\sin (\varphi)\) \\
\hline \multicolumn{2}{|l|}{tExpand \((\cos (\alpha-\beta))\)} \\
\hline & \(\cos (\alpha) \cdot \cos (\beta)+\sin (\alpha) \cdot \sin (\beta)\) \\
\hline
\end{tabular}

TextpromptString［，DispFlag］
Programming command：Pauses the program and displays the character string promptString in a dialog box．

When the user selects OK，program execution continues．

The optional flag argument can be any expression．
－If DispFlag is omitted or evaluates to \(\mathbf{1}\) ， the text message is added to the Calculator history．
－If DispFlag evaluates to \(\mathbf{0}\) ，the text message is not added to the history．

If the program needs a typed response from the user，refer to Request，page 149，or RequestStr，page 151.

Note：You can use this command within a user－defined program but not within a function．

Define a program that pauses to display each of five random numbers in a dialog box．

Within the Prgm．．．EndPrgm template， complete each line by pressing instead of enter．On the computer keyboard，hold down Alt and press Enter．
```

Define text_demo()=Prgm
For i,1,5
strinfo:="Random number " \&
string(rand(i))
Text strinfo
EndFor
EndPrgm

```

Run the program：
text＿demo（）

Sample of one dialog box：

（Data list input）
tinterval \(\overline{\mathrm{x}}, s x, n[\), CLevel \(]\)
（Summary stats input）
Computes a \(t\) confidence interval．A summary of results is stored in the stat．results variable．（See page 176．）

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.CLower, stat.CUpper & Confidence interval for an unknown population mean \\
\hline stat. \(\overline{\mathrm{X}}\) & Sample mean of the data sequence from the normal random distribution \\
\hline stat.ME & Margin of error \\
\hline stat. df & Degrees of freedom \\
\hline stat. \(\sigma x\) & Sample standard deviation \\
\hline stat.n & Length of the data sequence with sample mean \\
\hline
\end{tabular}

\section*{tInterval_2Samp}
tInterval_2Samp Listl,List2[,Freq1[,Freq2
[,CLevel[,Pooled] \(]\) ]
(Data list input)
tInterval_2Samp \(\overline{\mathrm{X}} 1, s x 1, n 1, \overline{\mathrm{x}} 2, s x 2, n 2\)
[,CLevel[,Pooled]]
(Summary stats input)
Computes a two-sample \(t\) confidence interval. A summary of results is stored in the stat.results variable. (See page 176.)

Pooled=1 pools variances; Pooled=0 does not pool variances.

For information on the effect of empty
elements in a list, see "Empty (Void)
Elements," page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline \begin{tabular}{l} 
stat.CLower, \\
stat.CUpper
\end{tabular} & Confidence interval containing confidence level probability of distribution \\
\hline stat. \(\overline{\mathrm{X} 1-\overline{\mathrm{x}} 2}\) & \begin{tabular}{l} 
Sample means of the data sequences from the normal random \\
distribution
\end{tabular} \\
\hline stat.ME & Margin of error \\
\hline stat.df & Degrees of freedom \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat. \(\overline{\mathrm{X}} 1\), stat. \(\overline{\mathrm{X}} 2\) & \begin{tabular}{l} 
Sample means of the data sequences from the normal random \\
distribution
\end{tabular} \\
\hline stat. \(\sigma \times 1\), stat. \(\sigma \times 2\) & Sample standard deviations for List 1 and List 2 \\
\hline stat.n1, stat.n2 & Number of samples in data sequences \\
\hline stat.sp & The pooled standard deviation. Calculated when Pooled \(=\) YES \\
\hline
\end{tabular}
\(\operatorname{tmpCnv}()\)
\(\mathbf{t m p C n v}\left(\right.\) Expr \({ }^{\circ}{ }^{\circ}\) tempUnit, _\({ }^{\circ}\) tempUnit 2 )
\(\Rightarrow\) expression__tempUnit2

Converts a temperature value specified by Expr from one unit to another. Valid temperature units are:
\({ }^{\circ} \mathrm{C}\) Celsius
\({ }^{-}{ }^{\circ} \mathrm{F}\) Fahrenheit
\({ }^{-}{ }^{\circ} \mathrm{K}\) Kelvin
- \({ }^{\circ}\) R Rankine

To type \({ }^{\circ}\), select it from the Catalog symbols.
to type _ , press atr| \(\square\).
For example, \(100{ }^{\circ} \mathrm{C}\) converts to \(212{ }^{\circ}{ }^{\circ} \mathrm{F}\).
To convert a temperature range, use \(\Delta\) tmpCnv() instead.

\section*{\(\Delta \mathrm{tmpCnv}()\)}
\(\Delta \operatorname{tmpCnv}\left(E x p r{ }^{\circ}\right.\) tempUnit, _\({ }^{\circ}\) tempUnit 2\()\) \(\Rightarrow\) expression - \({ }^{\circ}\) tempUnit 2

Note: You can insert this function from the keyboard by typing deltaTmpCnv (...).

Converts a temperature range (the difference between two temperature values) specified by Expr from one unit to another. Valid temperature units are:
\({ }^{\circ} \mathrm{C}\) Celsius
\({ }^{-}{ }^{\circ} \mathrm{F}\) Fahrenheit
\({ }^{-}{ }^{\circ} \mathrm{K}\) Kelvin
_- \({ }^{\circ}\) R Rankine

Catalog > 国
\begin{tabular}{|c|c|}
\hline \(\triangle \operatorname{tmpCnv}\left(100 \cdot{ }_{-}{ }^{\circ} \mathrm{C},{ }_{-}{ }^{\circ} \mathrm{F}\right)\) & 180. \({ }^{\text {- }}{ }^{\circ} \mathrm{F}\) \\
\hline \(\Delta \operatorname{tmpCnv}\left(180 \cdot{ }^{\circ} \mathrm{F},{ }_{-}{ }^{\circ} \mathrm{C}\right)\) & 100. \({ }_{-}{ }^{\circ} \mathrm{C}\) \\
\hline \(\Delta \operatorname{tmpCnv}\left(100 \cdot{ }^{\circ}{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{K}\right)\) & 100. - \({ }^{\circ} \mathrm{K}\) \\
\hline \(\Delta \operatorname{tmpCnv}\left(100 \cdot{ }^{\circ}{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{R}\right)\) & 100. \({ }^{\text {- }}\) 吹 \\
\hline \(\Delta \operatorname{tmpCnv}\left(1 \cdot{ }_{-}{ }^{\circ} \mathrm{C},{ }_{-}{ }^{\circ} \mathrm{F}\right)\) & 1.8._ \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}

Note: You can use the Catalog to select temperature units.

\section*{\(\Delta\) tmpCnv（）}

To enter \({ }^{\circ}\) ，select it from the Symbol Palette or type＠d．

To type＿，press ctrlu．
\(1_{-}{ }^{\circ} \mathrm{C}\) and \(1_{-}{ }^{\circ} \mathrm{K}\) have the same magnitude， as do \(1_{-}{ }^{\circ} \mathrm{F}\) and \(1_{-}{ }^{\circ} \mathrm{R}\) ．However， \(1_{-}{ }^{\circ} \mathrm{C}\) is \(9 / 5\) as large as \(1_{-}{ }^{\circ} \mathrm{F}\) ．

For example，a \(100{ }_{-}{ }^{\circ} \mathrm{C}\) range（from \(0_{-}{ }^{\circ} \mathrm{C}\) to \(100{ }^{\circ} \mathrm{C}\) ）is equivalent to a \(180{ }^{\circ}{ }^{\circ} \mathrm{F}\) range．

To convert a particular temperature value instead of a range，use tmpCnv（）．

\section*{tPdf（）}

Catalog＞国
\(\operatorname{tPdf}(X V a l, d f) \Rightarrow\) number if \(X V a l\) is a
number，list if \(X V a l\) is a list
Computes the probability density function （pdf）for the Student－\(t\) distribution at a specified \(x\) value with specified degrees of freedom \(d f\) ．
\begin{tabular}{|c|c|c|}
\hline trace（） & \multicolumn{2}{|r|}{Catalog＞国 \({ }_{\text {2 }}\)} \\
\hline \begin{tabular}{l}
trace（squareMatrix）\(\Rightarrow\) expression \\
Returns the trace（sum of all the elements on the main diagonal）of squareMatrix．
\end{tabular} & \(\operatorname{trace}\left(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\right)\) & 15 \\
\hline & \(\operatorname{trace}\left(\left[\begin{array}{ll}a & 0 \\ 1 & a\end{array}\right]\right)\) & \(2 \cdot a\) \\
\hline
\end{tabular}

\section*{Try}

\section*{block1}

Else
block2
EndTry
Executes blockl unless an error occurs. Program execution transfers to block2 if an error occurs in blockl. System variable errCode contains the error code to allow the program to perform error recovery. For a list of error codes, see "Error codes and messages," page 243.
block1 and block2 can be either a single statement or a series of statements separated with the ":" character.

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

To see the commands Try, CIrErr, and PassErr in operation, enter the eigenvals() program shown at the right. Run the program by executing each of the following expressions.
eigenvals \(\left(\left[\begin{array}{c}-3 \\ -41 \\ 5\end{array}\right],\left[\begin{array}{lll}-1 & 2 & -3.1\end{array}\right]\right)\)
eigenvals \(\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)\)
Note: See also CIrErr, page 25, and PassErr, page 131.


Define eigenvals \((a, b)=\operatorname{Prgm}\)
© Program eigenvals( \(\mathrm{A}, \mathrm{B}\) ) displays eigenvalues of \(A \cdot B\)

Try
Disp "A= ", a
Disp "B= ",b
Disp" "
Disp "Eigenvalues of \(\mathrm{A} \cdot \mathrm{B}\) are:",eigVI(a*b)
Else
If errCode=230 Then
Disp "Error: Product of \(A \bullet B\) must be a
square matrix"
ClrErr
Else
PassErr
Endlf
EndTry
EndPrgm

\section*{tTest \(\mu 0\), List \([\), Freq[,Hypoth] ]}
(Data list input)
tTest \(\mu 0, \overline{\mathrm{x}}, s x, n,[\) Hypoth]
(Summary stats input)
Performs a hypothesis test for a single unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is unknown.
A summary of results is stored in the stat.results variable. (See page 176.)

Test \(H_{0}: \mu=\mu 0\), against one of the
following:
For \(\mathrm{H}_{\mathrm{a}}: \mu<\mu 0\), set Hypoth<0
For \(\mathrm{H}^{\mathrm{a}}: \mu \neq \mu 0\) (default), set Hypoth \(=0\)
For \(H_{a}^{a}\) : \(\mu>\mu 0\), set Hypoth \(>0\)
For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.t & \((\overline{\mathrm{x}}-\mu 0) /(\) stdev / sqrt(n)) \\
\hline stat.PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat.df & Degrees of freedom \\
\hline stat. \(\overline{\mathrm{X}}\) & Sample mean of the data sequence in List \\
\hline stat.sx & Sample standard deviation of the data sequence \\
\hline stat. \(n\) & Size of the sample \\
\hline
\end{tabular}

\section*{tTest_2Samp}

Catalog > 国
tTest_2Samp List1,List2[,Freq1[,Freq2
[,Hypoth[,Pooled]]]]
(Data list input)
tTest_2Samp \(\overline{\mathrm{x}} 1, s x 1, n 1, \overline{\mathrm{x}} 2, s x 2, n 2[, H y p o t h\)
[,Pooled]]
(Summary stats input)

Computes a two－sample \(t\) test．A summary of results is stored in the stat．results variable．（See page 176．）

Test \(H_{0}: \mu 1=\mu 2\) ，against one of the following：

For \(\mathrm{H}_{a}: \mu 1<\mu 2\) ，set Hypoth＜0
For \(\mathrm{H}^{\mathrm{a}}: \mu 1 \neq \mu 2\)（default），set Hypoth \(=0\)
For \(H_{a}^{a}\) ：\(\mu 1>\mu 2\) ，set Hypoth \(>0\)
Pooled \(=1\) pools variances
Pooled \(=\mathbf{0}\) does not pool variances
For information on the effect of empty elements in a list，see＂Empty（Void）
Elements，＂page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．t & Standard normal value computed for the difference of means \\
\hline stat．PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat．df & Degrees of freedom for the t－statistic \\
\hline stat．\(\overline{\text { x } 1, ~ s t a t . ~} \overline{\mathrm{x}} 2\) & Sample means of the data sequences in List 1 and List 2 \\
\hline stat．sx1，stat．sx2 & Sample standard deviations of the data sequences in List 1 and List 2 \\
\hline stat．n1，stat．n2 & Size of the samples \\
\hline stat．sp & The pooled standard deviation．Calculated when Pooled \(=1\). \\
\hline
\end{tabular}
tvmFV（）
tvmFV（N，I，PV，Pmt，\([P p Y],[C p Y],[P m t A t])\)
\(\Rightarrow\) value

Catalog＞国
\(\operatorname{tvmFV}(120,5,0,-500,12,12)\)
77641.1

Financial function that calculates the future value of money．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 195．See also amortTbl（）， page 8 ．
tvml（）
tvml（N，PV，Pmt，\(F V,[P p Y],[C p Y],[P m t A t])\)
\(\Rightarrow\) value

Catalog＞国］
\begin{tabular}{ll}
\hline \(\operatorname{tvmI}(240,100000,-1000,0,12,12)\) & 10.5241 \\
\hline
\end{tabular}

Financial function that calculates the interest rate per year．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 195．See also amortTbl（）， page 8.
\begin{tabular}{|c|c|c|}
\hline tvmN（） & \multicolumn{2}{|r|}{Catalog＞［⿴囗玉大］} \\
\hline \[
\begin{aligned}
& \text { tvmN }(I, P V, P m t, F V,[P p Y],[C p Y],[P m t A t]) \\
& \Rightarrow \text { value }
\end{aligned}
\] & tvmN（ \(5,0,-500,77641,12,12)\) & 120. \\
\hline
\end{tabular}

Financial function that calculates the number of payment periods．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 195．See also amortTbl（）， page 8.
\begin{tabular}{|c|c|c|}
\hline tvmPmt（） & \multicolumn{2}{|r|}{Catalog＞国} \\
\hline \[
\begin{aligned}
& \text { tvmPmt }(N, I, P V, F V,[P p Y],[C p Y],[P m t A t]) \\
& \Rightarrow \text { value }
\end{aligned}
\] & tvmPmt（ \(60,4,30000,0,12,12)\) & －552．496 \\
\hline
\end{tabular}

Financial function that calculates the amount of each payment．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 195．See also amortTbl（）， page 8.
\begin{tabular}{|c|c|c|}
\hline tvmPV（） & \multicolumn{2}{|r|}{Catalog＞国 \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \text { tvmPV(N,I,Pmt,FV,[PpY],[CpY],[PmtAt]) } \\
& \Rightarrow \text { value }
\end{aligned}
\] & tvmPV（48，4，－500，30000，12，12） & －3426．7 \\
\hline
\end{tabular}

Financial function that calculates the present value．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 195．See also amortTbl（）， page 8 ．
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
TVM \\
argument*
\end{tabular} & Description & Data type \\
\hline N & Number of payment periods & real number \\
\hline I & Annual interest rate & real number \\
\hline PV & Present value & real number \\
\hline Pmt & Payment amount & real number \\
\hline FV & Future value & real number \\
\hline PpY & Compents per year, default=1 & integer \(>0\) \\
\hline CpY & \begin{tabular}{l} 
Payment due at the end or beginning of each period, \\
default=end
\end{tabular} & integer \(>0\) \\
\hline PmtAt & & 1=beginning) \\
\hline
\end{tabular}
* These time-value-of-money argument names are similar to the TVM variable names (such as tvm.pv and tvm.pmt) that are used by the Calculator application's finance solver. Financial functions, however, do not store their argument values or results to the TVM variables.

\section*{TwoVar}

Catalog > 国合
TwoVar \(X, Y[,[\) Freq \(][\), Category, Include \(]]\)
Calculates the TwoVar statistics. A summary of results is stored in the stat.results variable. (See page 176.)

All the lists must have equal dimension except for Include.
\(X\) and \(Y\) are lists of independent and dependent variables.

Freq is an optional list of frequency values.
Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point. The default value is 1 . All elements must be integers \(\geq 0\).

Category is a list of numeric category codes for the corresponding \(X\) and \(Y\) data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

An empty (void) element in any of the lists X, Freq, or Category results in a void for the corresponding element of all those lists. An empty element in any of the lists \(X 1\) through \(X 20\) results in a void for the corresponding element of all those lists. For more information on empty elements, see page 236.
\begin{tabular}{|c|c|}
\hline Output variable & Description \\
\hline stat. \(\overline{\mathrm{X}}\) & Mean of x values \\
\hline stat. \(\sum \mathrm{x}\) & Sum of \(x\) values \\
\hline stat. \(\sum \times 2\) & Sum of x 2 values \\
\hline stat.sx & Sample standard deviation of x \\
\hline stat. \(\sigma x\) & Population standard deviation of x \\
\hline stat.n & Number of data points \\
\hline stat. \(\bar{y}\) & Mean of y values \\
\hline stat. \(\sum \mathrm{y}\) & Sum of y values \\
\hline stat. \(\sum \mathrm{y}^{2}\) & Sum of y 2 values \\
\hline stat.sy & Sample standard deviation of y \\
\hline stat. \(\sigma \mathrm{y}\) & Population standard deviation of y \\
\hline stat. \(\sum \mathrm{xy}\) & Sum of \(x \cdot y\) values \\
\hline stat.r & Correlation coefficient \\
\hline stat. Min X & Minimum of x values \\
\hline stat. \(\mathrm{Q}_{1} \mathrm{X}\) & 1st Quartile of \(x\) \\
\hline stat. MedianX & Median of \(x\) \\
\hline stat. \(\mathrm{Q}_{3} \mathrm{X}\) & 3rd Quartile of \(x\) \\
\hline stat. MaxX & Maximum of \(x\) values \\
\hline stat.MinY & Minimum of y values \\
\hline stat. \(\mathrm{Q}_{1} \mathrm{Y}\) & 1st Quartile of \(y\) \\
\hline stat.MedY & Median ofy \\
\hline stat. \(Q_{3} Y\) & 3rd Quartile ofy \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．MaxY & Maximum of \(y\) values \\
\hline stat．\(\Sigma(x-\bar{x})^{2}\) & Sum of squares of deviations from the mean of \(x\) \\
\hline stat．\(\Sigma(y-\bar{y})^{2}\) & Sum of squares of deviations from the mean of \(y\) \\
\hline
\end{tabular}

\section*{U}

\section*{unit \(V\)（）}

Catalog＞酋远
unitV（Vectorl）\(\Rightarrow\) vector
Returns either a row－or column－unit vector， depending on the form of Vectorl．

Vector 1 must be either a single－row matrix or a single－column matrix．
unLock
Catalog＞国
unLock Varl［，Var2］［，Var3］．．．
unLock Var．
Unlocks the specified variables or variable group．Locked variables cannot be modified or deleted．

See Lock，page 106，and getLockinfo（），page 82.


To see the entire result， press \(\triangle\) and then use \(\boldsymbol{\triangleleft}\) and to move the cursor．
\begin{tabular}{lr} 
& Catalog \(>\) \\
\hline\(a:=65\) & 65 \\
\hline Lock \(a\) & Done \\
\hline getLockInfo \((a)\) & 1 \\
\hline\(a:=75\) & ＂Error：Variable is locked．＂ \\
\hline DelVar \(a\) & ＂Error：Variable is locked．＂ \\
\hline Unlock \(a\) & Done \\
\hline\(a:=75\) & 75 \\
\hline DelVar \(a\) & Done \\
\hline
\end{tabular}
varPop()
varPop(List \([\),freqList \(]) \Rightarrow\) expression
Returns the population variance of List.
Each freqList element counts the number of consecutive occurrences of the corresponding element in List.

Note: List must contain at least two elements.

If an element in either list is empty (void), that element is ignored, and the corresponding element in the other list is also ignored. For more information on empty elements, see page 236.

\section*{varSamp()}
varSamp(List[,freqList]) \(\Rightarrow\) expression
Returns the sample variance of List.
Each freqList element counts the number of consecutive occurrences of the corresponding element in List.

Note: List must contain at least two elements.

If an element in either list is empty (void), that element is ignored, and the corresponding element in the other list is also ignored. For more information on empty elements, see page 236.
varSamp(Matrix 1 [, freqMatrix] \() \Rightarrow\) matrix

Returns a row vector containing the sample variance of each column in Matrixl.

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrixl.

Catalog > 国
\(\operatorname{varPop}(\{5,10,15,20,25,30\}) \quad \frac{875}{12}\)

Ans 1 .
72.9167

If an element in either matrix is empty (void), that element is ignored, and the corresponding element in the other matrix is also ignored. For more information on empty elements, see page 236.

Note: Matrix 1 must contain at least two rows.

W

Wait

\section*{Catalog > and}

\section*{Wait timeInSeconds}

Suspends execution for a period of timeInSeconds seconds.

Wait is particularly useful in a program that needs a brief delay to allow requested data to become available.

The argument timeInSeconds must be an expression that simplifies to a decimal value in the range 0 through 100. The command rounds this value up to the nearest 0.1 seconds.

To cancel a Wait that is in progress,
- Handheld: Hold down the 1 on key and press enter repeatedly.
- Windows \({ }^{\circledR}\) : Hold down the \(\mathbf{F 1 2}\) key and press Enter repeatedly.
- Macintosh \({ }^{\oplus}\) : Hold down the F5 key and press Enter repeatedly.
- iPad \({ }^{\circledR}\) : The app displays a prompt. You can continue waiting or cancel.

Note: You can use the Wait command within a user-defined program but not within a function.

To wait 4 seconds:
Wait 4

To wait \(1 / 2\) second:
Wait 0.5

To wait 1.3 seconds using the variable seccount:
seccount:=1.3
Wait seccount

This example switches a green LED on for 0.5 seconds and then switches it off.
```

Send "SET GREEN 1 ON"

```
Wait 0.5

Send "SET GREEN 1 OFF"
warnCodes(Expr1, StatusVar) \(\Rightarrow\) expression

Evaluates expression Exprl, returns the result, and stores the codes of any generated warnings in the StatusVar list variable. If no warnings are generated, this function assigns StatusVar an empty list.

Exprl can be any valid TI-Nspire \({ }^{\text {TM }}\) or TI-Nspire \({ }^{\text {TM }}\) CAS math expression. You cannot use a command or assignment as Exprl.

StatusVar must be a valid variable name.
For a list of warning codes and associated messages, see page 251.

\section*{when()}

Catalog > 国
when(Condition, trueResult [,falseResult]
[, unknownResult \(]\) ) \(\Rightarrow\) expression
Returns trueResult, falseResult, or unknownResult, depending on whether Condition is true, false, or unknown. Returns the input if there are too few arguments to specify the appropriate result.
Omit both falseResult and unknownResult to make an expression defined only in the region where Condition is true.
Use an undef falseResult to define an expression that graphs only on an interval.
when() is helpful for defining recursive functions.


To see the entire result,
press \(\boldsymbol{\Delta}\) and then use \(\boldsymbol{\Delta}\) and to move the cursor.

\begin{tabular}{lr}
\hline when \((n>0, n \cdot\) factoral \((n-1), 1) \rightarrow\) factoral \((n)\) \\
& Done \\
\hline factoral \((3)\) & 6 \\
\hline \(3!\) & 6 \\
\hline
\end{tabular}

While Condition
Block
EndWhile
Executes the statements in Block as long as Condition is true.

Block can be either a single statement or a sequence of statements separated with the ":" character.

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

\section*{\(X\) \\ \(X\)}
xor
BooleanExpr1 xor BooleanExpr2 returns
Boolean expressionBooleanListl
xor
BooleanExpr1 xor BooleanExpr2 returns
Boolean expressionBooleanListl Boolean expressionBooleanList 1 xor BooleanList 2 returns Boolean listBooleanMatrix 1
xor BooleanMatrix 2 returns Boolean matrix

Returns true if BooleanExprl is true and BooleanExpr 2 is false, or vice versa.

Returns false if both arguments are true or if both are false. Returns a simplified Boolean expression if either of the arguments cannot be resolved to true or false.

Note: See or, page 129.
Integer 1 xor Integer \(2 \Rightarrow\) integer
Compares two real integers bit-by-bit using an xor operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if either bit (but not both) is 1 ; the result is 0 if both bits are 0 or both bits are 1 . The returned value represents the bit results, and is displayed according to the Base mode.
\begin{tabular}{rl}
\hline Define sum_of_recip \((n)=\) & Func \\
& Local \(i\),tempsum \\
& \(1 \rightarrow i\) \\
& \(0 \rightarrow\) tempsum \\
& While \(i \leq n\) \\
& tempsum \(+\frac{1}{i} \rightarrow\) tempsum \\
& \(i+1 \rightarrow i\) \\
& EndWhile \\
& Return tempsum \\
& EndFunc
\end{tabular}

Done
\begin{tabular}{ll}
\hline sum_of_recip(3) & \(\frac{11}{6}\) \\
\hline
\end{tabular}

\begin{tabular}{lr} 
& Catalog \(>\) 国 \(]_{2}\) \\
\hline true xor true & false \\
\hline \(5>3\) or \(3>5\) & true \\
\hline
\end{tabular}

In Hex base mode:
Important: Zero, not the letter O.
\begin{tabular}{ll}
\hline 0h7AC36 xor 0h3D5F & \(0 h 79169\) \\
\hline
\end{tabular}

In Bin base mode:
Ob100101 xor 0b100 0b100001

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the Ob or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see Base2, page 17.

Note: See or, page 129.

\section*{Z}

\section*{zeros()}
zeros(Expr, Var) \(\Rightarrow\) list
zeros \((E x p r, V a r=G u e s s) \Rightarrow\) list
Returns a list of candidate real values of Var that make Expr=0. zeros() does this by computing exp list(solve ( \(E x p r=0\), Var), Var).

For some purposes, the result form for zeros() is more convenient than that of solve(). However, the result form of zeros() cannot express implicit solutions, solutions that require inequalities, or solutions that do not involve Var.

Note: See also cSolve(), cZeros(), and solve ().
zeros(\{Expr1, Expr2\},
\(\{\) VarOrGuess1, VarOrGuess \(2[, \ldots]\}) \Rightarrow\) matrix

Returns candidate real zeros of the simultaneous algebraic expressions, where each VarOrGuess specifies an unknown whose value you seek.

Optionally, you can specify an initial guess for a variable. Each VarOrGuess must have the form:

Note: A binary entry can have up to 64 digits (not counting the Ob prefix). A hexadecimal entry can have up to 16 digits.
variable
- or -
variable \(=\) real or non-real number
For example, x is valid and so is \(\mathrm{x}=3\).
If all of the expressions are polynomials and if you do NOT specify any initial guesses, zeros() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all real zeros.

For example, suppose you have a circle of radius \(r\) at the origin and another circle of radius \(r\) centered where the first circle crosses the positive \(x\)-axis. Use zeros() to find the intersections.

As illustrated by \(r\) in the example to the right, simultaneous polynomial expressions can have extra variables that have no values, but represent given numeric values that could be substituted later.

Each row of the resulting matrix represents an alternate zero, with the components ordered the same as the varOrGuess list. To extract a row, index the matrix by [row].

You can also (or instead) include unknowns that do not appear in the expressions. For example, you can include \(z\) as an unknown to extend the previous example to two parallel intersecting cylinders of radius \(r\). The cylinder zeros illustrate how families of zeros might contain arbitrary constants in the form ck, where \(k\) is an integer suffix from 1 through 255.

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list unknowns. If your initial choice exhausts memory or your patience, try rearranging the variables in the expressions and/or varOrGuess list.

\(\operatorname{zeros}\left(\left\{x^{2}+y^{2}-r^{2},(x-r)^{2}+y^{2}-r^{2}\right\},\{x, y\}\right)\)
\[
\left[\begin{array}{cc}
\frac{r}{2} & \frac{-\sqrt{3} \cdot r}{2} \\
\frac{r}{2} & \frac{\sqrt{3} \cdot r}{2}
\end{array}\right]
\]

Extract row 2:
Ans[2] \(\left[\begin{array}{cc}\frac{r}{2} & \frac{\sqrt{3} \cdot r}{2}\end{array}\right]\)
\(\operatorname{zeros}\left(\left\{x^{2}+y^{2}-r^{2},(x-r)^{2}+y^{2}-r^{2}\right\},\{x, y, z\}\right)\)
\[
\left[\begin{array}{ccc}
\frac{r}{2} & \frac{-\sqrt{3} \cdot r}{2} & c 1 \\
\frac{r}{2} & \frac{\sqrt{3} \cdot r}{2} & c 1
\end{array}\right]
\]

If you do not include any guesses and if any expression is non-polynomial in any variable but all expressions are linear in the unknowns, zeros() uses Gaussian elimination to attempt to determine all real zeros.

If a system is neither polynomial in all of its variables nor linear in its unknowns, zeros() determines at most one zero using an approximate iterative method. To do so, the number of unknowns must equal the number of expressions, and all other variables in the expressions must simplify to numbers.

Each unknown starts at its guessed value if there is one; otherwise, it starts at 0.0.

Use guesses to seek additional zeros one by one. For convergence, a guess may have to be rather close to a zero.
\[
\left.\begin{array}{rl}
\operatorname{zeros}\left(\left\{x+e^{z} \cdot y-1, x-y-\sin (z)\right\},\{x, y\}\right) \\
& {\left[\frac{e^{z} \cdot \sin (z)+1}{e^{z}+1}\right.}
\end{array} \frac{-(\sin (z)-1)}{e^{z}+1}\right] .
\]

\begin{tabular}{r}
\hline \(\operatorname{zeros}\left(\left\{e^{z} \cdot y-1, y-\sin (z)\right\},\{y, z=2 \cdot \pi\}\right)\) \\
{\([0.001871 \quad 6.28131]\)}
\end{tabular}

\section*{zInterval}
(Data list input)
\[
\text { zInterval } \sigma, \overline{\mathrm{x}}, n[, C \text { Level }]
\]
(Summary stats input)
Computes a \(z\) confidence interval. A summary of results is stored in the stat.results variable. (See page 176.)

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat. CLower, stat.CUpper & Confidence interval for an unknown population mean \\
\hline stat. \(\overline{\mathrm{X}}\) & Sample mean of the data sequence from the normal random distribution \\
\hline stat.ME & Margin of error \\
\hline stat.sx & Sample standard deviation \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.n & Length of the data sequence with sample mean \\
\hline stat. \(\sigma\) & Known population standard deviation for data sequence List \\
\hline
\end{tabular}

zInterval_1Prop

Catalog > 国

zInterval_1Prop \(x, n\) [,CLevel]

Computes a one-proportion \(z\) confidence interval. A summary of results is stored in the stat.results variable. (See page 176.)
\(x\) is a non-negative integer.
For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat. CLower, stat.CUpper & Confidence interval containing confidence level probability of distribution \\
\hline stat. \(\hat{p}\) & The calculated proportion of successes \\
\hline stat.ME & Margin of error \\
\hline stat. \(n\) & Number of samples in data sequence \\
\hline
\end{tabular}

\section*{zInterval_2Prop}

Catalog > 国
zInterval_2Prop \(x 1, n 1, x 2, n 2[\), CLevel \(]\)
Computes a two-proportion \(z\) confidence interval. A summary of results is stored in the stat.results variable. (See page 176.)
\(x 1\) and \(x 2\) are non-negative integers.
For information on the effect of empty
elements in a list, see "Empty (Void)
Elements," page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat. CLower, stat.CUpper & Confidence interval containing confidence level probability of distribution \\
\hline stat. \(\hat{p}\) Diff & The calculated difference between proportions \\
\hline stat.ME & Margin of error \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．\(\hat{p} 1\) & First sample proportion estimate \\
\hline stat．\(\hat{p} 2\) & Second sample proportion estimate \\
\hline stat．n1 & Sample size in data sequence one \\
\hline stat． n 2 & Sample size in data sequence two \\
\hline
\end{tabular}

\section*{zInterval＿2Samp}
［，Freq2，［CLevel］］］
（Data list input）
zInterval＿2Samp \(\sigma_{1}, \sigma_{2}, \overline{\mathrm{x}} 1, n 1, \overline{\mathrm{x}} 2, n 2\)
［，CLevel］
（Summary stats input）
Computes a two－sample \(z\) confidence interval．A summary of results is stored in the stat．results variable．（See page 176．）

For information on the effect of empty elements in a list，see＂Empty（Void） Elements，＂page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline \begin{tabular}{l} 
stat．CLower， \\
stat．CUpper
\end{tabular} & Confidence interval containing confidence level probability of distribution \\
\hline stat．\(\overline{\mathrm{x}} 1-\overline{\mathrm{x} 2}\) & \begin{tabular}{l} 
Sample means of the data sequences from the normal random \\
distribution
\end{tabular} \\
\hline stat．ME & Margin of error \\
\hline stat．\(\overline{\mathrm{x} 1, ~ s t a t . \bar{x} 2}\) & \begin{tabular}{l} 
Sample means of the data sequences from the normal random \\
distribution
\end{tabular} \\
\hline stat．\(\sigma \times 1\), stat．\(\sigma \times 2\) & Sample standard deviations for List 1 and List 2 \\
\hline stat．n1，stat．n2 & Number of samples in data sequences \\
\hline stat．r1，stat．r2 & \begin{tabular}{l} 
Known population standard deviations for data sequence List 1 and List \\
2
\end{tabular} \\
\hline
\end{tabular}

\section*{zTest}

Catalog＞［⿴囗玉心
zTest \(\mu 0, \sigma\), List，\([\) Freq［，Hypoth \(]\) ］
（Data list input）

\section*{zTest \(\mu 0, \sigma, \bar{x}, n[, H y p o t h]\)}
（Summary stats input）
Performs a \(z\) test with frequency freqlist．A
summary of results is stored in the stat．results variable．（See page 176．）

Test \(H_{0}: \mu=\mu 0\) ，against one of the
following：
For \(\mathrm{H}_{\mathrm{a}}: \mu<\mu 0\) ，set Hypoth＜0
For \(\mathrm{H}^{\mathrm{a}}: \mu \neq \mu 0\)（default），set Hypoth \(=0\)
For \(H_{a}^{\mathrm{a}}\) ：\(\mu>\mu 0\) ，set Hypoth \(>0\)
For information on the effect of empty elements in a list，see＂Empty（Void）
Elements，＂page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．z & \((\overline{\mathrm{x}}-\mu 0) /(\sigma /\) sqrt（n）） \\
\hline stat．P Value & Least probability at which the null hypothesis can be rejected \\
\hline stat．\(\overline{\mathrm{x}}\) & Sample mean of the data sequence in List \\
\hline stat．sx & Sample standard deviation of the data sequence．Only returned for Data input． \\
\hline stat．n & Size of the sample \\
\hline
\end{tabular}
zTest＿1Prop
Catalog＞島
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．p0 & Hypothesized population proportion \\
\hline stat．z & Standard normal value computed for the proportion \\
\hline stat．PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat．\(\hat{p}\) & Estimated sample proportion \\
\hline stat．n & Size of the sample \\
\hline
\end{tabular}
zTest＿2Prop
Catalog＞国
zTest＿2Prop \(x 1, n 1, x 2, n 2[, H y p o t h]\)

Computes a two－proportion \(z\) test．A summary of results is stored in the stat．results variable．（See page 176．）
\(x 1\) and \(x 2\) are non－negative integers．
Test \(\mathrm{H}_{0}: p 1=p 2\) ，against one of the following：

For \(\mathrm{H}_{\mathrm{a}}: p 1>p 2\) ，set Hypoth＞0
For \(\mathrm{H}^{\mathrm{a}}: p 1 \neq p 2\)（default），set Hypoth＝0
For \(\mathrm{H}_{\mathrm{a}}^{\mathrm{a}}: p<p 0\) ，set Hypoth＜0
For information on the effect of empty
elements in a list，see＂Empty（Void）
Elements，＂page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．z & Standard normal value computed for the difference of proportions \\
\hline stat．PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat．\(\hat{p} 1\) & First sample proportion estimate \\
\hline stat．\(\hat{p} 2\) & Second sample proportion estimate \\
\hline stat．\(\hat{p}\) & Pooled sample proportion estimate \\
\hline stat． n 1, stat．n2 & Number of samples taken in trials 1 and 2 \\
\hline
\end{tabular}

\section*{zTest＿2Samp}

Catalog＞国
zTest＿2Samp \(\sigma_{1}, \sigma_{2}\), Listl，List \(2[, F r e q 1\)
［，Freq2［，Hypoth］］］
（Data list input）
zTest＿2Samp \(\sigma_{\mathbf{1}}, \sigma_{\mathbf{2}}, \overline{\mathrm{x}} 1, n 1, \overline{\mathrm{x}} 2, n 2[, H y p o t h]\)
（Summary stats input）
Computes a two－sample \(z\) test．A summary
of results is stored in the stat．results
variable．（See page 176．）
Test \(H_{o}: \mu 1=\mu 2\) ，against one of the following：

For \(\mathrm{H}_{a}: \mu 1<\mu 2\) ，set Hypoth＜0
For \(H^{a}: \mu 1 \neq \mu 2\)（default），set Hypoth＝0
For \(\mathrm{H}_{\mathrm{a}}^{\mathrm{a}}: \mu 1>\mu 2\) ，Hypoth＞0

For information on the effect of empty elements in a list, see "Empty (Void)
Elements," page 236.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.z & Standard normal value computed for the difference of means \\
\hline stat.PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat. \(\overline{\text { x} 1, ~ s t a t . ~} \overline{\mathrm{X}} 2\) & Sample means of the data sequences in Listl and List 2 \\
\hline stat.sx1, stat.sx2 & Sample standard deviations of the data sequences in List 1 and List 2 \\
\hline stat.n1, stat.n2 & Size of the samples \\
\hline
\end{tabular}

\section*{Symbols}
+ (add)

Expr \(1+\) Expr \(2 \Rightarrow\) expression
Returns the sum of the two arguments.

List \(1+\) List \(2 \Rightarrow\) list
Matrix \(1+\) Matrix \(2 \Rightarrow\) matrix
Returns a list (or matrix) containing the sums of corresponding elements in List 1 and List 2 (or Matrix 1 and Matrix2).

Dimensions of the arguments must be equal.

Expr + List \(1 \Rightarrow\) list
List \(1+\) Expr \(\Rightarrow\) list
Returns a list containing the sums of Expr and each element in Listl.
Expr + Matrix \(1 \Rightarrow\) matrix
Matrix \(1+\) Expr \(\Rightarrow\) matrix
\(20+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad\left[\begin{array}{cc}21 & 2 \\ 3 & 24\end{array}\right]\)
\begin{tabular}{ll}
\hline 56 & 56 \\
\hline \(56+4\) & 60 \\
\hline \(60+4\) & 64 \\
\hline \(64+4\) & 68 \\
\hline \(68+4\) & 72 \\
\hline
\end{tabular}
\begin{tabular}{lr}
\(\left\{22, \pi, \frac{\pi}{2}\right\} \rightarrow l 1\) & \(\left\{22, \pi, \frac{\pi}{2}\right\}\) \\
\(\left\{10,5, \frac{\pi}{2}\right\} \rightarrow 12\) & \(\left\{10,5, \frac{\pi}{2}\right\}\) \\
\hline\(l 1+l 2\) & \(\{32, \pi+5, \pi\}\) \\
\hline Ans \(+\{\pi,-5,-\pi\}\) & \(\{\pi+32, \pi, 0\}\) \\
{\(\left[\begin{array}{ll}a & b \\
c & d\end{array}\right]\left[\begin{array}{ll}1 & 0 \\
0 & 1\end{array}\right]\)} & {\(\left[\begin{array}{cc}a+1 & b \\
c & d+1\end{array}\right]\)}
\end{tabular}
\begin{tabular}{ll}
\hline \(15+\{10,15,20\}\) & \(\{25,30,35\}\) \\
\(\{10,15,20\}+15\) & \(\{25,30,35\}\) \\
\hline
\end{tabular}

Returns a matrix with Expr added to each element on the diagonal of Matrix1.
Matrix 1 must be square.
Note: Use .+ (dot plus) to add an expression to each element.
\begin{tabular}{|c|c|c|}
\hline - (subtract) & & \(\square\) key \\
\hline Expr \(1-\) Expr \(2 \Rightarrow\) expression & 6-2 & 4 \\
\hline Returns Exprl minus Expr2. & \(\pi-\frac{\pi}{6}\) & \(\frac{5 \cdot \pi}{6}\) \\
\hline List1-List2 \(\Rightarrow\) list & \(\left\{22, \pi, \frac{\pi}{2}\right\}-\left\{10,5, \frac{\pi}{2}\right.\) & \(\{12, \pi-5,0\}\) \\
\hline & \(\left[\begin{array}{ll}3 & 4\end{array}\right]-\left[\begin{array}{ll}1 & 2\end{array}\right]\) & \(\left[\begin{array}{ll}2 & 2\end{array}\right]\) \\
\hline
\end{tabular}

Subtracts each element in List2 (or Matrix2) from the corresponding element in Listl (or Matrixl), and returns the results.

Dimensions of the arguments must be equal.

Expr - List \(1 \Rightarrow\) list
List1-Expr \(\Rightarrow\) list
\begin{tabular}{ll}
\hline \(15-\{10,15,20\}\) & \(\{5,0,-5\}\) \\
\hline\(\{10,15,20\}-15\) & \(\{-5,0,5\}\) \\
\hline
\end{tabular}

Subtracts each List 1 element from Expr or subtracts Expr from each Listl element, and returns a list of the results.
Expr - Matrix \(1 \Rightarrow\) matrix
Matrix \(1-\) Expr \(\Rightarrow\) matrix
\(20-\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad\left[\begin{array}{cc}19 & -2 \\ -3 & 16\end{array}\right]\)

Expr - Matrix 1 returns a matrix of Expr times the identity matrix minus
Matrix1. Matrixl must be square.
Matrix 1 - Expr returns a matrix of Expr times the identity matrix subtracted from Matrix1. Matrix 1 must be square.

Note: Use .- (dot minus) to subtract an expression from each element.

\section*{- (multiply)}

Expr \(1 \cdot\) Expr \(2 \Rightarrow\) expression
Returns the product of the two arguments.
List \(1 \cdot\) List \(2 \Rightarrow\) list
Returns a list containing the products of the corresponding elements in Listl and List2.
\begin{tabular}{lr}
\hline \(2 \cdot 3.45\) & 6.9 \\
\hline\(x \cdot y \cdot x\) & \(x^{2} \cdot y\) \\
\hline\(\{1,2,3\} \cdot\{4,5,6\}\) & \(\{4 ., 10,18\}\) \\
\(\left\{\frac{2}{a}, \frac{3}{2}\right\} \cdot\left\{a^{2}, \frac{b}{3}\right\}\) & \(\left\{2 \cdot a, \frac{b}{2}\right\}\) \\
\hline
\end{tabular}

Dimensions of the lists must be equal.
Matrix \(1 \cdot\) Matrix \(2 \Rightarrow\) matrix
Returns the matrix product of Matrixl and Matrix2.

The number of columns in Matrix 1 must equal the number of rows in Matrix 2 .

Expr \(\bullet\) List \(1 \Rightarrow\) list
\(\pi \cdot\{4,5,6\} \quad\{4 \cdot \pi, 5 \cdot \pi, 6 \cdot \pi\}\)

List \(1 \cdot\) Expr \(\Rightarrow\) list
Returns a list containing the products of Expr and each element in Listl.

Expr \(\bullet\) Matrix \(1 \Rightarrow\) matrix
Matrix \(1 \cdot\) Expr \(\Rightarrow\) matrix
Returns a matrix containing the products of Expr and each element in Matrixl.
\begin{tabular}{lc}
\hline\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right] \cdot 0.01\) & {\(\left[\begin{array}{ll}0.01 & 0.02 \\
0.03 & 0.04\end{array}\right]\)} \\
\hline\(\lambda \cdot\) identity \((3)\) & {\(\left[\begin{array}{lll}\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda\end{array}\right]\)} \\
\hline
\end{tabular}

Note: Use .•(dot multiply) to multiply an expression by each element.

\section*{(divide)}

Expr1/Expr2 \(\Rightarrow\) expression
Returns the quotient of Exprl divided by Expr2.

Note: See also Fraction template, page 1.
List \(1 /\) List \(2 \Rightarrow\) list
Returns a list containing the quotients of List 1 divided by List2.

Dimensions of the lists must be equal.
Expr/List1 \(\Rightarrow\) list
List 1/Expr \(\Rightarrow\) list
Returns a list containing the quotients of Expr divided by List1 orList 1 divided by Expr.

Matrix \(1 /\) Expr \(\Rightarrow\) matrix
Returns a matrix containing the quotients of Matrix 1/Expr.

Matrix \(1 /\) Value \(\Rightarrow\) matrix

Note: Use ./ (dot divide) to divide an expression by each element.
\begin{tabular}{llr}
\(\wedge\) (power) & \(\boxed{\wedge}\) key \\
Expr \(1 \wedge\) Expr \(2 \Rightarrow\) expression & & 16 \\
List \(1 \wedge\) List \(2 \Rightarrow\) list & \(\{a, 2, c\}\{1, b, 3\}\) & \(\left\{a, 2^{b}, c^{3}\right\}\)
\end{tabular}

Returns the first argument raised to the power of the second argument.

Note: See also Exponent template, page 1.
For a list, returns the elements in List 1 raised to the power of the corresponding elements in List2.

In the real domain, fractional powers that have reduced exponents with odd denominators use the real branch versus the principal branch for complex mode.
Expr \({ }^{\wedge}\) List \(1 \Rightarrow\) list
Returns Expr raised to the power of the elements in List1.
List \(1 \wedge\) Expr \(\Rightarrow\) list
Returns the elements in List1 raised to the
\(p^{\{a, 2,-3\}}\left\{p^{a}, p^{2}, \frac{1}{p^{3}}\right\}\)
\(\{1,2,3,4\}^{-2} \quad\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}\right\}\) power of Expr.
squareMatrix \(1 \wedge\) integer \(\Rightarrow\) matrix
Returns squareMatrix 1 raised to the integer power.
squareMatrix 1 must be a square matrix.
If integer \(=-1\), computes the inverse matrix.
If integer <-1, computes the inverse matrix to an appropriate positive power.
\begin{tabular}{ll}
\hline\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right]^{2}\) & {\(\left[\begin{array}{cc}7 & 10 \\
15 & 22\end{array}\right]\)} \\
\hline\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right]^{-1}\) & {\(\left[\begin{array}{cc}-2 & 1 \\
\frac{3}{2} & \frac{-1}{2}\end{array}\right]\)} \\
\hline\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right]^{-2}\) & {\(\left[\begin{array}{cc}\frac{11}{2} & \frac{-5}{2} \\
\frac{-15}{4} & \frac{7}{4}\end{array}\right]\)}
\end{tabular}

Expr \(1^{2} \Rightarrow\) expression
Returns the square of the argument.
List \(1^{\mathbf{2}} \Rightarrow\) list
Returns a list containing the squares of the elements in Listl.
squareMatrix \(l^{2} \Rightarrow\) matrix
Returns the matrix square of squareMatrix1. This is not the same as calculating the square of each element. Use .\(\wedge 2\) to calculate the square of each element.
\begin{tabular}{lr}
\hline \(4^{2}\) & 16 \\
\hline\(\{2,4,6\}^{2}\) & \(\{4,16,36\}\) \\
\hline\(\left[\begin{array}{lll}2 & 4 & 6 \\
3 & 5 & 7 \\
4 & 6 & 8\end{array}\right]^{2}\) & {\(\left[\begin{array}{ccc}40 & 64 & 88 \\
49 & 79 & 109 \\
58 & 94 & 130\end{array}\right]\)} \\
\hline\(\left[\begin{array}{lll}2 & 4 & 6 \\
3 & 5 & 7 \\
4 & 6 & 8\end{array}\right] \wedge 2\) & {\(\left[\begin{array}{ccc}4 & 16 & 36 \\
9 & 25 & 49 \\
16 & 36 & 64\end{array}\right]\)}
\end{tabular}

\section*{.+ (dot add)}

Matrix .+ Matrix2 \(\Rightarrow\) matrix
Expr .+ Matrix \(1 \Rightarrow\) matrix
Matrix 1.+Matrix2 returns a matrix that is
\begin{tabular}{ll}
{\(\left[\begin{array}{ll}a & 2 \\
b & 3\end{array}\right] \cdot+\left[\begin{array}{ll}c & 4 \\
5 & d\end{array}\right]\)} & {\(\left[\begin{array}{cc}a+c & 6 \\
b+5 & d+3\end{array}\right]\)} \\
\hline\(x \cdot+\left[\begin{array}{ll}c & 4 \\
5 & d\end{array}\right]\) & {\(\left[\begin{array}{ll}x+c & x+4 \\
x+5 & x+d\end{array}\right]\)}
\end{tabular} the sum of each pair of corresponding elements in Matrixl and Matrix2.

Expr .+ Matrixl returns a matrix that is the sum of Expr and each element in Matrix 1 .
. (dot subt.)
Matrix 1.- Matrix2 \(\Rightarrow\) matrix
Expr .- Matrix \(1 \Rightarrow\) matrix
Matrix 1.- Matrix 2 returns a matrix that is the difference between each pair of corresponding elements in Matrixl and Matrix 2.

Expr .- Matrix1 returns a matrix that is the difference of Expr and each element in Matrix 1 .
\(\square\) keys
\begin{tabular}{ll}
{\(\left[\begin{array}{ll}a & 2 \\
b & 3\end{array}\right] .-\left[\begin{array}{ll}c & 4 \\
d & 5\end{array}\right]\)} & {\(\left[\begin{array}{ll}a-c & -2 \\
b-d & -2\end{array}\right]\)} \\
\hline\(x .-\left[\begin{array}{ll}c & 4 \\
d & 5\end{array}\right]\) & {\(\left[\begin{array}{ll}x-c & x-4 \\
x-d & x-5\end{array}\right]\)}
\end{tabular}

Matrix \(1 \cdot\) Matrix \(2 \Rightarrow\) matrix
Expr ••Matrixl \(\Rightarrow\) matrix
Matrix1.• Matrix 2 returns a matrix that is
\begin{tabular}{ll}
{\(\left[\begin{array}{ll}a & 2 \\
b & 3\end{array}\right] \cdot\left[\begin{array}{ll}c & 4 \\
5 & d\end{array}\right]\)} & {\(\left[\begin{array}{cc}a \cdot c & 8 \\
5 \cdot b & 3 \cdot d\end{array}\right]\)} \\
\hline\(x \cdot \cdot\left[\begin{array}{ll}a & b \\
c & d\end{array}\right]\) & {\(\left[\begin{array}{ll}a \cdot x & b \cdot x \\
c \cdot x & d \cdot x\end{array}\right]\)}
\end{tabular} the product of each pair of corresponding elements in Matrixl and Matrix2.

Expr • Matrixl returns a matrix containing the products of Expr and each element in Matrix1.
\[
\begin{aligned}
& \text {./(dot divide) } \\
& \text { Matrix1./Matrix2 } \Rightarrow \text { matrix } \\
& \text { Expr ./Matrixl } \Rightarrow \text { matrix } \\
& \text { Matrix } 1 \text {./Matrix } 2 \text { returns a matrix that is } \\
& \text { the quotient of each pair of corresponding } \\
& \text { elements in Matrix } 1 \text { and Matrix2. } \\
& \text { Expr ./ Matrixl returns a matrix that is } \\
& \text { the quotient of Expr and each element in }
\end{aligned}
\] Matrix 1 .

\section*{.\(^{\wedge}\) (dot power)}
. 1. keys
Matrix 1.^ Matrix2 \(\Rightarrow\) matrix
Expr.^Matrixl \(\Rightarrow\) matrix
Matrix 1.^ Matrix 2 returns a matrix where each element in Matrix2 is the exponent for the corresponding element in Matrix 1 .
\begin{tabular}{ll}
{\(\left[\begin{array}{ll}a & 2 \\
b & 3\end{array}\right] . \wedge\left[\begin{array}{ll}c & 4 \\
5 & d\end{array}\right]\)} & {\(\left[\begin{array}{ll}a^{c} & 16 \\
b^{5} & 3\end{array}\right]\)} \\
\(x \wedge\left[\begin{array}{ll}c & 4 \\
5 & d\end{array}\right]\) & {\(\left[\begin{array}{ll}x^{c} & x^{4} \\
x^{5} & x^{d}\end{array}\right]\)}
\end{tabular}

Expr .^ Matrix 1 returns a matrix where each element in Matrixl is the exponent for Expr.
\begin{tabular}{l|rr|}
\hline - (negate) & (-) key \\
- Expr \(1 \Rightarrow\) expression & -2.43 & -2.43 \\
- List \(1 \Rightarrow\) list & \(-\{-1,0.4,1.2 \mathrm{E} 19\}\) & \(\{1,-0.4,-1.2 \mathrm{E} 19\}\) \\
- Matrix \(1 \Rightarrow\) matrix & \(-a \cdot-b\) & \(a \cdot b\)
\end{tabular}

Returns the negation of the argument.
For a list or matrix, returns all the elements negated.

If the argument is a binary or hexadecimal integer, the negation gives the two's complement.

In Bin base mode:
Important: Zero, not the letter O.
```

-Ob100101

```

Ob11111111111111111111111111111111

To see the entire result, press \(\boldsymbol{\Delta}\) and then use \(\boldsymbol{4}\) and to move the cursor.

\section*{\% (percent)}

Expr \(1 \% \Rightarrow\) expression
List \(1 \% \Rightarrow\) list
Matrix \(1 \% \Rightarrow\) matrix

Returns \(\frac{\text { argument }}{100}\)
For a list or matrix, returns a list or matrix with each element divided by 100.
= (equal)
Note: To force an approximate result,
Handheld: Press atrl enter.
Windows \({ }^{\circledR}\) : Press Ctrl+Enter.
Macintosh \({ }^{\circledR}\) : Press \(\mathscr{H}+E n t e r\).
iPad \(^{\circledR}\) : Hold enter, and select \(\approx\).
\begin{tabular}{ll}
\hline \(13 \%\) & 0.13 \\
\hline
\end{tabular}
\(\overline{(\{1,10,100\}) \%} \quad\{0.01,0.1,1\).

Expr \(1=\) Expr \(2 \Rightarrow\) Boolean expression
List \(1=\) List \(2 \Rightarrow\) Boolean list
Matrix \(1=\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be equal to Expr2.

Returns false if Expr1 is determined to not be equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Example function that uses math test symbols: \(=, \neq,\langle, \leq,>, \geq\)
\begin{tabular}{ll}
\hline Define \(g(x)=\) & Func \\
& If \(x \leq-5\) Then \\
& Return 5 \\
& Elself \(x>-5\) and \(x<0\) Then \\
& Return \(-x\) \\
& Elself \(x \geq 0\) and \(x \neq 10\) Then \\
& Return \(x\) \\
& ElseIf \(x=10\) Then \\
& Return 3 \\
& EndIf \\
& EndFunc \\
& Done
\end{tabular}

\section*{Note for entering the example: For} instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

Result of graphing \(g(x)\)

\(\neq\) (not equal)
Expr \(1 \neq\) Expr \(2 \Rightarrow\) Boolean expression See " \(=\) " (equal) example.
List \(1 \neq\) List \(2 \Rightarrow\) Boolean list
Matrix \(1 \neq\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Expr1 is determined to be not equal to Expr2.

Returns false if Exprl is determined to be equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing /=

\footnotetext{
\(<\) (less than)
Expr \(1<\) Expr \(2 \Rightarrow\) Boolean expression See " \(=\) " (equal) example.
List \(1<\) List \(2 \Rightarrow\) Boolean list
Matrix \(1<\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be less than Expr2.
}

Returns false if Exprl is determined to be greater than or equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
\(\leq\) (less or equal)
Expr \(1 \leq\) Expr \(2 \Rightarrow\) Boolean expression See " \(=\) " (equal) example.
List \(1 \leq\) List \(2 \Rightarrow\) Boolean list
Matrix \(1 \leq\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Expr1 is determined to be less than or equal to Expr2.

Returns false if Exprl is determined to be greater than Expr 2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing <=
\(>\) (greater than)
Expr \(1>\) Expr \(2 \Rightarrow\) Boolean expression
List \(1>\) List \(2 \Rightarrow\) Boolean list
Matrix \(1>\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be greater than Expr 2.

Returns false if Exprl is determined to be less than or equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

\section*{\(\geq\) (greater or equal)}

\section*{ctrin keys}

Expr \(1 \geq\) Expr \(2 \Rightarrow\) Boolean expression See " \(=\) " (equal) example.
List \(1 \geq\) List \(2 \Rightarrow\) Boolean list
Matrix \(1 \geq\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be greater than or equal to Expr 2 .

Returns false if Exprl is determined to be less than Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing >=
\begin{tabular}{|c|c|c|}
\hline \(\Rightarrow\) (logical implication) & & ctri \(=\) keys \\
\hline \multirow[t]{2}{*}{BooleanExpr1 \(\Rightarrow\) BooleanExpr2 returns Boolean expression} & \(5>3\) or \(3>5\) & true \\
\hline & \(5>3 \Rightarrow 3>5\) & false \\
\hline \multirow[t]{2}{*}{BooleanList1 \(\Rightarrow\) BooleanList2 returns Boolean list} & 3 or 4 & 7 \\
\hline & \(3 \Rightarrow 4\) & -4 \\
\hline \multirow[t]{2}{*}{BooleanMatrix \(1 \Rightarrow\) BooleanMatrix2 returns Boolean matrix} & \(\{1,2,3\}\) or \(\{3,2,1\}\) & \{3,2,3\} \\
\hline & \(\underline{\{1,2,3\}} \Rightarrow\{3,2,1\}\) & \(\{-1,-1,-3\}\) \\
\hline
\end{tabular}

Integer \(1 \Rightarrow\) Integer 2 returns Integer
Evaluates the expression not <argument1> or <argument2> and returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing =>
\(\Leftrightarrow\) (logical double implication, XNOR)
BooleanExpr1 \(\Leftrightarrow\) BooleanExpr2 returns Boolean expression

\section*{BooleanList \(1 \Leftrightarrow\) BooleanList2 returns Boolean list}

BooleanMatrix1 \(\Leftrightarrow\) BooleanMatrix2 returns Boolean matrix

Integer \(1 \Leftrightarrow\) Integer 2 returns Integer
Returns the negation of an XOR Boolean operation on the two arguments. Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing <=>
\begin{tabular}{|c|c|c|}
\hline ! (factorial) & & ? \(1 \cdot \mathrm{~b}\) key \\
\hline Expr \(1!\Rightarrow\) expression & 5! & 120 \\
\hline List \(1!\Rightarrow\) list & (\{5,4,3\})! & \{120,24,6\} \\
\hline Matrix \(1!\Rightarrow\) matrix & \(\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)!\) & \(\left.\begin{array}{cc}1 & 2 \\ 6 & 24\end{array}\right]\) \\
\hline
\end{tabular}

Returns the factorial of the argument.
For a list or matrix, returns a list or matrix of factorials of the elements.

\section*{\& (append)}
ctri keys
String1 \& String2 \(\Rightarrow\) string
"Hello "\&"Nick" "Hello Nick"

Returns a text string that is String2 appended to String1.
\(d(\) Expr1, Var \([\), Order \(]) \Rightarrow\) expression
\(d(\) List \(1, \operatorname{Var}[, \operatorname{Order}]) \Rightarrow\) list
\(d(\) Matrix 1,Var \([, \operatorname{Order}]) \Rightarrow\) matrix
Returns the first derivative of the first argument with respect to variable Var.

Order, if included, must be an integer. If the order is less than zero, the result will be an anti-derivative.

Note: You can insert this function from the keyboard by typing derivative (...).
\(d()\) does not follow the normal evaluation mechanism of fully simplifying its arguments and then applying the function definition to these fully simplified arguments. Instead, \(d()\) performs the following steps:
1. Simplify the second argument only to the extent that it does not lead to a non-variable.
2. Simplify the first argument only to the extent that it does recall any stored value for the variable determined by step 1.
3. Determine the symbolic derivative of the result of step 2 with respect to the variable from step 1.

If the variable from step 1 has a stored value or a value specified by the constraint ("|") operator, substitute that value into the result from step 3.

Note: See also First derivative, page 5;
Second derivative, page 6; or
Nth derivative, page 6 .
\(\int(\) Exprl, Var[,Lower,Upper] \() \Rightarrow\) expression
\(\int(\) Expr \(1, \operatorname{Var}[\), Constant \(]) \Rightarrow\) expression
\(\frac{d}{d x}(f(x) \cdot g(x)) \quad \frac{d}{d x}(f(x)) \cdot g(x)+\frac{d}{d x}(g(x)) \cdot f(x)\)
\begin{tabular}{lr}
\(\frac{d}{d y}\left(\frac{d}{d x}\left(x^{2} \cdot y^{3}\right)\right\}\) & \(6 \cdot y^{2} \cdot x\) \\
\(\frac{d}{d x}\left\{\left\{x^{2}, x^{3}, x^{4}\right\}\right\}\) & \(\left\{2 \cdot x, 3 \cdot x^{2}, 4 \cdot x^{3}\right\}\)
\end{tabular}

Returns the integral of Exprl with respect to the variable Var from Lower to Upper.

Note: See also Definite or Indefinite integral template, page 6.

Note: You can insert this function from the keyboard by typing integral (...).
If Lower and Upper are omitted, returns an anti-derivative. A symbolic constant of integration is omitted unless you provide the Constant argument.

Equally valid anti-derivatives might differ by a numeric constant. Such a constant might be disguised-particularly when an antiderivative contains logarithms or inverse trigonometric functions. Moreover, piecewise constant expressions are sometimes added to make an antiderivative valid over a larger interval than the usual formula.
() returns itself for pieces of Expr1 that it cannot determine as an explicit finite combination of its built-in functions and operators.

When you provide Lower and Upper, an attempt is made to locate any discontinuities or discontinuous derivatives in the interval Lower < Var < Upper and to subdivide the interval at those places.

For the Auto setting of the Auto or Approximate mode, numerical integration is used where applicable when an antiderivative or a limit cannot be determined.

For the Approximate setting, numerical integration is tried first, if applicable. Antiderivatives are sought only where such numerical integration is inapplicable or fails.
\(\int b \cdot e^{-x^{2}}+\frac{a}{x^{2}+a^{2}} \mathrm{~d} x \quad b \cdot \int e^{-x^{2}} \mathrm{~d} x+\tan ^{-1}\left(\frac{x}{a}\right)\)

Note: To force an approximate result,
Handheld: Press ctrl enter.
Windows \({ }^{\circledR}\) : Press Ctrl+Enter.
Macintosh \({ }^{\oplus}\) : Press \(\mathscr{H}+E n t e r\).
iPad \(^{\oplus}\) : Hold enter, and select \(\approx\).
\[
\int_{-1}^{1} e^{-x^{2}} d x
\]
() can be nested to do multiple integrals. Integration limits can depend on integration variables outside them.

Note: See also nInt(), page 122.
\[
\begin{aligned}
& \int_{0}^{a} \int_{0}^{x} \ln (x+y) \mathrm{d} y \mathrm{~d} x \\
& \frac{a^{2} \cdot \ln (a)}{2}+\frac{a^{2} \cdot(4 \cdot \ln (2)-3)}{4}
\end{aligned}
\]
\(\sqrt{ }()\) (square root)
\(\sqrt{ }(\) Expr 1\() \Rightarrow\) expression
\(\sqrt{ }(\) List 1\() \Rightarrow\) list
\begin{tabular}{lr}
\(\sqrt{4}\) & 2 \\
\(\sqrt{\{9, a, 4\}}\) & \(\{3, \sqrt{a}, 2\}\) \\
\hline
\end{tabular}

Returns the square root of the argument.
For a list, returns the square roots of all the elements in List1.

Note: You can insert this function from the keyboard by typing sqrt (...)

Note: See also Square root template, page 1.

\section*{\(\Pi()\) (prodSeq)}

П(Expr1, Var, Low, High) \(\Rightarrow\) expression
Note: You can insert this function from the keyboard by typing prodSeq (...).

Evaluates Exprl for each value of Var from Low to High, and returns the product of the results.

Note: See also Product template (П), page 5.

Catalog > 国
\begin{tabular}{lr}
\hline\(\prod_{n=1}^{5}\left(\frac{1}{n}\right)\) & \(\frac{1}{120}\) \\
\hline\(\prod_{k=1}^{n}\left(k^{2}\right)\) & \((n!)^{2}\) \\
\hline\(\prod_{n=1}^{5}\left\{\left\{\frac{1}{n}, n, 2\right\}\right\}\) & \(\left\{\frac{1}{120}, 120,32\right\}\) \\
\hline
\end{tabular}
\(\Pi(\) Expr1, Var, Low, Low-1) \(\Rightarrow 1\)
\(\Pi(\) Expr 1, Var, Low, High \() \Rightarrow\) 1/П(Expr1, Var, High+1, Low-1) if High < Low-1

The product formulas used are derived from the following reference:

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation for Computer Science.
Reading, Massachusetts: Addison-Wesley, 1994.

\section*{\(\Sigma()\) (sumSeq)}

\(\Sigma(\) Expr1, Var, Low, High) \(\Rightarrow\) expression
Note: You can insert this function from the keyboard by typing sumSeq (...).

Evaluates Exprl for each value of Var from Low to High, and returns the sum of the results.

Note: See also Sum template, page 5.
\(\Sigma(\) Expr1, Var, Low, Low-1) \(\Rightarrow 0\)
\(\Sigma(\) Expr1, Var,Low, High \() \Rightarrow \mu\)
\(\Sigma(\) Expr 1, Var, High + 1, Low-1) if High < Low-1

The summation formulas used are derived from the following reference:

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation for Computer Science. Reading, Massachusetts: Addison-Wesley, 1994.
\(\operatorname{Int}(\) NPmt 1, NPmt2, \(N, I, P V\), \([P m t],[F V]\), [PpY], [CpY], [PmtAt], [roundValue]) \(\Rightarrow\) value

SInt(NPmt1,NPmt2,amortTable) \(\Rightarrow\) value
Amortization function that calculates the sum of the interest during a specified range of payments.

NPmt 1 and NPmt 2 define the start and end boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table of TVM arguments, page 195.
- If you omit Pmt, it defaults to Pmt=tvmPmt ( \(N, I, P V, F V, P p Y, C p Y, P m t A t)\).
- If you omit \(F V\), it defaults to \(F V=0\).
- The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.
\(\operatorname{Int}(\) NPmt 1,NPmt 2,amortTable) calculates the sum of the interest based on amortization table amortTable. The amortTable argument must be a matrix in the form described under amortтbl(), page 8.

Note: See also EPrn() , below, and Bal(), page 17.
\begin{tabular}{l}
\hline\(t b l:=\operatorname{amortTbl}(12,12,4.75,20000,, 12,12)\) \\
\(\qquad\left[\begin{array}{cccc}0 & 0 . & 0 . & 20000 . \\
1 & -77.49 & -1632.43 & 18367.6 \\
2 & -71.17 & -1638.75 & 16728.8 \\
3 & -64.82 & -1645.1 & 15083.7 \\
4 & -58.44 & -1651.48 & 13432.2 \\
5 & -52.05 & -1657.87 & 11774.4 \\
6 & -45.62 & -1664.3 & 10110.1 \\
7 & -39.17 & -1670.75 & 8439.32 \\
8 & -32.7 & -1677.22 & 6762.1 \\
9 & -26.2 & -1683.72 & 5078.38 \\
10 & -19.68 & -1690.24 & 3388.14 \\
11 & -13.13 & -1696.79 & 1691.35 \\
12 & -6.55 & -1703.37 & -12.02\end{array}\right]\) \\
\hline\(\sum \operatorname{Int}(1,3, t b l)\)
\end{tabular}

इPrn(NPmt1, NPmt2, N, I, PV, [Pmt], \(\sum \operatorname{Prn}(1,3,12,4.75,20000,, 12,12)-4916.28\) [FV], [PpY], [CpY], [PmtAt], [roundValue]) \(\Rightarrow\) value
\(\Sigma \operatorname{Prn}(\) NPmt 1, NPmt 2 , amortTable \() \Rightarrow\) value

Amortization function that calculates the sum of the principal during a specified range of payments.

NPmt 1 and NPmt 2 define the start and end boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table of TVM arguments, page 195.
- If you omit Pmt, it defaults to Pmt=tvmPmt ( \(N, I, P V, F V, P p Y, C p Y, P m t A t\) ).
- If you omit \(F V\), it defaults to \(F V=0\).
- The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.

\section*{EPrn(NPmt1,NPmt2,amortTable)} calculates the sum of the principal paid based on amortization table amortTable. The amortTable argument must be a matrix in the form described under amortTbl(), page 8.

Note: See also \(\Sigma \operatorname{lnt}()\), above, and \(\operatorname{Bal(})\), page 17.
\(t b l:=\operatorname{amortTbl}(12,12,4.75,20000,, 12,12)\)
\begin{tabular}{l}
{\(\left[\begin{array}{cccc}0 & 0 . & 0 . & 20000 . \\
1 & -77.49 & -1632.43 & 18367.57 \\
2 & -71.17 & -1638.75 & 16728.82 \\
3 & -64.82 & -1645.1 & 15083.72 \\
4 & -58.44 & -1651.48 & 13432.24 \\
5 & -52.05 & -1657.87 & 11774.37 \\
6 & -45.62 & -1664.3 & 10110.07 \\
7 & -39.17 & -1670.75 & 8439.32 \\
8 & -32.7 & -1677.22 & 6762.1 \\
9 & -26.2 & -1683.72 & 5078.38 \\
10 & -19.68 & -1690.24 & 3388.14 \\
11 & -13.13 & -1696.79 & 1691.35 \\
12 & -6.55 & -1703.37 & -12.02\end{array}\right]\)} \\
\hline \(\operatorname{\sum Prn}(1,3, t b l)\) \\
\end{tabular}
\begin{tabular}{llr} 
E (scientific notation) & EE key \\
\cline { 2 - 3 } mantissaEexponent & 23000. & 23000. \\
\hline \begin{tabular}{l} 
Enters a number in scientific notation. The \\
number is interpreted as \\
mantiss \(a \times 10^{\text {exponent. }}\)
\end{tabular} & \(2300000000++4.1 \mathrm{E} 15\) & 4.1 E 15 \\
\hline \(3 \cdot 10^{4}\) & 30000 \\
\hline
\end{tabular}

Hint: If you want to enter a power of 10 without causing a decimal value result, use 10^integer.

Note: You can insert this operator from the computer keyboard by typing @E. for example, type 2.3@E4 to enter 2.3E4.

\section*{\({ }^{\mathrm{g}}\) (gradian)}
\(\pi \cdot\) key
Expr \(1^{\mathrm{g}} \Rightarrow\) expression
List \(1 \mathrm{~g} \Rightarrow\) list
Matrix \({ }^{1} \mathbf{g} \Rightarrow\) matrix

In Degree, Gradian or Radian mode:
\begin{tabular}{lr}
\hline \(\cos \left(50^{\mathrm{g}}\right)\) & \(\frac{\sqrt{2}}{2}\) \\
\hline \(\cos \left(\left\{0,100^{\mathrm{g}}, 200^{\mathrm{g}}\right\}\right)\) & \(\{1,0,-1\}\) \\
\hline
\end{tabular}

This function gives you a way to specify a gradian angle while in the Degree or Radian mode.

In Radian angle mode, multiplies Exprl by \(\pi / 200\).

In Degree angle mode, multiplies Exprl by g/100.

In Gradian mode, returns Exprl unchanged.
Note: You can insert this symbol from the computer keyboard by typing @g.

Expr \(I^{\mathbf{r}} \Rightarrow\) expression
List \(1^{\mathbf{r}} \Rightarrow\) list
Matrix \(\mathrm{I}^{\mathbf{r}} \Rightarrow\) matrix

In Degree, Gradian or Radian angle mode:
\(\cos \left(\frac{\pi}{4^{r}}\right) \quad \frac{\sqrt{2}}{2}\)
\(\cos \left(\left\{0 r, \frac{\pi}{12} r-\left(-(\pi)^{r}\right)\right\}\right\} \quad\left\{1, \frac{(\sqrt{3}+1) \cdot \sqrt{2}}{4},-1\right\}\)

This function gives you a way to specify a radian angle while in Degree or Gradian mode.

In Degree angle mode, multiplies the argument by \(180 / \pi\).

In Radian angle mode, returns the argument unchanged.

In Gradian mode, multiplies the argument by \(200 / \pi\).

Hint: Use \({ }^{r}\) if you want to force radians in a function definition regardless of the mode that prevails when the function is used.

Note: You can insert this symbol from the computer keyboard by typing @r.

\section*{\({ }^{\circ}\) (degree)}

Expr \(1^{\circ} \Rightarrow\) expression
List \(1^{\circ} \Rightarrow\) list
Matrix \(1^{\circ} \Rightarrow\) matrix
This function gives you a way to specify a degree angle while in Gradian or Radian mode.

In Radian angle mode, multiplies the argument by \(\pi / 180\).

In Degree angle mode, returns the argument unchanged.

In Gradian angle mode, multiplies the argument by 10/9.

Note: You can insert this symbol from the computer keyboard by typing @d.

In Degree, Gradian or Radian angle mode:
\(\cos \left(45^{\circ}\right) \quad \frac{\sqrt{2}}{2}\)

In Radian angle mode:
Note: To force an approximate result,
Handheld: Press otrl enter.
Windows \({ }^{\ominus}\) : Press Ctrl+Enter.
Macintosh \({ }^{\ominus}\) : Press \(\mathscr{H}+\) Enter.
iPad \({ }^{\circledR}\) : Hold enter, and select \(\approx\).
\(\cos \left(\left\{0, \frac{\pi}{4}, 90^{\circ}, 30.12^{\circ}\right\}\right)\)
\(\{1 ., 0.707107,0 ., 0.864976\}\)

ㅇ, ', " (degree/minute/second)
ctrl ■ keys
\(d d^{\circ} m m ' s s . s s^{\prime \prime} \Rightarrow\) expression

In Degree angle mode:
\(d d \mathrm{~A}\) positive or negative number mm A non-negative number SS.ss A non-negative number

Returns \(d d+(\mathrm{mm} / 60)+(\) ss.ss/3600 \()\).
This base-60 entry format lets you:
- Enter an angle in degrees/minutes/seconds without regard to the current angle mode.
- Enter time as hours/minutes/seconds.

Note: Follow ss.ss with two apostrophes (''), not a quote symbol (").

\section*{\(\angle\) (angle)}
[Radius, \(\angle \theta\) _Angle] \(\Rightarrow\) vector (polar input)
[Radius, \(\angle \theta\) _Angle,Z_Coordinate] \(\Rightarrow\) vector
(cylindrical input)
[Radius, \(\angle \theta_{-}\)Angle, \(\angle \theta\) _Angle] \(\Rightarrow\) vector (spherical input)

Returns coordinates as a vector depending on the Vector Format mode setting: rectangular, cylindrical, or spherical.

Note: You can insert this symbol from the computer keyboard by typing @<.

> (Magnitude \(\angle\) Angle) \(\Rightarrow\) complexValue (polar input)

Enters a complex value in ( \(\mathrm{r} \angle \theta\) ) polar form. The Angle is interpreted according to the current Angle mode setting.

In Radian mode and vector format set to: rectangular
```

[$$
\begin{array}{llll}{5}&{\angle6\mp@subsup{0}{}{\circ}}&{\angle4\mp@subsup{5}{}{\circ}}\end{array}
$$][$$
\begin{array}{llll}{\frac{5\cdot\sqrt{}{2}}{4}}&{\frac{5\cdot\sqrt{}{6}}{4}}&{\frac{5\cdot\sqrt{}{2}}{2}}\end{array}
$$]

```
cylindrical
\[
\left[\begin{array}{lllll}
5 & \angle 60^{\circ} & \angle 45^{\circ}
\end{array}\right] \quad\left[\begin{array}{lll}
\frac{5 \cdot \sqrt{2}}{2} & \angle \frac{\pi}{3} & \left.\frac{5 \cdot \sqrt{2}}{2}\right]
\end{array}\right.
\]
spherical
\(\left[\begin{array}{lll}5 & \angle 60^{\circ} & \angle 45^{\circ}\end{array}\right] \quad\left[\begin{array}{lll}5 & \angle \frac{\pi}{3} & \angle \frac{\pi}{4}\end{array}\right]\)

In Radian angle mode and Rectangular complex format:
\(5+3 \cdot i-\left(10<\frac{\pi}{4}\right) \quad 5-5 \cdot \sqrt{2}+(3-5 \cdot \sqrt{2}) \cdot i\)

Note: To force an approximate result,
Handheld: Press atri enter
Windows \({ }^{\circledR}\) : Press Ctrl+Enter.
Macintosh \({ }^{\oplus}\) : Press \(\mathscr{H}+\) Enter.
iPad \({ }^{\circledR}\) : Hold enter, and select \(\approx\).
\(5+3 \cdot i-\left(10<\frac{\pi}{4}\right) \quad-2.07107-4.07107 \cdot i\)

\section*{' (prime) \\ variable' \\ variable''}

Enters a prime symbol in a differential equation. A single prime symbol denotes a 1st-order differential equation, two prime symbols denote a 2nd-order, and so on.

\section*{_ (underscore as an empty element)}
_ (underscore as unit designator)
Expr_Unit
Designates the units for an Expr. All unit names must begin with an underscore.

You can use pre-defined units or create your own units. For a list of pre-defined units, open the Catalog and display the Unit Conversions tab. You can select unit names from the Catalog or type the unit names directly.

\section*{Variable_}

When Variable has no value, it is treated as though it represents a complex number. By default, without the _ , the variable is treated as real.

If Variable has a value, the _ is ignored and Variable retains its original data type.

Note: You can store a complex number to a variable without
using _ . However, for best results in calculations such as cSolve() and cZeros(), the _ is recommended.

\section*{See "Empty (Void) Elements," page 236. \\ }
\[
\frac{2 \cdot y^{\frac{3}{4}}}{3}=t
\]

Expr_Unit1 —_Unit2 \(\Rightarrow\) Expr_Unit2
3•_m \(\quad 9.84252 \cdot \mathrm{ft}\)

Converts an expression from one unit to another.

The _ underscore character designates the units. The units must be in the same category, such as Length or Area.

For a list of pre-defined units, open the Catalog and display the Unit Conversions tab:
- You can select a unit name from the list.
- You can select the conversion operator, , from the top of the list.

You can also type unit names manually. To type "_" when typing unit names on the handheld, press ctrl \(\triangle\).

Note: To convert temperature units, use tmpCnv() and \(\Delta\) tmpCnv(). The conversion operator does not handle temperature units.

\section*{\(10^{\wedge}()\)}

Catalog > 国
10^ (Exprl) \(\Rightarrow\) expression
\(\mathbf{1 0}^{\wedge}(\) List 1\() \Rightarrow\) list
Returns 10 raised to the power of the argument.

For a list, returns 10 raised to the power of the elements in Listl.
\[
10^{\wedge}(\text { squareMatrix l) } \Rightarrow \text { squareMatrix }
\]

Returns 10 raised to the power of squareMatrixl. This is not the same as calculating 10 raised to the power of each element. For information about the calculation method, refer to \(\cos ()\).
\(10^{\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]}\)
\(\left[\begin{array}{lll}1.14336 \mathrm{E} 7 & 8.17155 \mathrm{E} 6 & 6.67589 \mathrm{E} 6 \\ 9.95651 \mathrm{E} 6 & 7.11587 \mathrm{E} 6 & 5.81342 \mathrm{E} 6 \\ 7.65298 \mathrm{E} 6 & 5.46952 \mathrm{E} 6 & 4.46845 \mathrm{E} 6\end{array}\right]\)
squareMatrix 1 must be diagonalizable. The result always contains floating-point numbers.

Exprl \(\boldsymbol{n}^{-1} \Rightarrow\) expression
List \(1^{\wedge-1} \Rightarrow\) list
Returns the reciprocal of the argument.
For a list, returns the reciprocals of the elements in List1.
squareMatrix \(1 \boldsymbol{\Lambda 1}^{-1} \Rightarrow\) squareMatrix
Returns the inverse of squareMatrix1.
squareMatrix 1 must be a non-singular square matrix.

\section*{| (constraint operator)}

Expr | BooleanExprl[and BooleanExpr2]...

Expr | BooleanExpr [ [ orBooleanExpr2]...
The constraint ("|") symbol serves as a binary operator. The operand to the left of \| is an expression. The operand to the right of | specifies one or more relations that are intended to affect the simplification of the expression. Multiple relations after | must be joined by logical "and" or "or" operators.

The constraint operator provides three basic types of functionality:
- Substitutions
- Interval constraints
- Exclusions

Substitutions are in the form of an equality, such as \(x=3\) or \(y=\sin (x)\). To be most effective, the left side should be a simple variable. Expr | Variable \(=\) value will substitute value for every occurrence of Variable in Expr.
\begin{tabular}{lr}
\hline\(x^{3}-2 \cdot x+7 \rightarrow f(x)\) & Done \\
\hline\(f(x) \mid x=\sqrt{3}\) & \(\sqrt{3}+7\) \\
\hline\((\sin (x)\rangle^{2}+2 \cdot \sin (x)-6 \mid \sin (x)=d\) & \(d^{2}+2 \cdot d-6\)
\end{tabular}

Interval constraints take the form of one or more inequalities joined by logical "and" or "or" operators. Interval constraints also permit simplification that otherwise might be invalid or not computable.

Exclusions use the "not equals" (/= or \(\neq\) ) relational operator to exclude a specific value from consideration. They are used primarily to exclude an exact solution when using cSolve(), cZeros(), fMax(), fMin(), solve(), zeros(), and so on.
\begin{tabular}{lr}
\hline solve \(\left(x^{2}-1=0, x\right) \mid x>0\) and \(x<2\) & \(x=1\) \\
\hline \(\left.\sqrt{x} \cdot \sqrt{\frac{1}{x}} \right\rvert\, x>0\) & 1 \\
\hline\(\sqrt{x} \cdot \sqrt{\frac{1}{x}}\) & \(\sqrt{\frac{1}{x}} \cdot \sqrt{x}\) \\
\hline
\end{tabular}

\(\rightarrow\) (store)
Expr \(\rightarrow\) Var
List \(\rightarrow\) Var
Matrix \(\rightarrow\) Var
Expr \(\rightarrow\) Function(Param1,...)
List \(\rightarrow\) Function(Param1,...)
ctrl var key
\begin{tabular}{ll}
\(\frac{\pi}{4} \rightarrow\) myvar & \(\frac{\pi}{4}\) \\
\hline
\end{tabular}
\begin{tabular}{lr}
\(2 \cdot \cos (x) \rightarrow y 1(x)\) & Done \\
\hline\(\{1,2,3,4\} \rightarrow\) lst5 & \(\{1,2,3,4\}\) \\
\hline \(\left.\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right] \rightarrow\) matg & {\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right]\)} \\
\hline "Hello" \(\rightarrow\) str 1 & "Hello"
\end{tabular}

Matrix \(\rightarrow\) Function(Param1,...)
If the variable Var does not exist, creates it and initializes it to Expr, List, or Matrix.

If the variable Var already exists and is not locked or protected, replaces its contents with Expr, List, or Matrix.

Hint: If you plan to do symbolic computations using undefined variables, avoid storing anything into commonly used, one-letter variables such as \(a, b, c, x, y, z\), and so on.

Note: You can insert this operator from the keyboard by typing \(=\) : as a shortcut. For example, type pi/4 =: myvar.
:= (assign)
ctrl [0]\{ keys
Var := Expr
Var := List
Var : \(=\) Matrix
Function(Param1,...) := Expr
Function(Param1,...) := List
\begin{tabular}{lr}
\hline myvar \(:=\frac{\pi}{4}\) & \(\frac{\pi}{4}\) \\
\hline\(y l(x):=2 \cdot \cos (x)\) & Done \\
\hline\(l s t 5:=\{1,2,3,4\}\) & \(\{1,2,3,4\}\) \\
\hline matg \(:=\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right]\) & \(\left.\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right]\) \\
\hline str \(1:=\) "Hello" & "Hello" \\
\hline
\end{tabular}

Function(Param1,...) := Matrix
If variable Var does not exist, creates Var and initializes it to Expr, List, or Matrix.

If Var already exists and is not locked or protected, replaces its contents with Expr, List, or Matrix.

Hint: If you plan to do symbolic computations using undefined variables, avoid storing anything into commonly used, one-letter variables such as \(a, b, c, x, y, z\), and so on.
© \([\) text \(]\)
© processes text as a comment line, allowing you to annotate functions and programs that you create.
© can be at the beginning or anywhere in the line. Everything to the right of \(\mathbb{\odot}\), to the end of the line, is the comment.

Note for entering the example: For instructions on entering multi-line program and function definitions, refer to the Calculator section of your product guidebook.

Define \(g(n)=\) Func
(C) Declare variables

Local i,result
result: \(=0\)
For \(i, 1, n, 1\) © Loop \(n\) times
result: \(=\) result \(+i^{2}\)
EndFor
Return result
EndFunc
\begin{tabular}{lr} 
& Done \\
\hline\(g(3)\) & 14 \\
\hline
\end{tabular}

Ob, Oh

0 B keys, 0 Heys

Ob binaryNumber
Oh hexadecimalNumber
Denotes a binary or hexadecimal number, respectively. To enter a binary or hex number, you must enter the Ob or Oh prefix regardless of the Base mode. Without a prefix, a number is treated as decimal (base 10).

Results are displayed according to the Base mode.

In Dec base mode:
\(0 \mathrm{~b} 10+0 \mathrm{hF}+10 \quad 27\)

In Bin base mode:
\(0 \mathrm{~b} 10+0 \mathrm{hF}+10 \quad 0 \mathrm{~b} 11011\)

In Hex base mode:
0b10 \(+0 \mathrm{hF}+10\)
0h1B

\section*{Empty (Void) Elements}

When analyzing real-world data, you might not always have a complete data set. TI-Nspire \({ }^{\text {TM }}\) CAS Software allows empty, or void, data elements so you can proceed with the nearly complete data rather than having to start over or discard the incomplete cases.

You can find an example of data involving empty elements in the Lists \& Spreadsheet chapter, under "Graphing spreadsheet data."

The delVoid() function lets you remove empty elements from a list. The isVoid() function lets you test for an empty element. For details, see delVoid(), page 49, and isVoid(), page 94.

Note: To enter an empty element manually in a math expression, type "_" or the keyword void. The keyword void is automatically converted to a "_" symbol when the expression is evaluated. To type " " on the handheld, press \(\operatorname{ctrl} \boxed{ } \square\).

\section*{Calculations involving void elements}

The majority of calculations involving a void input will produce a void result. See special cases below.
\begin{tabular}{lr}
\hline\(|-|\) & - \\
\hline \(\operatorname{gcd}(100,-)\) & - \\
\hline \(3+\) & - \\
\hline\(\{5,-10\}-\{3,6,9\}\) & \(\{2,-, 1\}\) \\
\hline
\end{tabular}

\section*{List arguments containing void elements}

The following functions and commands ignore (skip) void elements found in list arguments.
count, countlf, cumulativeSum, freqTable list, frequency, max, mean, median, product, stDevPop, stDevSamp, sum, sumlf, varPop, and varSamp, as well as
\begin{tabular}{lr}
\hline \(\operatorname{sum}(\{2,,, 3,5,6.6\})\) & 16.6 \\
\hline median \(\left(\left\{1,2,,_{-},, 3\right\}\right)\) & 2 \\
\hline cumulativeSum \((\{1,2,, 4,5\})\) & \(\left\{1,3, \_, 7,12\right\}\) \\
\hline cumulativeSum \(\left(\left[\begin{array}{ll}1 & 2 \\
3 & - \\
5 & 6\end{array}\right]\right.\)
\end{tabular} regression calculations, OneVar, TwoVar, and FiveNumSummary statistics, confidence intervals, and stat tests

SortA and SortD move all void elements within the first argument to the bottom.
\begin{tabular}{lr}
\hline\(\{5,4,3,,, 1\} \rightarrow\) list1 & \(\{5,4,3,,, 1\}\) \\
\hline\(\{5,4,3,2,1\} \rightarrow\) list2 & \(\{5,4,3,2,1\}\) \\
\hline SortA list1,list2 & Done \\
\hline list1 & \(\left\{1,3,4,5, \_\right\}\) \\
\hline list2 & \(\{1,3,4,5,2\}\) \\
\hline
\end{tabular}

List arguments containing void elements

In regressions, a void in an X or Y list introduces a void for the corresponding element of the residual.

An omitted category in regressions introduces a void for the corresponding element of the residual.

A frequency of 0 in regressions introduces a void for the corresponding element of the residual.
\begin{tabular}{lr}
\hline\(l l:=\{1,3,4,5\}: 12:=\{2,3,5,6.6\}\) & \(\{2,3,5,6.6\}\) \\
\hline LinRegMx \(11, l 2,\{1,0,1,1\}\) & Done \\
stat.Resid \(\quad\{0.069231,-,-0.276923,0.207692\}\) \\
\hline stat.XReg & \(\{1,,, 4,5.5\) \\
\hline stat.YReg & \(\{2 .,,, 5,6.6\}\) \\
\hline stat.FreqReg & \(\{1,,, 1,1\}\). \\
\hline
\end{tabular}

\section*{Shortcuts for Entering Math Expressions}

Shortcuts let you enter elements of math expressions by typing instead of using the Catalog or Symbol Palette. For example, to enter the expression \(\sqrt{6}\), you can type sqrt (6) on the entry line. When you press enter, the expression sqrt (6) is changed to \(\sqrt{6}\). Some shortcuts are useful from both the handheld and the computer keyboard. Others are useful primarily from the computer keyboard.

From the Handheld or Computer Keyboard
\begin{tabular}{ll}
\hline To enter this: & Type this shortcut: \\
\hline\(\pi\) & pi \\
\hline\(\theta\) & theta \\
\hline\(\infty\) & infinity \\
\hline\(\leq\) & \(<=\) \\
\hline\(\geq\) & \(>=\) \\
\hline\(\neq\) & /= \\
\hline\(\Rightarrow\) (logical implication) & \(=>\) \\
\hline\(\Leftrightarrow\) (logical double implication, XNOR) & \(<=>\) \\
\hline\(\rightarrow\) (store operator) & \(=:\) \\
\hline\(\|\) (absolute value) & abs (...) \\
\hline\(\sqrt{()}\) & sqrt (...) \\
\hline\(d()\) & derivative (...) \\
\hline\(J()\) & integral (...) \\
\hline\(\Sigma()\) (Sum template) & sumSeq (...) \\
\hline\(\Pi()\) (Product template) & arcsin (...), arccos (...), ... \\
\hline \(\sin { }^{-1}()\), cos \({ }^{-1}(), \ldots\) & deltaList (...) \\
\hline\(\Delta\) List() & deltaTmpCnv (...) \\
\hline\(\Delta \operatorname{tmpCnv()}\) & \\
\hline
\end{tabular}

From the Computer Keyboard
\begin{tabular}{ll}
\hline To enter this: & Type this shortcut: \\
\hline c1, c2, \(\ldots\) (constants) & @c1, @c2, \(\ldots\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline To enter this: & Type this shortcut: \\
\hline n1, n2, ... (integer constants) & @n1, @n2, ... \\
\hline \(\boldsymbol{i}\) (imaginary constant) & @ i \\
\hline \(\boldsymbol{e}\) (natural log base e) & @ \\
\hline E (scientific notation) & @E \\
\hline \({ }^{\top}\) (transpose) & @t \\
\hline \({ }^{\mathbf{r}}\) (radians) & @r \\
\hline \({ }^{\circ}\) (degrees) & @d \\
\hline \({ }^{\text {g }}\) (gradians) & @g \\
\hline \(\angle\) (angle) & @< \\
\hline \(\checkmark\) (conversion) & @> \\
\hline Decimal, approxFraction(), and so on. & @>Decimal, @>approxFraction(), and so on. \\
\hline
\end{tabular}

\section*{EOS \({ }^{\text {TM }}\) (Equation Operating System) Hierarchy}

This section describes the Equation Operating System (EOS \({ }^{\text {TM }}\) ) that is used by the TI-Nspire \({ }^{\text {TM }}\) CAS math and science learning technology. Numbers, variables, and functions are entered in a simple, straightforward sequence. EOS \({ }^{\text {M }}\) software evaluates expressions and equations using parenthetical grouping and according to the priorities described below.

Order of Evaluation
\begin{tabular}{|c|c|}
\hline Level & Operator \\
\hline 1 & Parentheses ( ), brackets [ ], braces \{ \} \\
\hline 2 & Indirection (\#) \\
\hline 3 & Function calls \\
\hline 4 & Post operators: degrees-minutes-seconds ( \({ }^{\circ}\),',"), factorial (!), percentage (\%), radian ( \({ }^{r}\) ), subscript ([ ]), transpose ( \({ }^{\top}\) ) \\
\hline 5 & Exponentiation, power operator (^) \\
\hline 6 & Negation ( \({ }^{\text {) }}\) \\
\hline 7 & String concatenation (\&) \\
\hline 8 & Multiplication ( \(\cdot\) ), division (/) \\
\hline 9 & Addition (+), subtraction (-) \\
\hline 10 & \begin{tabular}{l}
Equality relations: equal ( \(=\) ), not equal ( \(\neq\) or \(/=\) ), \\
less than ( \(<\) ), less than or equal ( \(\leq\) or \(<=\) ), greater than ( \(>\) ), greater than or equal ( \(\geq\) or \(>=\) )
\end{tabular} \\
\hline 11 & Logical not \\
\hline 12 & Logical and \\
\hline 13 & Logical or \\
\hline 14 & xor, nor, nand \\
\hline 15 & Logical implication ( \(\Rightarrow\) ) \\
\hline 16 & Logical double implication, XNOR ( \(\Leftrightarrow\) ) \\
\hline 17 & Constraint operator ("|") \\
\hline 18 & Store ( \(\rightarrow\) ) \\
\hline
\end{tabular}

\section*{Parentheses, Brackets, and Braces}

All calculations inside a pair of parentheses, brackets, or braces are evaluated first. For example, in the expression \(4(1+2)\), EOS \({ }^{\text {TM }}\) software first evaluates the portion of the expression inside the parentheses, \(1+2\), and then multiplies the result, 3 , by 4.

The number of opening and closing parentheses, brackets, and braces must be the same within an expression or equation. If not, an error message is displayed that indicates the missing element. For example, \((1+2) /(3+4\) will display the error message "Missing )."

Note: Because the TI-Nspire \({ }^{\text {TM }}\) CAS software allows you to define your own functions, a variable name followed by an expression in parentheses is considered a "function call" instead of implied multiplication. For example \(a(b+c)\) is the function \(a\) evaluated by \(\mathrm{b}+\mathrm{c}\). To multiply the expression \(\mathrm{b}+\mathrm{c}\) by the variable \(a\), use explicit multiplication: a • (b+c).

\section*{Indirection}

The indirection operator (\#) converts a string to a variable or function name. For example, \#("x"\&"y"\&"z") creates the variable name xyz. Indirection also allows the creation and modification of variables from inside a program. For example, if \(10 \rightarrow r\) and " r " \(\rightarrow \mathrm{s} 1\), then \#s1=10.

\section*{Post Operators}

Post operators are operators that come directly after an argument, such as 5 !, \(25 \%\), or \(60^{\circ} 15^{\prime} 45^{\prime \prime}\). Arguments followed by a post operator are evaluated at the fourth priority level. For example, in the expression \(4 \wedge 3\) !, 3 ! is evaluated first. The result, 6 , then becomes the exponent of 4 to yield 4096.

\section*{Exponentiation}

Exponentiation ( \(\wedge\) ) and element-by-element exponentiation (.^) are evaluated from right to left. For example, the expression \(2^{\wedge} 3^{\wedge} 2\) is evaluated the same as \(2^{\wedge}\left(3^{\wedge} 2\right)\) to produce 512 . This is different from \(\left(2^{\wedge} 3\right)^{\wedge} 2\), which is 64 .

\section*{Negation}

To enter a negative number, press \((-)\) followed by the number. Post operations and exponentiation are performed before negation. For example, the result of \(-x^{2}\) is a negative number, and \(-9^{2}=-81\). Use parentheses to square a negative number such as \((-9)^{2}\) to produce 81 .

\section*{Constraint ("|")}

The argument following the constraint ("|") operator provides a set of constraints that affect the evaluation of the argument preceding the operator.

\section*{Constants and Values}

The following table lists the constants and their values that are available when performing unit conversions. They can be typed in manually or selected from the Constants list in Utilities > Unit Conversions (Handheld: Press 3).
\begin{tabular}{|c|c|c|}
\hline Constant & Name & Value \\
\hline _c & Speed of light & 299792458 _m/_s \\
\hline _Cc & Coulomb constant & 8987551787.3682 _m/_F \\
\hline _Fc & Faraday constant & 96485.33289 _coul/_mol \\
\hline _g & Acceleration of gravity & 9.80665 _m/_s \({ }^{2}\) \\
\hline _Gc & Gravitational constant & \(6.67408 \mathrm{E}-11 . \mathrm{m}^{3} / \_\mathrm{kg} / \mathrm{c}^{2}\) \\
\hline _h & Planck's constant & \(6.626070040 \mathrm{E}-34\) _J_s \\
\hline _k & Boltzmann's constant & \(1.38064852 \mathrm{E}-23\) _J/_ \({ }^{\circ} \mathrm{K}\) \\
\hline \({ }^{\mu} 0\) & Permeability of a vacuum & \(1.2566370614359 E-6 . N / A^{2}\) \\
\hline \(\_^{\mu} \mathrm{b}\) & Bohr magneton & \(9.274009994 \mathrm{E}-24\) _J_m²/_Wb \\
\hline _Me & Electron rest mass & \(9.10938356 \mathrm{E}-31\) _kg \\
\hline _M \(\mu\) & Muon mass & 1.883531594E-28_kg \\
\hline _Mn & Neutron rest mass & 1.674927471E-27 _kg \\
\hline _Mp & Proton rest mass & \(1.672621898 \mathrm{E}-27 . \mathrm{kg}\) \\
\hline _Na & Avogadro's number & 6.022140857 E 23 /_mol \\
\hline _q & Electron charge & \(1.6021766208 \mathrm{E}-19\) _coul \\
\hline _Rb & Bohr radius & \(5.2917721067 \mathrm{E}-11\) _m \\
\hline _Rc & Molar gas constant & 8.3144598 _J/_mol/_ \({ }^{\text {K }}\) \\
\hline _Rdb & Rydberg constant & 10973731.568508/_m \\
\hline _Re & Electron radius & \(2.8179403227 \mathrm{E}-15\) _m \\
\hline _u & Atomic mass & \(1.660539040 \mathrm{E}-27\) _kg \\
\hline _Vm & Molar volume & \(2.2413962 \mathrm{E}-2\) _m \({ }^{3} / \mathrm{mol}\) \\
\hline _ع0 & Permittivity of a vacuum & \(8.8541878176204 \mathrm{E}-12\) _F/_m \\
\hline _ \(\sigma\) & Stefan-Boltzmann constant & \(5.670367 \mathrm{E}-8 \_\mathrm{W} / \mathrm{m}^{2} /{ }^{\circ} \mathrm{K}^{4}\) \\
\hline _\$0 & Magnetic flux quantum & \(2.067833831 \mathrm{E}-15\) _Wb \\
\hline
\end{tabular}

\section*{Error Codes and Messages}

When an error occurs, its code is assigned to variable errCode. User-defined programs and functions can examine errCode to determine the cause of an error. For an example of using errCode, See Example 2 under the Try command, page 191.

Note: Some error conditions apply only to TI-Nspire \({ }^{\text {TM }}\) CAS products, and some apply only to TI-Nspire \({ }^{\text {TM }}\) products.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Error \\
code
\end{tabular} & Description \\
\hline 10 & A function did not return a value \\
\hline 20 & \begin{tabular}{l} 
A test did not resolve to TRUE or FALSE. \\
Generally, undefined variables cannot be compared. For example, the test If a<b will cause \\
this error if either a or b is undefined when the If statement is executed.
\end{tabular} \\
\hline 30 & Argument cannot be a folder name. \\
\hline 40 & \begin{tabular}{l} 
Argument error \\
\hline 50 \\
Two or more arguments must be of the same type.
\end{tabular} \\
\hline 60 & Argument must be a Boolean expression or integer \\
\hline 70 & Argument must be a decimal number \\
\hline 90 & Argument must be a list \\
\hline 100 & Argument must be a matrix \\
\hline 130 & Argument must be a string \\
\hline 140 & \begin{tabular}{l} 
Argument must be a variable name. \\
Make sure that the name: \\
- \\
- does not begin with a digit \\
does not contain spaces or special characters \\
does not use underscore or period in invalid manner \\
does not exceed the length limitations
\end{tabular} \\
\hline 160 & Argument must be an expression \\
\hline 165 & \begin{tabular}{l} 
Batteries too low for sending or receiving \\
Install new batteries before sending or receiving.
\end{tabular} \\
\hline 170 & \begin{tabular}{l} 
Bound \\
The lower bound must be less than the upper bound to define the search interval.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 180 & \begin{tabular}{l}
Break \\
The \(\square\) or \(\square\) key was pressed during a long calculation or during program execution.
\end{tabular} \\
\hline 190 & \begin{tabular}{l}
Circular definition \\
This message is displayed to avoid running out of memory during infinite replacement of variable values during simplification. For example, a+1->a, where \(a\) is an undefined variable, will cause this error.
\end{tabular} \\
\hline 200 & \begin{tabular}{l}
Constraint expression invalid \\
For example, solve \(\left(3 x^{\wedge} 2-4=0, x\right) \mid x<0\) or \(x>5\) would produce this error message because the constraint is separated by "or" instead of "and."
\end{tabular} \\
\hline 210 & \begin{tabular}{l}
Invalid Data type \\
An argument is of the wrong data type.
\end{tabular} \\
\hline 220 & Dependent limit \\
\hline 230 & \begin{tabular}{l}
Dimension \\
A list or matrix index is not valid. For example, if the list \(\{1,2,3,4\}\) is stored in L 1, then \(\mathrm{L}[5]\) is a dimension error because L1 only contains four elements.
\end{tabular} \\
\hline 235 & Dimension Error. Not enough elements in the lists. \\
\hline 240 & \begin{tabular}{l}
Dimension mismatch \\
Two or more arguments must be of the same dimension. For example, \([1,2]+[1,2,3]\) is a dimension mismatch because the matrices contain a different number of elements.
\end{tabular} \\
\hline 250 & Divide by zero \\
\hline 260 & \begin{tabular}{l}
Domain error \\
An argument must be in a specified domain. For example, \(\operatorname{rand}(\mathbf{0})\) is not valid.
\end{tabular} \\
\hline 270 & Duplicate variable name \\
\hline 280 & Else and Elself invalid outside of If...Endlf block \\
\hline 290 & EndTry is missing the matching Else statement \\
\hline 295 & Excessive iteration \\
\hline 300 & Expected 2 or 3-element list or matrix \\
\hline 310 & The first argument of nSolve must be an equation in a single variable. It cannot contain a nonvalued variable other than the variable of interest. \\
\hline 320 & \begin{tabular}{l}
First argument of solve or cSolve must be an equation or inequality \\
For example, solve \(\left(3 x^{\wedge} 2-4, x\right)\) is invalid because the first argument is not an equation.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 345 & Inconsistent units \\
\hline 350 & Index out of range \\
\hline 360 & Indirection string is not a valid variable name \\
\hline 380 & \begin{tabular}{l}
Undefined Ans \\
Either the previous calculation did not create Ans, or no previous calculation was entered.
\end{tabular} \\
\hline 390 & Invalid assignment \\
\hline 400 & Invalid assignment value \\
\hline 410 & Invalid command \\
\hline 430 & Invalid for the current mode settings \\
\hline 435 & Invalid guess \\
\hline 440 & \begin{tabular}{l}
Invalid implied multiply \\
For example, \(x(x+1)\) is invalid; whereas, \(x^{*}(x+1)\) is the correct syntax. This is to avoid confusion between implied multiplication and function calls.
\end{tabular} \\
\hline 450 & \begin{tabular}{l}
Invalid in a function or current expression \\
Only certain commands are valid in a user-defined function.
\end{tabular} \\
\hline 490 & Invalid in Try..EndTry block \\
\hline 510 & Invalid list or matrix \\
\hline 550 & \begin{tabular}{l}
Invalid outside function or program \\
A number of commands are not valid outside a function or program. For example, Local cannot be used unless it is in a function or program.
\end{tabular} \\
\hline 560 & Invalid outside Loop..EndLoop, For..EndFor, or While..EndWhile blocks For example, the Exit command is valid only inside these loop blocks. \\
\hline 565 & Invalid outside program \\
\hline 570 & \begin{tabular}{l}
Invalid pathname \\
For example, \var is invalid.
\end{tabular} \\
\hline 575 & Invalid polar complex \\
\hline 580 & \begin{tabular}{l}
Invalid program reference \\
Programs cannot be referenced within functions or expressions such as \(1+p(x)\) where \(p\) is a program.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 600 & Invalid table \\
\hline 605 & Invalid use of units \\
\hline 610 & Invalid variable name in a Local statement \\
\hline 620 & Invalid variable or function name \\
\hline 630 & Invalid variable reference \\
\hline 640 & Invalid vector syntax \\
\hline 650 & \begin{tabular}{l}
Link transmission \\
A transmission between two units was not completed. Verify that the connecting cable is connected firmly to both ends.
\end{tabular} \\
\hline 665 & Matrix not diagonalizable \\
\hline 670 & \begin{tabular}{l}
Low Memory \\
1. Delete some data in this document \\
2. Save and close this document \\
If 1 and 2 fail, pull out and re-insert batteries
\end{tabular} \\
\hline 672 & Resource exhaustion \\
\hline 673 & Resource exhaustion \\
\hline 680 & Missing ( \\
\hline 690 & Missing ) \\
\hline 700 & Missing " \\
\hline 710 & Missing ] \\
\hline 720 & Missing \} \\
\hline 730 & Missing start or end of block syntax \\
\hline 740 & Missing Then in the If..Endlf block \\
\hline 750 & Name is not a function or program \\
\hline 765 & No functions selected \\
\hline 780 & No solution found \\
\hline 800 & \begin{tabular}{l}
Non-real result \\
For example, if the software is in the Real setting, \(\sqrt{ }(-1)\) is invalid.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline & To allow complex results, change the "Real or Complex" Mode Setting to RECTANGULAR or POLAR. \\
\hline 830 & Overflow \\
\hline 850 & \begin{tabular}{l}
Program not found \\
A program reference inside another program could not be found in the provided path during execution.
\end{tabular} \\
\hline 855 & Rand type functions not allowed in graphing \\
\hline 860 & Recursion too deep \\
\hline 870 & Reserved name or system variable \\
\hline 900 & \begin{tabular}{l}
Argument error \\
Median-median model could not be applied to data set.
\end{tabular} \\
\hline 910 & Syntax error \\
\hline 920 & Text not found \\
\hline 930 & \begin{tabular}{l}
Too few arguments \\
The function or command is missing one or more arguments.
\end{tabular} \\
\hline 940 & \begin{tabular}{l}
Too many arguments \\
The expression or equation contains an excessive number of arguments and cannot be evaluated.
\end{tabular} \\
\hline 950 & Too many subscripts \\
\hline 955 & Too many undefined variables \\
\hline 960 & \begin{tabular}{l}
Variable is not defined \\
No value is assigned to variable. Use one of the following commands: \\
- sto \(\rightarrow\) \\
- := \\
- Define \\
to assign values to variables.
\end{tabular} \\
\hline 965 & Unlicensed OS \\
\hline 970 & Variable in use so references or changes are not allowed \\
\hline 980 & Variable is protected \\
\hline 990 & \begin{tabular}{l}
Invalid variable name \\
Make sure that the name does not exceed the length limitations
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 1000 & Window variables domain \\
\hline 1010 & Zoom \\
\hline 1020 & Internal error \\
\hline 1030 & Protected memory violation \\
\hline 1040 & Unsupported function. This function requires Computer Algebra System. Try TI-Nspire \({ }^{T M}\) CAS. \\
\hline 1045 & Unsupported operator. This operator requires Computer Algebra System. Try TI-Nspire \({ }^{\text {TM }}\) CAS. \\
\hline 1050 & Unsupported feature. This operator requires Computer Algebra System. Try TI-Nspire \({ }^{T M}\) CAS. \\
\hline 1060 & Input argument must be numeric. Only inputs containing numeric values are allowed. \\
\hline 1070 & Trig function argument too big for accurate reduction \\
\hline 1080 & Unsupported use of Ans. This application does not support Ans. \\
\hline 1090 & \begin{tabular}{l}
Function is not defined. Use one of the following commands: \\
- Define \\
- := \\
- sto \(\rightarrow\) \\
to define a function.
\end{tabular} \\
\hline 1100 & \begin{tabular}{l}
Non-real calculation \\
For example, if the software is in the Real setting, \(\sqrt{ }(-1)\) is invalid. \\
To allow complex results, change the "Real or Complex" Mode Setting to RECTANGULAR or POLAR.
\end{tabular} \\
\hline 1110 & Invalid bounds \\
\hline 1120 & No sign change \\
\hline 1130 & Argument cannot be a list or matrix \\
\hline 1140 & \begin{tabular}{l}
Argument error \\
The first argument must be a polynomial expression in the second argument. If the second argument is omitted, the software attempts to select a default.
\end{tabular} \\
\hline 1150 & \begin{tabular}{l}
Argument error \\
The first two arguments must be polynomial expressions in the third argument. If the third argument is omitted, the software attempts to select a default.
\end{tabular} \\
\hline 1160 & Invalid library pathname \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline & \begin{tabular}{l}
A pathname must be in the form \(x x x \backslash y y y\), where: \\
- The \(x x x\) part can have 1 to 16 characters. \\
- The yyy part can have 1 to 15 characters. \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1170 & \begin{tabular}{l}
Invalid use of library pathname \\
- A value cannot be assigned to a pathname using Define, \(:=\), or sto \(\rightarrow\). \\
- A pathname cannot be declared as a Local variable or be used as a parameter in a function or program definition.
\end{tabular} \\
\hline 1180 & \begin{tabular}{l}
Invalid library variable name. \\
Make sure that the name: \\
- Does not contain a period \\
- Does not begin with an underscore \\
- Does not exceed 15 characters \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1190 & \begin{tabular}{l}
Library document not found: \\
- Verify library is in the MyLib folder. \\
- Refresh Libraries. \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1200 & \begin{tabular}{l}
Library variable not found: \\
- Verify library variable exists in the first problem in the library. \\
- Make sure library variable has been defined as LibPub or LibPriv. \\
- Refresh Libraries. \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1210 & \begin{tabular}{l}
Invalid library shortcut name. \\
Make sure that the name: \\
- Does not contain a period \\
- Does not begin with an underscore \\
- Does not exceed 16 characters \\
- Is not a reserved name \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1220 & \begin{tabular}{l}
Domain error: \\
The tangentLine and normalLine functions support real-valued functions only.
\end{tabular} \\
\hline 1230 & Domain error. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Error \\
code
\end{tabular} & Description \\
\hline & Trigonometric conversion operators are not supported in Degree or Gradian angle modes. \\
\hline 1250 & \begin{tabular}{l} 
Argument Error \\
Use a system of linear equations. \\
Example of a system of two linear equations with variables x and y: \\
\(3 x+7 y=5\) \\
\(2 y-5 x=-1\)
\end{tabular} \\
\hline 1260 & \begin{tabular}{l} 
Argument Error: \\
The first argument of nfMin or nfMax must be an expression in a single variable. It cannot \\
contain a non-valued variable other than the variable of interest.
\end{tabular} \\
\hline 1270 & \begin{tabular}{l} 
Argument Error \\
Order of the derivative must be equal to 1 or 2.
\end{tabular} \\
\hline 1280 & \begin{tabular}{l} 
Argument Error \\
Use a polynomial in expanded form in one variable.
\end{tabular} \\
\hline 1290 & \begin{tabular}{l} 
Argument Error \\
Use a polynomial in one variable.
\end{tabular} \\
\hline 1300 & \begin{tabular}{l} 
Argument Error \\
The coefficients of the polynomial must evaluate to numeric values.
\end{tabular} \\
\hline 1310 & \begin{tabular}{l} 
Argument error: \\
A function could not be evaluated for one or more of its arguments.
\end{tabular} \\
\hline 1380 & \begin{tabular}{l} 
Argument error: \\
Nested calls to domain() function are not allowed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Warning Codes and Messages}

You can use the warnCodes() function to store the codes of warnings generated by evaluating an expression. This table lists each numeric warning code and its associated message. For an example of storing warning codes, see warnCodes(), page 200.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Warning \\
code
\end{tabular} & Message \\
\hline 10000 & Operation might introduce false solutions. \\
\hline 10001 & Differentiating an equation may produce a false equation. \\
\hline 10002 & Questionable solution \\
\hline 10003 & Questionable accuracy \\
\hline 10004 & Operation might lose solutions. \\
\hline 10005 & cSolve might specify more zeros. \\
\hline 10006 & Solve may specify more zeros. \\
\hline 10007 & \begin{tabular}{l} 
More solutions may exist. Try specifying appropriate lower and upper bounds and/or a \\
guess. \\
Examples using solve(): \\
- solve(Equation, Var=Guess) |lowBound<Var<upBound \\
- solve(Equation, Var) |lowBound<Var<upBound
\end{tabular} \\
\hline 10008 & solve(Equation, Var=Guess)
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Warning \\
code
\end{tabular} & Message \\
\hline 10022 & Specifying appropriate lower and upper bounds might produce a solution. \\
\hline 10023 & Scalar has been multiplied by the identity matrix. \\
\hline 10024 & Result obtained using approximate arithmetic. \\
\hline 10025 & Equivalence cannot be verified in EXACT mode. \\
\hline 10026 & \begin{tabular}{l} 
Constraint might be ignored. Specify constraint in the form " \(\backslash\) "' 'Variable MathTestSymbol \\
Constant' or a conjunct of these forms, for example ' \(x<3\) and \(x>-12 '\)
\end{tabular} \\
\hline
\end{tabular}

\section*{General Information}

\section*{Online Help}
education.ti.com/eguide
Select your country for more product information.

\section*{Contact TI Support}
education.ti.com/ti-cares
Select your country for technical and other support resources.

\section*{Service and Warranty Information}
education.ti.com/warranty
Select your country for information about the length and terms of the warranty or about product service.

Limited Warranty. This warranty does not affect your statutory rights.

\section*{Index}
-, subtract ............................. 210
\begin{tabular}{|c|c|}
\hline !, factorial & 220 \\
\hline
\end{tabular}
"
", second notation ................. 228
\#
\#, indirection ....................... 226
\#, indirection operator ........... 241
\%
\%, percent ............................ 216
\&
\& append .......................... 220
*
*, multiply
211
., dot subtraction ................. 214
.*, dot multiplication ............... 215
./, dot division ..................... 215
.^, dot power ......................... 215
.+, dot addition ..................... 214
/
/, divide ............................... 212
:=, assign ............................ 234
\(\wedge\)
\({ }^{\wedge-1}\), reciprocal 232
\(\wedge\), power ..... 213
」 unit designation ..... 230
I
|, constraint operator ..... 232
'minute notation ..... 228
', prime ..... 230
+, add ..... 210
\(=\)
\(\neq\), not equal ..... 217
\(\leq\), less than or equal ..... 218
\(\geq\), greater than or equal ..... 219
\(>\), greater than ..... 218
\(=\), equal ..... 216
\(\Pi\)
\(\Pi\), product ..... 223
\(\Sigma\)
\(\Sigma()\), sum ..... 224
\(\sum \operatorname{lnt}()\) ..... 225
¿Prn() ..... 225
V
v, square root ..... 223
\(\angle\)
\(\angle\) (angle) ..... 229
s
f, integral ..... 221
-, convert units ..... 231
-approxFraction() ..... 13
-Base10, display as decimal integer ..... 18
-Base16, display as hexadecimal ..... 19
-Base2, display as binary ..... 17
-cos, display in terms of cosine ..... 29
- Cylind, display as cylindrical vector ..... 42
-DD, display as decimal angle ..... 45
-Decimal, display result as decimal ..... 45
-DMS, display as degree/minute/second ..... 54
- exp, display in terms of e ..... 63
\(\rightarrow\) Grad, convert to gradian angle ..... 86
- Polar, display as polar vector ..... 133
-Rad, convert to radian angle ..... 143
- Rect, display as rectangular vector ..... 146
- sin, display in terms of sine ..... 166
-Sphere, display as spherical vector ..... 175
\(\Rightarrow\)
\(\Rightarrow\), logical implication ..... 219, 238
\(\rightarrow\)
\(\rightarrow\), store variable ..... 233
\(\Leftrightarrow\)
\(\Leftrightarrow\), logical double implication ..... 220, 238
©
©, comment ..... 235
。
\({ }^{\circ}\), degree notation ..... 228
\({ }^{\circ}\), degrees/minutes/seconds ..... 228
0
Ob, binary indicator ..... 235
Oh, hexadecimal indicator ..... 235
\(10^{\wedge}()\), power of ten ..... 231
2
2-sample F Test ..... 75
A
abs( ), absolute value ..... 8
absolute value template for ..... 3-4
add, + ..... 210
amortization table, amortTbl() ..... 8, 17
amortTbl( ), amortization table ..... 8, 17
and, Boolean operator ..... 9
angle( ), angle ..... 10
angle, angle() ..... 10
ANOVA, one-way variance analysis ..... 10
ANOVA2way, two-way variance analysis ..... 11
Ans, last answer ..... 13
answer (last), Ans ..... 13
append, \& ..... 220
approx( ), approximate ..... 13-14
approximate, approx() ..... 13-14
approxRational() ..... 14
arc length, arcLen() ..... 15
\(\arccos (), \cos ^{-1}()\) ..... 14
\(\operatorname{arccosh}(), \cosh ^{-1}()\) ..... 14
\(\operatorname{arccot}(), \cot ^{-1}()\) ..... 14
\(\operatorname{arccoth}(), \operatorname{coth}^{-1}()\) ..... 14
\(\operatorname{arccsc}(), \csc ^{-1}()\) ..... 14
\(\operatorname{arccsch}(), \operatorname{csch}^{-1}()\) ..... 14
arcLen( ), arc length ..... 15
\(\operatorname{arcsec}(), \sec ^{-1}()\) ..... 15
\(\operatorname{arcsech}(), \operatorname{csech}^{-1}()\) ..... 15
\(\arcsin (), \sin ^{-1}()\) ..... 15
\(\operatorname{arcsinh}(), \sinh ^{-1}()\) ..... 15
\(\arctan (), \tan ^{-1}()\) ..... 15
\(\operatorname{arctanh}(), \tanh ^{-1}()\) ..... 15
arguments in TVM functions ..... 195
augment( ), augment/concatenate ..... 15
augment/concatenate, augment() ..... 15
average rate of change, avgRC( ) ..... 16
\(\operatorname{avgRC}()\), average rate of change ..... 16
B
binary
display, -Base2 ..... 17
indicator, Ob ..... 235
binomCdf( ) ..... 20, 92
binomPdf() ..... 20
Boolean operators \(\Rightarrow\) ..... 219, 238
\(\Leftrightarrow\) ..... 220
and ..... 9
nand ..... 119
nor ..... 123
not ..... 125
or ..... 129
xor ..... 201
C
Cdf() ..... 68
ceiling( ), ceiling ..... 20
ceiling, ceiling( ) ..... 20-21, 36
centralDiff() ..... 21
cFactor( ), complex factor ..... 21
char(), character string ..... 22
character string, char() ..... 22
characters
numeric code, ord() ..... 130
string, char() ..... 22
charPoly() ..... 23
\(\chi^{2} 2 w a y\) ..... 23
clear
error, ClrErr ..... 25
ClearAZ ..... 25
ClrErr, clear error ..... 25
colAugment ..... 26
colDim( ), matrix column dimension ..... 26
colNorm( ), matrix column norm ..... 26
combinations, nCr() ..... 120
comDenom( ), common denominator ..... 26
comment, © ..... 235
common denominator, comDenom () ..... 26
completeSquare( ), complete square ..... 27
complex
conjugate, conj() ..... 28
factor, cFactor() ..... 21
solve, cSolve( ) ..... 38
zeros, cZeros( ) ..... 43
conj(), complex conjugate ..... 28
constant
in solve( ) ..... 171
constants
in cSolve( ) ..... 39
in cZeros( ) ..... 44
in deSolve( ) ..... 49
in solve( ) ..... 173
in zeros( ) ..... 203
shortcuts for ..... 238
constraint operator "|" ..... 232
constraint operator, order of evaluation ..... 240
construct matrix, constructMat() ..... 28
constructMat( ), construct matrix ..... 28
convert
-Grad ..... 86
-Rad ..... 143
units ..... 231
copy variable or function, CopyVar ..... 29
correlation matrix, corrMat() ..... 29
corrMat(), correlation matrix ..... 29
\(\cos ^{-1}\), arccosine ..... 31
\(\cos ()\), cosine ..... 30
\(\cosh ^{-1}()\), hyperbolic arccosine ..... 32
cosh( ), hyperbolic cosine ..... 32
cosine
display expression in terms of ..... 29
cosine, \(\cos ()\) ..... 30
\(\cot ^{-1}()\), arccotangent ..... 33
cot( ), cotangent ..... 33
cotangent, cot() ..... 33
\(\operatorname{coth}^{-1}()\), hyperbolic arccotangent ..... 34
coth( ), hyperbolic cotangent ..... 34
count days between dates, dbd() ..... 44
count items in a list conditionally ..... 35
countif()
count items in a list, count( ) ..... 34
count( ), count items in a list ..... 34
countif( ), conditionally count items in a list ..... 35
cPolyRoots() ..... 36
cross product, crossP() ..... 36
crossP(), cross product ..... 36
\(\csc ^{-1}()\), inverse cosecant ..... 37
\(\csc (\) ), cosecant ..... 36
\(\operatorname{csch}^{-1}()\), inverse hyperbolic cosecant ..... 37
\(\operatorname{csch}()\), hyperbolic cosecant ..... 37
cSolve( ), complex solve ..... 38
cubic regression, CubicReg ..... 40
CubicReg, cubic regression ..... 40
cumulative sum, cumulativeSum() ..... 41
cumulativeSum( ), cumulative sum ..... 41
cycle, Cycle ..... 42
Cycle, cycle ..... 42
cylindrical vector display, \(\bullet\) Cylind ..... 42
cZeros( ), complex zeros ..... 43
D
d( ), first derivative ..... 221
days between dates, dbd() ..... 44
dbd(), days between dates ..... 44
decimal
angle display, \(\bullet D D\) ..... 45
integer display, \(\bullet\) Base10 ..... 18
Define ..... 46
Define LibPriv ..... 47
Define LibPub ..... 47
define, Define ..... 46
Define, define ..... 46
defining private function or program ..... 47
public function or program ..... 47
definite integral template for ..... 6
degree notation, \({ }^{\circ}\) ..... 228
degree/minute/second display, -DMS ..... 54
degree/minute/second notation ..... 228
delete
void elements from list ..... 49
deleting
variable, DelVar ..... 48
deltaList() ..... 48
deltaTmpCnv() ..... 48
DelVar, delete variable ..... 48
delVoid( ), remove void elements ..... 49
denominator ..... 26
derivative or nth derivative template for ..... 6
derivative() ..... 49
derivatives
first derivative, \(\mathrm{d}(\) ) ..... 221
numeric derivative, nDeriv( ) ..... 121-122
numeric derivative, nDerivative( ) ..... 121
deSolve( ), solution ..... 49
\(\operatorname{det}()\), matrix determinant ..... 51
diag( ), matrix diagonal ..... 51
\(\operatorname{dim}(\) ), dimension ..... 52
dimension, \(\operatorname{dim}()\) ..... 52
Disp, display data ..... 52, 158
DispAt ..... 52
display as
binary, >Base2 ..... 17
cylindrical vector, \(\bullet\) Cylind ..... 42
decimal angle, \(\bullet\) DD ..... 45
decimal integer, \(>\) Base10 ..... 18
degree/minute/second, \(\triangle\) DMS ..... 54
hexadecimal, •Base16 ..... 19
polar vector, - Polar ..... 133
rectangular vector, \(\bullet\) Rect ..... 146
spherical vector, \(\bullet\) Sphere ..... 175
display data, Disp ..... 52, 158
distribution functions
binomCdf() ..... 20, 92
binomPdf() ..... 20
invNorm() ..... 92
invt() ..... 92
\(\operatorname{lnv} x^{2}()\) ..... 91
normCdf() ..... 125
normPdf() ..... 125
poissCdf() ..... 132
poissPdf() ..... 132
tCdf() ..... 185
tPdf() ..... 190
\(\chi^{2} 2 w a y()\) ..... 23
\(\chi^{2} \operatorname{Cdf}()\) ..... 24
\(\chi^{2} G O F()\) ..... 24
\(\chi^{2} P d f()\) ..... 24
divide, / ..... 212
domain function, domain() ..... 55
domain(), domain function ..... 55
dominant term, dominantTerm() ..... 55
dominantTerm( ), dominant term ..... 55
dot
addition, .+ ..... 214
division, ./ ..... 215
multiplication, .* ..... 215
power,.^ ..... 215
product, \(\operatorname{dotP}()\) ..... 57
subtraction, ..... 214
\(\operatorname{dot} P()\), dot product ..... 57
E
e exponenttemplate for2
e to a power, \(\mathrm{e}^{\wedge}\) () ..... 57, 63
e, display expression in terms of ..... 63
E, exponent ..... 227
\(\mathrm{e}^{\wedge}()\), e to a power ..... 57
eff( ), convert nominal to effective rate ..... 58
effective rate, eff( ) ..... 58
eigenvalue, eigVI() ..... 58
eigenvector, eigVc() ..... 58
eigVc( ), eigenvector ..... 58
eigVI( ), eigenvalue ..... 58
else if, Elself ..... 59
else, Else ..... 86
Elself, else if ..... 59
empty (void) elements ..... 236
end
for, EndFor ..... 72
function, EndFunc ..... 75
if, Endlf ..... 86
loop, EndLoop ..... 110
program, EndPrgm ..... 137
try, EndTry ..... 191
while, EndWhile ..... 201
end function, EndFunc ..... 75
end if, Endlf ..... 86
end loop, EndLoop ..... 110
end while, EndWhile ..... 201
EndTry, end try ..... 191
EndWhile, end while ..... 201
EOS (Equation Operating System) ..... 240
equal, = ..... 216
Equation Operating System (EOS) ..... 240
error codes and messages ..... 243, 251
errors and troubleshooting clear error, ClrErr ..... 25
pass error, PassErr ..... 131
euler( ), Euler function ..... 60
evaluate polynomial, polyEval() ..... 135
evaluation, order of ..... 240
exact(), exact ..... 62
exact, exact() ..... 62
exclusion with "|" operator ..... 232
exit, Exit ..... 62
Exit, exit ..... 62
\(\exp ()\), e to a power ..... 63
exp>list( ), expression to list ..... 64
expand(), expand ..... 64
expand, expand() ..... 64
exponent, E ..... 227
exponential regession, ExpReg ..... 66
exponents
template for ..... 1
expr( ), string to expression ..... 65, 107
ExpReg, exponential regession ..... 66
expressions
expression to list, explist() ..... 64
string to expression, expr() ..... 65, 107
F
factor( ), factor ..... 67
factor, factor() ..... 67
factorial, ! ..... 220
Fill, matrix fill ..... 69
financial functions, tvmFV( ) ..... 193
financial functions, tvml() ..... 193
financial functions, tvmN() ..... 194
financial functions, tvmPmt() ..... 194
financial functions, tvmPV() ..... 194
first derivative template for ..... 5
FiveNumSummary ..... 69
floor( ), floor ..... 70
floor, floor() ..... 70
fMax( ), function maximum ..... 70
fMin( ), function minimum ..... 71
For ..... 72
for, For ..... 72
For, for ..... 72
format string, format() ..... 72
format( ), format string ..... 72
fpart( ), function part ..... 73
fractions
propFrac ..... 139
template for ..... 1
freqTable() ..... 73
frequency() ..... 74
Frobenius norm, norm() ..... 124
Func, function ..... 75
Func, program function ..... 75
functions
maximum, fMax() ..... 70
minimum, fMin() ..... 71
part, fpart() ..... 73
program function, Func ..... 75
user-defined ..... 46
functions and variables
copying ..... 29
G
g , gradians ..... 227
\(\operatorname{gcd}()\), greatest common divisor ..... 76
geomCdf() ..... 76
geomPdf() ..... 77
Get ..... 77
get/return
denominator, getDenom() ..... 78
number, getNum() ..... 84
variables injformation, getVarınfo() ..... 82, 85
getDenom( ), get/return denominator ..... 78
getKey() ..... 78
getLangInfo( ), get/return language information ..... 82
getLockInfo( ), tests lock status of variable or variable group ..... 82
getMode( ), get mode settings ..... 83
getNum( ), get/return number ..... 84
GetStr ..... 84
getType( ), get type of variable ..... 84
getVarInfo( ), get/return variables information ..... 85
go to, Goto ..... 86
Goto, go to ..... 86
gradian notation, g ..... 227
greater than or equal, \(\geq\) ..... 219
greater than, > ..... 218
greatest common divisor, \(\operatorname{gcd}()\) ..... 76
groups, locking and unlocking ..... 106, 197
groups, testing lock status ..... 82
Hhexadecimaldisplay, \(\bullet\) Base1619
indicator, Oh ..... 235
hyperbolic
\(\operatorname{arccosine}, \cosh ^{-1}()\) ..... 32
arcsine, \(\sinh ^{-1}()\) ..... 168
arctangent, \(\tanh ^{-1}()\) ..... 184
cosine, cosh() ..... 32
sine, \(\sinh ()\) ..... 168
tangent, \(\tanh ()\) ..... 184
I
identity matrix, identity() ..... 86
identity( ), identity matrix ..... 86
if, If ..... 86
If, if ..... 86
iffn() ..... 88
imag( ), imaginary part ..... 88
imaginary part, imag( ) ..... 88
ImpDif( ), implicit derivative ..... 89
implicit derivative, Impdif() ..... 89
indefinite integral template for ..... 6
indirection operator (\#) ..... 241
indirection, \# ..... 226
input, Input ..... 89
Input, input ..... 89
inString( ), within string ..... 89
int(), integer ..... 90
intDiv( ), integer divide ..... 90
integer divide, intDiv() ..... 90
integer part, iPart() ..... 93
integer, int() ..... 90
integral, S ..... 221
interpolate( ), interpolate ..... 90
inverse cumulative normal distribution (invNorm() ..... 92
inverse, \({ }^{\text {^-1 }}\) ..... 232
invF() ..... 91
invNorm( ), inverse cumulative normal distribution) ..... 92
invt() ..... 92
Invx²() ..... 91
iPart(), integer part ..... 93
irr( ), internal rate of return internal rate of return, irr() ..... 93
isPrime( ), prime test ..... 93
isVoid( ), test for void ..... 94
L
label, Lbl ..... 95
language
get language information ..... 82
Lbl, label ..... 95
lcm, least common multiple ..... 95
least common multiple, lcm ..... 95
left( ), left ..... 95
left, left() ..... 95
length of string ..... 52
less than or equal, \(\leq\) ..... 218
LibPriv ..... 47
LibPub ..... 47
library
create shortcuts to objects ..... 96
libShortcut(), create shortcuts to library objects ..... 96
limit
\(\lim ()\) ..... 96
limit() ..... 96
template for ..... 6
limit( ) or lim( ), limit ..... 96
linear regression, LinRegAx ..... 98
linear regression, LinRegBx ..... 97, 99
LinRegBx, linear regression ..... 97
LinRegMx, linear regression ..... 98
LinRegtIntervals, linear regression ..... 99
LinRegtTest ..... 101
linSolve() ..... 102
\(\Delta\) list ( ), list difference ..... 103
list to matrix, list•mat() ..... 103
list, conditionally count items in ..... 35
list, count items in ..... 34
list•mat( ), list to matrix ..... 103
lists
augment/concatenate, augment() ..... 15
cross product, crossP() ..... 36
cumulative sum, cumulativeSum() ..... 41
differences in a list, \(\Delta\) list( ) ..... 103
dot product, \(\operatorname{dotP}()\) ..... 57
empty elements in ..... 236
expression to list, exp-list() ..... 64
list to matrix, list>mat() ..... 103
matrix to list, mat-list() ..... 111
maximum, \(\max ()\) ..... 111
mid-string, mid() ..... 114
minimum, \(\min ()\) ..... 115
new, newList() ..... 121
product, product() ..... 138
sort ascending, SortA ..... 174
sort descending, SortD ..... 175
summation, sum() ..... 180
In( ), natural logarithm ..... 103
LnReg, logarithmic regression ..... 104
local variable, Local ..... 105
local, Local ..... 105
Local, local variable ..... 105
Lock, lock variable or variable group ..... 106
locking variables and variable groups ..... 106
Log
template for ..... 2
logarithmic regression, LnReg ..... 104
logarithms ..... 103
logical double implication, \(\Leftrightarrow\) ..... 220
logical implication, \(\Rightarrow\) ..... 219, 238
logistic regression, Logistic ..... 107
logistic regression, LogisticD ..... 108
Logistic, logistic regression ..... 107
LogisticD, logistic regression ..... 108
loop, Loop ..... 110
Loop, loop ..... 110
LU, matrix lower-upper
decomposition ..... 110
M
mat \(\stackrel{\text { list }}{ }()\), matrix to list ..... 111
matrices
augment/concatenate, augment() ..... 15
column dimension, colDim( ) ..... 26
column norm, colNorm() ..... 26
cumulative sum, cumulativeSum() ..... 41
determinant, det() ..... 51
diagonal, diag() ..... 51
dimension, \(\operatorname{dim}()\) ..... 52
dot addition, .+ ..... 214
dot division, ./ ..... 215
dot multiplication,.* ..... 215
dot power, .^ ..... 215
dot subtraction, .- ..... 214
eigenvalue, eigVI() ..... 58
eigenvector, eigVc() ..... 58
filling, Fill ..... 69
identity, identity() ..... 86
list to matrix, list•mat() ..... 103
lower-upper decomposition, LU ..... 110
matrix to list, mat•list() ..... 111
maximum, \(\max ()\) ..... 111
minimum, \(\min ()\) ..... 115
new, newMat() ..... 121
product, product() ..... 138
QR factorization, QR ..... 139
random, randMat() ..... 145
reduced row echelon form, rref( ) ..... 156
row addition, rowAdd() ..... 155
row dimension, rowDim() ..... 156
row echelon form, ref() ..... 147
row multiplication and addition, mRowAdd() ..... 116
row norm, rowNorm() ..... 156
row operation, mRow() ..... 116
row swap, rowSwap() ..... 156
submatrix, subMat() ..... 180-181
summation, sum() ..... 180
transpose, T ..... 182
matrix ( \(1 \times 2\) )
template for ..... 4
matrix ( \(2 \times 1\) ) template for ..... 4
matrix ( \(2 \times 2\) ) template for ..... 4
matrix ( \(m \times n\) ) template for ..... 4
matrix to list, mat-list() ..... 111
max( ), maximum ..... 111
maximum, \(\max ()\) ..... 111
mean(), mean ..... 112
mean, mean() ..... 112
median(), median ..... 112
median, median() ..... 112
medium-medium line regression, MedMed ..... 113
MedMed, medium-medium line regression ..... 113
mid-string, mid() ..... 114
mid(), mid-string ..... 114
\(\min ()\), minimum ..... 115
minimum, min() ..... 115
minute notation,' ..... 228
mirr( ), modified internal rate of return ..... 115
mixed fractions, using propFrac() with ..... 139
\(\bmod ()\), modulo ..... 116
mode settings, getMode( ) ..... 83
modes
setting, setMode( ) ..... 162
modified internal rate of return, mirr () ..... 115
modulo, mod() ..... 116
mRow( ), matrix row operation ..... 116
mRowAdd( ), matrix row multiplication and addition ..... 116
Multiple linear regression \(t\) test ..... 118
multiply, * ..... 211
MultReg ..... 117
MultRegIntervals( ) ..... 117
MultRegTests() ..... 118
N
nand, Boolean operator ..... 119
natural logarithm, \(\ln ()\) ..... 103
nCr() , combinations ..... 120
nDerivative( ), numeric derivative ..... 121
negation, entering negative numbers ..... 241
net present value, \(n p v()\) ..... 126
new
list, newList() ..... 121
matrix, newMat() ..... 121
newList( ), new list ..... 121
newMat(), new matrix ..... 121
nfMax( ), numeric function maximum ..... 121
\(n f M i n()\), numeric function minimum ..... 122
nInt( ), numeric integral ..... 122
nom ), convert effective to nominal rate ..... 123
nominal rate, nom() ..... 123
nor, Boolean operator ..... 123
norm( ), Frobenius norm ..... 124
normal distribution probability, normCdf( ) ..... 125
normal line, normalLine( ) ..... 124
normalLine() ..... 124
normCdf( ) ..... 125
normPdf() ..... 125
not equal, \(=\) ..... 217
not, Boolean operator ..... 125
\(n \operatorname{Pr}()\), permutations ..... 126
\(n p v()\), net present value ..... 126
nSolve( ), numeric solution ..... 127
nth root template for ..... 1
numeric
derivative, nDeriv() ..... 121-122
derivative, nDerivative( ) ..... 121
integral, nInt( ) ..... 122
solution, nSolve( ) ..... 127
0
objects
create shortcuts to library ..... 96
one-variable statistics, OneVar ..... 128
OneVar, one-variable statistics ..... 128
operators
order of evaluation ..... 240
or (Boolean), or ..... 129
or, Boolean operator ..... 129
ord( ), numeric character code ..... 130
P
\(P \vee R x()\), rectangular \(x\) coordinate ..... 130
\(P \vee R y()\), rectangular y coordinate ..... 131
pass error, PassErr ..... 131
PassErr, pass error ..... 131
Pdf() ..... 73
percent, \% ..... 216
permutations, \(n \operatorname{Pr}()\) ..... 126
piecewise function (2-piece) template for ..... 2
piecewise function ( N -piece) template for ..... 3
piecewise() ..... 132
poissCdf() ..... 132
poissPdf() ..... 132
polar
coordinate, \(\mathrm{R} \triangleright \operatorname{Pr}()\) ..... 143
coordinate, \(\mathrm{R} \triangleright \mathrm{P} \theta()\) ..... 142
vector display, \(\triangle\) Polar ..... 133
polyCoef( ) ..... 133
polyDegree() ..... 134
polyEval( ), evaluate polynomial ..... 135
polyGcd() ..... 135-136
polynomials
evaluate, polyEval( ) ..... 135
random, randPoly() ..... 145
PolyRoots() ..... 136
power of ten, 10^() ..... 231
power regression,
PowerReg ..... \(136,149,151,187\)
power, ^ ..... 213
PowerReg, power regression ..... 136
Prgm, define program ..... 137
prime number test, isPrime( ) ..... 93
prime, ' ..... 230
probability densiy, normPdf( ) ..... 125
prodSeq() ..... 138
product(), product ..... 138
product, \(\Pi()\) ..... 223
template for ..... 5
product, product() ..... 138
programming
define program, Prgm ..... 137
display data, Disp ..... 52, 158
pass error, PassErr ..... 131
programs
defining private library ..... 47
defining public library ..... 47
programs and programming clear error, ClrErr ..... 25
display I/O screen, Disp ..... 52, 158
end program, EndPrgm ..... 137
end try, EndTry ..... 191
try, Try ..... 191
proper fraction, propFrac ..... 139
propFrac, proper fraction ..... 139
Q
QR factorization, QR ..... 139
QR, QR factorization ..... 139
quadratic regression, QuadReg ..... 140
QuadReg, quadratic regression ..... 140
quartic regression, QuartReg ..... 141
QuartReg, quartic regression ..... 141
R
R, radian ..... 227
\(R \bullet \operatorname{Pr}()\), polar coordinate ..... 143
\(R \triangleright P \theta()\), polar coordinate ..... 142
radian, R ..... 227
rand( ), random number ..... 143
randBin, random number ..... 144
randInt( ), random integer ..... 144
randMat( ), random matrix ..... 145
randNorm( ), random norm ..... 145
random
matrix, randMat() ..... 145
norm, randNorm() ..... 145
number seed, RandSeed ..... 146
polynomial, randPoly() ..... 145
random sample ..... 145
randPoly( ), random polynomial ..... 145
randSamp() ..... 145
RandSeed, random number seed ..... 146
real( ), real ..... 146
real, real( ) ..... 146
reciprocal, \({ }^{\wedge-1}\) ..... 232
rectangular-vector display, \(>\) Rect ..... 146
rectangular \(x\) coordinate, \(P>R x()\) ..... 130
rectangular y coordinate, \(\mathrm{P} \vee \mathrm{Ry}()\) ..... 131
reduced row echelon form, rref() ..... 156
ref( ), row echelon form ..... 147
RefreshProbeVars ..... 148
regressions
cubic, CubicReg ..... 40
exponential, ExpReg ..... 66
linear regression, LinRegAx ..... 98
linear regression, LinRegBx ..... 97, 99
logarithmic, LnReg ..... 104
Logistic ..... 107
logistic, Logistic ..... 108
medium-medium line, MedMed ..... 113
MultReg ..... 117
power regression, ..... PowerReg . 136, 149, 151, 187
quadratic, QuadReg ..... 140
quartic, QuartReg ..... 141
sinusoidal, SinReg ..... 169
remain( ), remainder ..... 149
remainder, remain() ..... 149
remove
void elements from list ..... 49
Request ..... 149
RequestStr ..... 151
result
display in terms of cosine ..... 29
display in terms of e ..... 63
display in terms of sine ..... 166
result values, statistics ..... 177
results, statistics ..... 176
return, Return ..... 152
Return, return ..... 152
right( ), right ..... 152
right, right() ..... 27, 60, 90, 152
rk23( ), Runge Kutta function ..... 152
rotate(), rotate ..... 154
rotate, rotate() ..... 154
round( ), round ..... 155
round, round() ..... 155
row echelon form, ref() ..... 147
rowAdd( ), matrix row addition ..... 155
rowDim( ), matrix row dimension ..... 156
rowNorm( ), matrix row norm ..... 156
rowSwap( ), matrix row swap ..... 156
rref( ), reduced row echelon form ..... 156
S
\(\sec ^{-1}()\), inverse secant ..... 157
\(\sec ()\), secant ..... 157
\(\operatorname{sech}^{-1}()\), inverse hyperbolic secant ..... 158
sech( ), hyperbolic secant ..... 158
second derivative template for ..... 6
second notation, " ..... 228
seq(), sequence ..... 159
seqGen() ..... 159
seqn() ..... 160
sequence, seq() ..... 159-160
series( ), series ..... 161
series, series() ..... 161
set mode, setMode() ..... 162
setMode( ), set mode ..... 162
settings, get current ..... 83
shift( ), shift ..... 163
shift, shift() ..... 163
sign( ), sign ..... 165
sign, sign() ..... 165
simult( ), simultaneous equations ..... 165
simultaneous equations, simult() ..... 165
\(\sin ^{-1}()\), arcsine ..... 167
\(\sin ()\), sine ..... 166
sine
display expression in terms of ..... 166
sine, \(\sin ()\) ..... 166
\(\sinh ^{-1}()\), hyperbolic arcsine ..... 168
\(\sinh ()\), hyperbolic sine ..... 168
SinReg, sinusoidal regression ..... 169
sinusoidal regression, SinReg ..... 169
solution, deSolve() ..... 49
solve( ), solve ..... 170
solve, solve() ..... 170
SortA, sort ascending ..... 174
SortD, sort descending ..... 175
sorting
ascending, SortA ..... 174
descending, SortD ..... 175
spherical vector display, \(\bullet\) Sphere ..... 175
sqrt(), square root ..... 176
square root
template for ..... 1
square root, \(\mathrm{V}(\) ) ..... 176, 223
standard deviation, stdDev() ..... 178, 198
stat.results ..... 176
stat.values ..... 177
statistics
combinations, nCr() ..... 120
factorial, ! ..... 220
mean, mean() ..... 112
median, median() ..... 112
one-variable statistics, OneVar ..... 128
permutations, nPr() ..... 126
random norm, randNorm() ..... 145
random number seed, RandSeed ..... 146
standard deviation, stdDev( ) ..178, 198
two-variable results, TwoVar ..... 195
variance, variance() ..... 198
stdDevPop( ), population standard deviation ..... 178
stdDevSamp( ), sample standard deviation ..... 178
Stop command ..... 179
store variable \((\rightarrow)\) ..... 233
storing
symbol, \& ..... 234
string
dimension, \(\operatorname{dim}()\) ..... 52
length ..... 52
string( ), expression to string ..... 179
strings
append, \& ..... 220
character code, ord() ..... 130
character string, char() ..... 22
expression to string, string() ..... 179
format, format() ..... 72
formatting ..... 72
indirection, \# ..... 226
left, left( ) ..... 95
mid-string, mid() ..... 114
right, right() ..... 27, 60, 90, 152
rotate, rotate() ..... 154
shift, shift() ..... 163
string to expression, expr() ..... 65,107
using to create variable names ..... 241
within, InString ..... 89
student-t distribution probability, tCdf() ..... 185
student-t probability density, tPdf() ..... 190
subMat(), submatrix ..... 180-181
submatrix, subMat() ..... 180-181
substitution with "|" operator ..... 232
subtract, ..... 210
sum of interest payments ..... 225
sum of principal payments ..... 225
sum( ), summation ..... 180
sum, \(\Sigma()\) ..... 224
template for ..... 5
sumlf() ..... 180
summation, sum() ..... 180
sumSeq() ..... 181
system of equations (2-equation) template for ..... 3
system of equations (N-equation) template for ..... 3
T
t test, tTest ..... 192
T, transpose ..... 182
\(\tan ^{-1}()\), arctangent ..... 183
\(\tan ()\), tangent ..... 182
tangent line, tangentLine() ..... 183
tangent, \(\tan ()\) ..... 182
tangentLine() ..... 183
\(\tanh ^{-1}()\), hyperbolic arctangent ..... 184
tanh( ), hyperbolic tangent ..... 184
Taylor polynomial, taylor() ..... 185
taylor( ), Taylor polynomial ..... 185
tCdf( ), studentt distribution probability ..... 185
tCollect( ), trigonometric collection ..... 186
templates
absolute value ..... 3-4
definite integral ..... 6
derivative or nth derivative ..... 6
e exponent ..... 2
exponent ..... 1
first derivative ..... 5
fraction ..... 1
indefinite integral ..... 6
limit ..... 6
Log ..... 2
matrix \((1 \times 2)\) ..... 4
matrix \((2 \times 1)\) ..... 4
matrix \((2 \times 2)\) ..... 4
matrix \((m \times n)\) ..... 4
nth root ..... 1
piecewise function (2-piece) ..... 2
piecewise function (N-piece) ..... 3
product, П() ..... 5
second derivative ..... 6
square root ..... 1
sum, \(\Sigma()\) ..... 5
system of equations (2- equation) ..... 3
system of equations ( N -equation)3
test for void, isVoid() ..... 94
Test_2S, 2-sample F test ..... 75
tExpand(), trigonometric expansion ..... 186
Text command ..... 187
time value of money, Future Value ..... 193
time value of money, Interest ..... 193
time value of money, number of payments ..... 194
time value of money, payment amount ..... 194
time value of money, present value ..... 194
tInterval, t confidence interval ..... 187
tInterval_2Samp, twosample t confidence interval ..... 188
\(\Delta t m p C n v()\) ..... 189
tmpCnv() ..... 189
tPdf( ), student probability density ..... 190
trace() ..... 190
transpose, T ..... 182
trigonometric collection, tCollect() ..... 186
trigonometric expansion, tExpand() ..... 186
Try, error handling command ..... 191
tTest, t test ..... 192
tTest_2Samp, two-sample t test ..... 192
TVM arguments ..... 195
tvmFV() ..... 193
tvmi() ..... 193
tvmN() ..... 194
tvmPmt() ..... 194
tvmPV() ..... 194
two-variable results, TwoVar ..... 195
TwoVar, two-variable results ..... 195
U
underscore, ..... 230
unit vector, unitV() ..... 197
units
convert ..... 231
unitV( ), unit vector ..... 197
unLock, unlock variable or variable group ..... 197
unlocking variables and variable groups ..... 197
user-defined functions ..... 46
user-defined functions and programs ..... 47
V
variable
creating name from a character string ..... 241
variable and functions copying ..... 29
variables
clear all single-letter ..... 25
delete, DelVar ..... 48
local, Local ..... 105
variables, locking and unlocking 82, 106, 197
variance, variance() ..... 198
varPop() ..... 198
varSamp( ), sample variance ..... 198
vectors
cross product, crossP() ..... 36
cylindrical vector display, -Cylind ..... 42
dot product, \(\operatorname{dotP()}\) ..... 57
unit, unitV() ..... 197
void elements ..... 236
void elements, remove ..... 49
void, test for ..... 94
w
Wait command ..... 199
warnCodes( ), Warning codes ..... 200
warning codes and messages ..... 251
when( ), when ..... 200
when, when() ..... 200
while, While ..... 201
While, while ..... 201
with, | ..... 232
within string, inString() ..... 89
\(x^{2}\), square ..... 214
XNOR ..... 220
xor, Boolean exclusive or ..... 201

\section*{Z}
zeroes(), zeroes ..... 202
zeroes, zeroes() ..... 202
zInterval, z confidence interval ..... 204
zInterval_1Prop, one-proportion z confidence interval ..... 205
zInterval_2Prop, two-proportion z confidence interval ..... 205
zInterval_2Samp, two-sample z confidence interval ..... 206
zTest ..... 206
zTest_1Prop, one-proportion z test ..... 207
zTest_2Prop, two-proportion z test ..... 207
zTest_2Samp, two-sample z test ..... 208
X
\(\chi^{2} C d f()\) ..... 24
\(\chi^{2}\) GOF ..... 24
\(\chi^{2} P d f()\) ..... 24```


[^0]:    $\operatorname{seqGen}\left(\frac{100 \cdot(1.10517)^{t}}{(1.10517)^{t}+9}, t, y,\{0,100\}\right)$
    $\left\{10 ., 10.9367,11.9494,13.0423,14.218{ }^{\text {c }}\right.$

