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Executive summary 
‘Big data’ is a collection of concepts, technologies and methodologies that constitutes a novel 
approach to collecting, managing and analysing data—not just tabular and relational data, but also 
linguistic, visual and textual data. The problem with ‘big data’ is that there’s too much data being 
generated, too fast, and from too many different sensors to manage easily. The promise is that new 
types of ‘analytics’ and algorithms, including artificial intelligence and machine learning, can be 
applied to these masses of data to find new knowledge and insight and to automate old ways of 
doing so. 

While big data has come with a staggering amount of hype, there are several key application areas. It 
will prove particularly relevant for Australia’s national security community in finding data points that 
act as indicators of adverse events. But this is an emergent capability that will bring with it 
limitations, challenges and risks that need to be clearly understood and managed. 

This online resource examines the applications for big data in Australia’s national security, as well as 
the limitations, challenges and risks that arise from those uses. It aims to clarify the definitional 
issues behind the concept of big data, which has both benefited and suffered from high levels of 
hype. As a result of its buzzword status, organisations in the policy, technical and commercial 
domains currently have separate understandings of big data. Effective public policy dialogue requires 
a greater degree of shared understanding, which this resource provides over four sections covering 
the definitions, trends, applications and challenges of big data, respectively. 
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Introduction: Big data in national security 
Australia’s national security community deals with challenges of increasing breadth and complexity. 
In meeting those challenges, it’s expected to collect, manage and analyse information using an all-
hazards and all-sources approach, expanding from the traditional intelligence domains to tackle new 
types of data and perform an all-source intelligence and early warning function. 

If the national security community is to continue managing an all-hazards, all-sources approach, it 
will need to grapple with the problem of big data: huge volumes of novel types of data are generated 
rapidly, overwhelming traditional database management systems and analytical software and 
processes. The private sector has been grappling with this problem in its own domain as it seeks to 
manage product recommendations, real-time marketing, air traffic control, supply chains and other 
data-intensive tasks of optimisation and management. 

Techniques developed by the private sector for building resilient and affordable databases and 
automated data analytics algorithms show promise for managing the national security community’s 
data problem. However, big data has specific limitations, challenges and risks that are particularly 
problematic in the national security context and that need to be addressed on an ongoing basis. 

This resource examines the potential applications of big data in Australia’s national security 
community. It focuses on exploring the key limitations, challenges and risks that arise from the use of 
this emergent technology, and recommends several focus areas for policymakers when they consider 
the adoption of big data. 
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1. The growth of big data 
1.1 What is big data? 

‘Big data’ is a catch-all term that refers to the flood of data that’s being generated daily. It has been 
adopted by IT companies to describe the problem of data management in an era of social media and 
the constant creation of user-generated content on a massive and ongoing basis. But underneath 
that flood of data, they argue, is the promise of finding valuable insights, from tailoring better 
marketing campaigns, to finding new ways of detecting symptoms in patients, to anticipating the 
occurrence of impending events that are prejudicial to national security. 

The underlying argument of big data isn’t all that new, complex or controversial. The big-data 
argument states that decision-makers should use as much of the data as possible—if not all of it—in 
their deliberations. The guiding assumption here is that decisions will be better informed when more 
data is available for analysis. 

Things get a little more complex when we try to define what’s meant by the ‘available data’. It’s 
estimated that an enormous 2.5 exabytes (2.5 billion gigabytes) of data is generated every day.1 It’s 
projected that the ‘digital universe’—the sum total of all digital data created in a single year—will 
have reached 163 zettabytes (163 trillion gigabytes) by 2025.2 Moreover, the rate of future data 
generation is projected to continue to grow exponentially (Figure 1). This problem—the sheer size of 
the data available—has become the defining feature of big data. 

Figure 1 Annual growth of the datasphere, 2010 to 2025 

 
Figure drawn from data in Andrew Cave, 'What Will We Do When The World's Data Hits 163 Zettabytes In 2025?', Forbes, 13 April 2017, 
online. 

But the problem of size is only one aspect of a much larger challenge. Recognising the 
multidimensional nature of the challenge of big data, the generally accepted definition of big data 
has been predicated as an iron triangle of three problems: volume, velocity and variety. This is also 
known as the ‘three Vs of big data’ (Figure 2).3 
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1.2 The three Vs of big data 

Figure 2 The three Vs of big data 

 
 

The problem of volume has been the foundational problem of big data. The tendency for data to 
grow in size to fill the available space has been described as a ‘deluge’4 or ‘flood’5 in which the wave 
of incoming data threatens to spill out of the containers used to store it. 

The problem of variety refers to the differing formats and sources of the data, which can range from 
the relatively simple, such as fiscal data, metadata and clickstream data, to the more complex, such 
as geospatial information system (GIS) data, biometric data, social media data and other types of 
‘data exhaust’6 that users generate in their wake. These disparate data generation events all give off 
different types and formats of data, each mandating its own analytical methods, culminating in the 
problem of the variety of big data. 

The variety problem is often described as a trichotomy of types of data: ‘structured’, ‘semi-
structured’ and ‘unstructured’. Unstructured data is distinct from structured data in that the former 
has no obvious hierarchy and identifiable relationships, making the identification of meaningful 
relationships and entities within the data challenging. Tasks requiring the analysis of unstructured 
data can range from identifying what’s in a photo, to finding out how a person feels or thinks based 
on their social media presence, to tracking a single entity across multiple networks and datasets to 
build a picture of life around them. It’s estimated that 80% of data generated today is unstructured.7 

This problem of variety is often held to be one of the most challenging, and one that will grow more 
challenging with time as more types of data are generated. New types of sensor and other data, 
rather than just traditional computing data, are being generated from social, mobile and cloud-based 
technologies.8 Mobile devices capture a bevy of location, network, audio, photo, application, 
gyroscopic, biometric, fitness, purchasing and usage data that previously didn’t exist. This will be 
further complicated by a burgeoning wave of data from smart sensor-embedded ‘things’, such as 
home appliances, wearable technology and smart cars, which will become part of an interconnected 
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‘internet of things’ (IoT). Each type and format of data will demand its own kind of analysis to yield 
value. 

The problem of velocity refers to three challenges: 

• First, it refers to the speed of data generation on a daily basis, which is a contributing factor to 
the volume problem. 

• Second, it refers to the speed of data coming into storage centres, which require high-speed 
connections to manage both incoming and outgoing data. 

• Third, there’s the challenge of conducting real-time analysis and decision-making at speed, as 
some data-to-decisions cycles mandate a response time of milliseconds to seconds, as is the 
case in high-frequency financial trading.9 

1.3 Two more Vs 

The ‘three Vs’ have been widely adopted as a mnemonic to introduce decision-makers to the big-
data management problem. Two additional Vs have since been added. 

Veracity refers to the problem of whether the data collected is representative, complete and 
accurate. This is a challenge because, as datasets grow larger, so too does the probability that the 
data in them is inaccurate or of poor quality—either being irrelevant to the purpose of the analysis or 
simply being corrupt or otherwise inaccurate. One study showed that databases suffer from 
individual cell error rates of 1% to 5%.10 At the tabular or spreadsheet level, the error rate spikes to 
between 63% and 99%.11 In the same study, 94% of spreadsheets assessed contained errors.12 When 
multiple spreadsheets are collated together in big datasets, this issue of veracity can scale up further, 
permeate big datasets and have serious cascading consequences for the analysis generated from 
them. One example of such widespread corruption has been widely documented in gene-name 
errors throughout scientific literature. It stems from an automatic conversion function in Microsoft 
Excel that converts domain-specific gene symbols and numbers (such as Membrane Associated Ring 
Finger, or MARCH1) into dates (1-Mar). A survey of 18 major scientific journals from 2005 to 2015 
found that 19.6% of articles had suffered some form of these naming errors13, potentially invalidating 
their results. 

The other major addition to the three Vs of big data is value. The value of big data is predicated on 
the assumption that when the available data is collected and stored cheaply and effectively, and 
subjected to the right tools, methods and questions, it will generate previously hidden insights and 
provide real-time situational awareness. 

The way big data is expected to unlock value is often explained in terms of the technique of ‘data 
mining’ to extract value. Data mining, and the way it unearths value, are described by IBM as 
analogous to mining for gold. IBM likens traditional data analysis methods, such as the use of ‘high-
value-per-byte data’ readily visible to the naked eye, to finding nuggets of gold lying on the ground or 
visible veins of gold within rock. New techniques and equipment can now sift through dirt (or ‘low-
value-per-byte data’), which has allowed the extraction of nearly invisible specks of gold, or nearly 
invisible bits of value-laden information.14 
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In the case of data, value becomes harder to see as datasets become bigger, are generated more 
quickly, come with more variability and less accuracy, and as the low-hanging fruit of obvious 
analysis is harvested. However, the difficult analysis of this less obviously valuable data can elucidate 
trends, patterns, associations, clusters, classifications, semantic meanings, relationships and 
networks that are too subtle to be ‘seen’ in smaller datasets, or can only be seen in specific 
combinations of data. These trends, once visible, can then be used to build models and frameworks, 
which can then be tested experimentally to establish causal or mechanistic links. This ability to ‘mine’ 
the data for these new types of knowledge has been identified as a novel method for theory 
building,15 and has permeated most industry promises of big data as a potential source of 
unexpected but valuable insight. 

However, extracting value from low-value-per-byte data requires sifting through a lot of it—a 
requirement alluded to in several prominent industry definitions. IBM suggests that the amount of 
data analysis required for low-value-per-byte data is beyond the limits of human analysis and 
cognition: 

More than simply a matter of size … [big data is] an opportunity to find insights in new 
and emerging types of data and content, to make your business agile, and to answer 
questions that were previously considered beyond your reach.16 

These definitions emphasise the promise of big data. However, they also refer to the fact that human 
analytical ability alone doesn’t scale to meet the problem of analysing big data. These observations 
suggest the need for better ‘analytics’, which refers to the use of a suite of tools, software and 
methods, often automated, to collect, manage and analyse all the data available. 

This highlights the fifth and most important dimensional problem of big data: its value. The value of 
big data refers to the likelihood that a dataset, when subjected to analytics, will produce novel 
insights, trends or other analytical products of value to a final decision. This promise of new 
knowledge from data is the cause of the hype, speculation and money thrown at big data. When 
referring to big data, it’s less about the data than about the analytics. To policymakers, it’s less about 
the analytics and all about the output: the value that can be extracted from big data. 

1.4 Conclusion 

Big data is about finding new ways of managing data and analysing it for information. However, these 
new methods of analysis use a number of complex, state-of-the-art technologies that cut across 
several disciplines, from computer science to statistics, applied mathematics, economics, machine 
learning and artificial intelligence (AI). These disciplines have been added to by domain-specific 
methods and insights in other sectors, including health, genetics, finance and cybersecurity. The 
breadth and complexity of these technologies and applications mean that the concept of big data has 
become inextricably linked with several other contemporary phenomena, particularly AI. 

These links, and the trends that led to them, are explored in the next section. 
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2. Trends in big data 
While data has always been a challenge to analysts and managers, what’s considered a manageable 
amount of data has increased as technologies have improved analysts’ ability to analyse it. 
Therefore, what’s considered to be big data is always shifting, as new technologies and methods 
continually reduce current examples of ‘big data’ into ‘large (but manageable) data’. As researchers 
at the Association for Computing Machinery noted in 1999, ‘a large scientific dataset in 1985 was of 
the order of tens of megabytes … [In 1999,] it is of the order of hundreds of gigabytes.’17 
Comparatively, a ‘standard’ data analysis server today can handle 512 gigabytes,18 and more complex 
hardware scales up from there. By comparison, an average Blu-ray disc holds 25 gigabytes. On that 
same trajectory, large scientific datasets demonstrate the expanded capacity of data management 
technology today. Such datasets can involve thousands of terabytes, such as that from CERN’s Large 
Hadron Collider, which generates 25 petabytes (25 million gigabytes) of data each year.19 This growth 
in data management capability is projected to continue and is assumed as a given in future projects. 
For example, the Square Kilometre Array radiotelescope complex is expected to produce an 
estimated 62 exabytes (62 billion gigabytes) of data per year by 2020.20 

Figure 3 Decadal timeline of big data 

 
 

Referring to the shifting nature of what’s considered ‘big data’, Australian Data-to-Decisions 
Cooperative Research Centre researchers Janet Chan and Lyria Bennett Moses argue that: 

Big data in this sense sits perpetually on the technological frontier—older approaches 
fall outside the definition once they come to be viewed as typical database software 
tools.21 

Recognising this, this resource uses the term ‘big data’ in its contemporary context, which refers to a 
series of technologies, hardware and analytical methods initially developed between 2005 and 2010 
and currently being deployed and improved. Big data in this sense refers to the move away from 
traditional data management and analysis approaches, such as Relational Database Management 
Systems (RDMBS),22 Extract Transfer and Load (ETL)23 data warehousing and silo processes, and 
Structured Query Language (SQL) interactions.24 Data management technology has instead moved to 
new tools that are better able to capture masses of quickly moving, variable and messy data. Those 
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tools have ranged from parallelised processing, to ‘shared nothing’ cluster computing25, distributed 
file systems26 and Not-only SQL (NoSQL)27 approaches to querying the data held in these massive 
clusters. The result has been increasingly affordable methods for tackling big-data projects using 
widely available commodity hardware and software, rather than expensive supercomputers.28 It’s 
therefore becoming increasingly feasible to collect any data that’s generated. Furthermore, new 
technologies and trends, such as machine learning, are making its analysis much more valuable. 
These trends are covered in this section. 

2.1 Current trends 

Currently observable trends in big data involve hype, machine learning, and the combination of big 
data and machine learning. 

2.1.1 The hype of big data 

When bulk data collection began to become feasible, data began to be collected as an asset rather 
than discarded as a by-product. Big-data companies made significant investments, from over US$453 
million in investment and expenditures in 2008 to US$1.5 billion in the fourth quarter of 2012 
alone.29 These new methods of storing, managing and analysing data in increasingly scalable and 
parallel ways are continuing to attract interest. Global spending on big data cognitive systems is 
forecast to reach nearly US$31.3 billion in 2019.30 

Gartner has provided a qualitative analysis of the level of interest in big data through its Hype Cycle 
for Emerging Technologies.31 This cycle is the quintessential industry guide to the timelines and 
definitions of emerging technologies in Silicon Valley. In 2011, Gartner began tracking the hype 
behind big data, based on a qualitative review of media and industry interest. According to Gartner, 
big data’s hype peaked in 2013, before entering the trough of disillusionment in 2014, and then 
dropping off the cycle entirely in 2015. Gartner argued that the reason why big data had been 
removed from the Hype Cycle was because it has become increasingly common, reflecting a growing 
consensus that big data is now a reality.32 

More importantly, industry analysts have argued that the analysis of big data is increasingly being 
considered a problem for machine learning, which is a narrowly defined subset of AI. Machine-
learning algorithms have attracted levels of attention and hype similar to those that big data 
previously did, and from similar sectors of the IT industry. Machine learning and big data are largely 
seen as being inextricably linked, and machine learning is seen as the most promising method for 
achieving the analysis of big data. Machine learning unlocks the value of big data by providing new 
ways of addressing data problems. Rather than being hard-coded with rules or logic by human 
programmers, machine-learning algorithms instead can observe previous examples, or data, 
generalise a model, and then test the model against further testing data, demonstrating a capacity to 
‘learn’ by example, or by data.33 Therefore, it enables ways of scaling to the challenge of big data and 
‘learning’ to analyse heterogeneous, complex datasets. Moreover, machine learning can iteratively 
improve itself through the learning process and as it gains access to more data, leading to the 
excitement about big data.34 

Examples of machine-learning algorithms being applied to big-data problems abound today. Machine 
learning has become such a huge part of the everyday that common ‘commercial applications of 



 

9 
 

machine learning are routinely described as data mining’, in which ‘familiar applications known as 
data mining include spam or fraud detection, credit scoring, and insurance pricing.’35 It’s this 
ubiquity, as well as the increasing sophistication of machine-learning algorithms and approaches, 
that saw machine learning enter the Gartner Hype Cycle in 2015,36 riding on the coattails of big data 
as one of the most promising emerging technologies of the near-term future. Such machine-learning 
algorithms are examples of ‘narrow artificial intelligence’, or AI designed to learn and fulfil a narrow 
purpose and set of tasks. 

2.1.2 Machine learning 

Computer scientists and statisticians have conceived machine learning as a dichotomy of approaches, 
based on the type of data being analysed37: 

The first approach to machine learning is ‘supervised learning’, where an algorithm 
generates a model trained on human-labelled data with known labels and known results 
or outputs. The aim is to generalise a model off the training data to solve a 
classification38 or regression39 prediction problem, where the algorithm is asked to 
predict a probabilistic prediction based on imperfect information and past data. 

An example of a supervised learning algorithm is a spam detection algorithm, which takes a corpus of 
labelled data (data that’s been tagged by humans as spam emails) and extracts ‘features’40 from the 
labelled spam emails, such as the number of times a certain word is used, the tone of the email and 
whether requests to click on a suspicious URL or pleas for money are involved. Based on the 
occurrence rate of these features in a ‘training set’ of human-labelled spam emails, a statistical 
weighting is given to each feature, indicating how likely it is that that feature correlates with a spam 
email. The features are then compared against incoming emails and, if enough spam features are in 
an email (for example, if there are several misspelled words, or linguistic ‘features’ such as appeals, 
the use of pleading and promises, an appeal to the authority of a collective or mention of reward41), 
then the email is ‘classified’ as spam. Alternatively, the email is classified as not-spam. The algorithm 
has the relatively simple task of sorting emails into those two known and defined categories. This 
process continues cyclically: the spam-filtering algorithm learns and iteratively improves over time as 
it learns through the process and adds more spam features to its corpus of data. These supervised 
learning algorithms ‘allow institutions to treat spam, fraud, default, and poor health as a function of 
some other observed characteristics, and to automate the process of making decisions that turn on 
these inferences’.42 

The second approach to machine learning is ‘unsupervised learning’, in which an algorithm generates 
a model from an entirely unlabelled dataset with no predefined classes and categories. The aim is to 
automatically infer labels from the data that would previously have been inferred by a human, which 
is also known as ‘knowledge discovery’.43 This can involve clustering,44 or association rule learning,45 
which sorts the data into generally similar clusters of features. 

In unsupervised learning, algorithms find structures, patterns, commonalities, trends, relationships 
and other ordering schema in a mass of data, without knowing the classes that the data can be 
placed into. Unlabelled data can be natural language (be it speech or text), images, videos, medical 
outcomes, customer models, protein sequences, web pages and other data from which information 
and conclusions need to be inferred through causal and mechanistic explanations. For example, a 
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collection of text documents within a library can be scanned, subjected to text analytics and 
organised according to content similarity into topics, or mixtures of topics. This approach has been 
adopted in the medical academic community to summarise large-scale, multidiscipline health 
databases and document collections.46 

In addition to this summarising function, unsupervised learning can highlight or spotlight trends or 
patterns in the data that were previously not discernible. Those trends can then be exposed to 
further experimental testing to prove causal or mechanistic ties. This ability to find correlations in an 
inductive way has led users to call unsupervised learning algorithms ‘lead generators’ or ‘theory 
generators’.47 Unsupervised learning allows analysts to see into the ‘noise’ of big data, structure it, 
and use it as ‘fuel’ for testing and experimentation, which can lead to the development of new 
theories. 

More importantly, unsupervised learning presents a solution for the ‘variety’ challenge of 
unstructured data. Unstructured data, which accounts for 80% of data generated today,48 is difficult 
to analyse because it isn’t standardised, which makes it difficult for programmers to prepare it for 
prediction problems or tasks. Unsupervised learning algorithms allow this otherwise inert, unusable 
unstructured data to be modelled, sorted, grouped and clustered without the need for humans to 
pre-label responses.49 Machine learning, therefore, allows the automated processing of ‘data 
exhaust’ into valuable information about social groupings, spending habits, social media sentiments 
and several other trends and inferences that prove revealing. 

One of the recent trends in machine learning and AI has been the rise of the ‘deep learning’ 
approach.50 Deep learning, a subset of machine learning, which is in turn a subset of AI, involves the 
use of ‘layers’ of analysis within an algorithm. This often involves layers of artificial neurons in an 
artificial neural network, in which the layers simulate the networks of neurons in biological brains. 
The layers of neurons are then stacked together in multiple layers, with each neuron fulfilling a 
different classification or pattern-recognition function. In an image-recognition task, the first layers 
would distinguish between dark and light, horizontal and vertical lines, round shapes and non-round 
shapes, organic and non-organic shapes and so on, moving up the layers until the system recognises, 
say, a cat. 

As the layers learn and generate an output (a classification, cluster, prediction or other example of 
analysis), they are optimised in a number of ways. One method is backpropagation, which involves 
propagating outputs back through the algorithm until errors or losses in accuracy are minimised.51 
Alternatively, an algorithm can be sent a reinforcement signal, as was the case in Google AlphaGo, in 
which a positive reinforcement or negative reinforcement signal was sent, depending on the output 
of the neural network.52 If positively reinforced, the neural network kept its configuration of neurons 
and the way in which they activated to classify something. If negatively reinforced, it discarded or 
amended the configuration. This process was repeated iteratively until the network was optimised 
for a certain task. 

The highly parallel nature of a neural network meant that it wasn’t well suited for traditional 
computing hardware. The advent of hardware specifically for video gaming—the graphics processing 
unit (GPU) in the 1990s, with its highly parallelised array of processing units—became the source of a 
breakthrough in deep learning methods and artificial neural networks in 2009.53 Moreover, the 
advent of big data meant that there was more than enough data to train and test neural networks, 
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which require an enormously large set of examples to achieve human levels of accuracy in image 
classification tasks (the famous example of Google’s X lab recognising cats took a corpus of 10 million 
images to achieve).54 

While artificial neurons are modelled on real-world biological neurons, rather than if–then 
statements of logic or arithmetic, these types of machine learning demonstrate what’s been termed 
‘narrow artificial intelligence’, in which certain algorithms can be optimised for certain tasks, and 
perform well in those tasks, but won’t be able to generalise across to another task easily. For 
example, a machine-vision algorithm won’t be able to become a speech-recognition algorithm 
without being retrained on entirely new data and being set up with different algorithms. This means 
that, while many different kinds of AI will be pervasive, they’ll be narrow, limited and for a specific 
purpose: ‘In the next 10 years, 99% of the artificial intelligence you interact with, directly or 
indirectly, will be nerdily autistic, super smart specialists.’55 

However, the distinction between individual learning algorithms is becoming less relevant with the 
increasing ensembling of machine-learning algorithms, which has seen individual algorithms 
amalgamated into larger ‘ensemble’ learners. For example, the Netflix prize involved Netflix opening 
its database of 100 million movie ratings from 480,000 users over 30,000 titles on 2 October 2006 
and inviting anyone willing and able to research and build a recommender system to do so.56 The aim 
was to find a recommender system 10% more effective than Netflix’s then state-of the-art 
Cinematch, offering $1 million as a prize for improved recommendations. Within six months, a 
Hungarian team had achieved a 6.75% improvement over Cinematch.57 More interestingly, as the 
competition drew on, a trend towards building larger and larger ensembles began to unfold. Rather 
than competing on one video recommender learning algorithm alone, teams began to merge and 
stack ensembles of learners, which composited different methods for generating recommendations, 
ultimately culminating in a finale in which both the winner and the runner-up were stacked 
ensembles of over 100 learners.58 This demonstrated the predictive strength of ‘stitching’ together a 
composite ensemble of learners compared to using any single known method and marked the start 
of an ongoing trend toward producing ensemble learners. 

2.1.3 The landscape of big data and machine learning 

Industry analysts have noted the confluence of big data and machine learning as an essential 
foundation of the modern big-data movement. Venture capitalist Matt Turck, in his annual landscape 
of the big-data industry, has noted that the two are becoming part of a combined big-data and 
machine-learning ‘stack’, or a package of products or programs that provide a wider solution.59 This 
has been corroborated by respondents in similar landscapes and surveys in the fields of both big data 
and machine learning.60 It signifies a growing maturity in both fields,61 in which start-ups are 
increasingly taking the line of ‘Take X and add AI.’62 It’s also representative of the maturation of 
companies that are providing big-data and machine-learning technologies as big-data solutions shift 
from a series of bespoke, small-scale, individual programs into wider ecosystems of programs all 
managed by one service provider. This integration of solutions is developing into a more mature 
model called ‘analytics as a service’, rather than a disconnected, unserviced product. 63 Already, 
Amazon Web Services and other cloud providers have increasingly come to offer whole-of-platform 
big-data solutions as services rather than as individual products.64 Big-data best practice will become 
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clearer as ongoing efforts to study big-data algorithms develop and the trade-offs and limitations 
between algorithms become clearer, as pilot studies have begun to show.65 

Moreover, the field continues to grow. Continuing venture capital input indicates high confidence in 
future returns, low mergers and acquisition or consolidation activity suggest that big-data and 
machine-learning companies continue to find business, and several huge big-data company initial 
public offerings have occurred or been slated to occur this year.66 

2.2 Emerging trends 

Two trends in big data are emerging: the ‘internet of things’ (IoT) and some epistemological shifts. 

2.2.1 The internet of things 

In the future, these analytics methods will continue to be applied to new types of data not from 
social media but from a burgeoning array of novel sensor feeds from the IoT. They include smart 
watches, fitness watches and other wearable technologies and smart fridges, countertops, windows, 
doors, air-conditioning units, energy meters, washing machines and other appliances in and around 
the household. Some proponents of the IoT have identified it as the technological paradigm that will 
enable the creation of ‘smart cities’, in which sensor arrays enable the tracking and management of 
traffic, emergency responses, electricity, utilities, repairs and other myriad but minute optimisation 
tasks that make a city run more efficiently.67 IoT also applies to the potential that biometric and 
fitness devices have in healthcare, providing everyday health data captured in a natural setting, 
rather than laboratories, providing real-time awareness into patient health, and building a corpus of 
gathered data that could provide new insights into lifestyle choices, diseases and other areas of 
medical research that are currently expensive to conduct. 

The IoT already exists in many ways, but it will evolve into an increasingly expansive and somewhat 
similarly undefined list of things. Moreover, each new type of thing will become a new type of digital 
data product as it begins collecting data.68 The IoT, therefore, represents more than just connected, 
or smart, things: it’s part of a new paradigm of all-encompassing data collection and data analysis 
called ‘datafication’, in which the world is digitised into data ready for analysis. 

Several predictions about the IoT have been made, one of the most often cited being Ericsson’s 2010 
prediction that there will be 50 billion internet-connected devices by 2020.69 In 2012, IBM updated 
the projection to 1 trillion connected devices by 2015.70 The current count is somewhat more 
conservative at 6.4 billion, not including smartphones and computers.71 More contemporary 
projections through to 2020 have been significantly revised and have become more conservative as 
well. Note that Australia has the world’s second highest take-up of fitness band devices, with 13% of 
the population owning one.72 This demonstrates the deep market interest that Australians have in 
the IoT and the growing future of sensors and datafication in Australia. And the expansive role IoT 
will have in Australia’s future. 

2.2.2 Epistemological shifts 

Commentators have suggested that one of the key long-term consequences of big-data analytics will 
be for the way analysts and scientists generate knowledge; analytical processes will turn from 
deductive, or theory-driven, approaches and move to inductive approaches. Kenneth Neil Cukier and 
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Viktor Mayer Schoenberger have written the most widely cited primer on what this shift in thinking 
will look like, which they distil into three key implications.73 

The first implication is that analysts will start with the masses of abundant ‘available data’ rather 
than having to gather small amounts or samples at great cost and for limited purposes. The available 
data is cheaper, richer and more representative than before. Moreover, it provides greater 
exhaustivity, covering almost all the cases or incidences being studied and bringing granularity, 
allowing a general sample to be drilled down into subgroups within the sample. 

The second implication is that there’ll be an inherent messiness in these masses of naturally 
generated, found or volunteered data. As a result, the accuracy, reliability and veracity of every data 
point can’t be guaranteed and instead must be worked around. However, Cukier and Schoenberger 
argue that quantity has a quality all of its own, meaning that inaccuracy can be balanced by the 
benefits of using vastly more data. They cite the particular example of statistical machine translation, 
which has moved from IBM’s approach featuring labelled, clean, accurate datasets (using the 
English–French translations generated by the Hansard transcripts of the Canadian Parliament) to 
instead using ‘data in the wild’, casting the net wider and using every single translation that exists on 
the wider internet, which has resulted in more accurate and representative translations.74 

The third implication is that findings from these big-data analyses will, as a result of the inductive and 
data-driven approach, come with correlative evidence and reasoning behind them, requiring further 
levels of experimental design, testing and analysis from humans in order to establish causation or 
mechanistic links. This is a result of the way that machine-learning algorithms classify objects or 
cluster groups of data together with statistical expressions of certainty or similarity. In the process of 
learning and based on the data, these statistical weights are continually shifted and reweighted in a 
process of optimisation. However, the weights are just that—weights that reflect the similarity 
between two items based on ‘features’, and are therefore determined based on a correlative link, 
rather than a deductive, causal or mechanistic link. Cukier and Schoenberger argue that, while this is 
a limitation, it doesn’t prevent the useful application of big-data analytics, as many application areas 
don’t require an understanding of causation to work properly: if the correlation proves to be an 
accurate predictor, that will be good enough to justify its use.75 

There has been a wide-ranging scholarly response to this, warning against adopting an over-
inductive, theory-free approach. Rob Kitchin argues that there needs to be a blending between 
traditional, rigorously conducted, theory-driven approaches and a big-data-driven approach.76 
Similarly, statisticians have warned against the temptation to take representativeness as a given in 
big datasets, as that may become the cause of methodological missteps in big-data analysis 
projects.77 This risk has been described as ‘big-data hubris’, in which big data begins being taken as a 
measure of validity without concern for methodological validity.78 

2.3 Conclusion 

Whether these new approaches to knowledge take root and up-end traditional methods of analysis 
remains to be seen, and is beyond the scope of this resource. Aspects of the arguments raised by 
Cukier and Schoenberger are addressed in Section 4. 
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However, these trends demonstrate the promise of value from big-data and machine-learning 
analytics that has informed private-sector excitement and driven development in the field, as well as 
some long-term implications of these new types of data, knowledge discovery and predictive tools. 
Those same techniques can also be applied to specific national security problems and hold great 
promise in such applications. Those applications, and relevant case studies, are covered in the next 
section. 
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3. The application of big data in national security 
The Australian national security community has particular expectations of and applications for big-
data analytics. In the national security context, some additional big-data limitations and risks need to 
be addressed. 

3.1 The imperatives for big data in national security 

The two main imperatives for big data in national security are addressing information sharing and 
dealing with an overload of all-sources information. 

3.1.1 Address the information sharing problem 

One of the most common criticisms of the US national security community after 9/11 was about the 
wall between intelligence gathering and law enforcers’ criminal investigations.79 Subsequent 
investigators argued that the intelligence community and the law enforcement community had 
plenty of indicators and warnings that, if shared across agencies and analysed in aggregate, would 
have provided effective early warning of the 9/11 attacks. For example, the Federal Bureau of 
Investigation didn’t issue a search warrant for one of the hijackers’ laptops, despite explicit warning 
from its Minneapolis field office in August 2001 that one of the hijackers was ‘preparing to seize a 
Boeing 747-400 in commission of a terrorist act’.80 The problem wasn’t that of finding the proverbial 
‘needle in the haystack’, in which information relating to the attacks was lacking; the problem was 
communicating that information effectively. 

This problem of information sharing and lack of coordination wasn’t unique to 9/11; it’s a factor 
common to most, if not all, ‘intelligence failures’.81 This recognition of the nature of strategic surprise 
underwrites the discipline of ‘indicators and warning analysis’, in which threats to national security 
are assessed and monitored via visible proxies rather than the actors, activities and objects behind 
the threat, which are often not as easily detected. However, to build an effective indicators and 
warning solution, several disparate sources of information need to be consolidated, coordinated and 
considered as part of a reconstructed picture before each piece of information yields intelligence 
value. This has been described as a ‘connect the dots’ problem, in which many points of data need to 
be drawn into a wider strategic picture to generate an accurate picture of sufficient quality to 
provide reliable warning.82 This has also been referred to as the ‘mosaic’ effect of information83 or, 
more evocatively, the ‘Humpty Dumpty’ puzzle, according to the Defence Science and Technology 
Organisation.84 The ‘overall intelligence picture is dispersed across document jigsaw pieces 
developed by different organisations’, and must be collected and pieced together to build a bigger 
picture.85 

In the post-9/11 environment, this puzzle revolves around a lot more than just one focal activity or 
event. Instead, it involves a broad, holistic concept of the Australian border, Australian national 
security and the Australian national interest. National security agencies are tasked with providing all-
source and all-hazards judgements. This is a major paradigm shift since the Cold War, in which an 
intelligence ‘edge’ came from ‘acquiring significant pieces of critical information clandestinely and 
protecting them from disclosure’ and has instead shifted to achieving an edge ‘from breadth of 
access to information and quality analysis’.86 This shift has resulted in a renewed emphasis on 
breaking down ‘stovepipes’ and pivoting away from a ‘need to know’ model towards an ‘information 
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sharing and collaboration’ model and a ‘need to share’ model. 87 Calls for an improved framework for 
information sharing have been made in the Australian context since 2001,88 and spiked at intervals in 
2008,89 2010,90 2013,91 and 2015.92 The post-9/11 paradigm shift towards information sharing and 
coordination has led to closer cooperation between the intelligence, law enforcement and regulatory 
agencies as part of a wider ‘national security community’. 

3.1.2 Master the all-source information overload 

The depth and breadth of information that the national security community is tasked with managing 
create a problem of information overload. US Air Force drones collected 24 years’ worth of video 
feeds over Afghanistan and Iraq in 2010,93 and that figure has increased as numbers of drones, 
numbers of video feeds, picture resolutions and drone loiter times have grown. However, as 
collection and storage have ballooned, analysis has become the bottleneck, owing to the fact that 
human analysts’ numbers are limited,94 which limits the intelligence value of the collected but 
unobserved video. Lt. General David Deptula described this as a case of ‘swimming in sensors and 
drowning in data’95; the RAND Corporation and the US Navy described it as a ‘data flood’, as around 
150 terabytes came in from intelligence, surveillance and reconnaissance (ISR) sensors every day in 
2012.96 The experience of intelligence practitioners testifies to the data flood: ‘common wisdom 
among analysts is that they spend 80% of their time looking for the right data and only 20 percent of 
their time looking at the right data’97 (emphasis in the original). 

Not only are the volume and speed of the data threatening to overwhelm analysts, but the Australian 
national security community faces a distinct challenge of information variety. The national security 
agencies are tasked by the National Security Framework with the oversight, command, control and 
coordination of a range of tasks at the strategic, operational and tactical levels. This involves 
collecting, managing and analysing a variety of structured data, including data on immigration, visas, 
flights, maritime arrivals, trade flows, cargo manifests, social media feeds, telecommunications, 
email metadata, credit cards, bank accounts, retail purchases and phone accounts and internet 
service providers’ metadata. As the big-data revolution continues, this list of data sources will grow 
to include unstructured data feeds, such as ISR and drone footage, passive sonar feeds, gunshot 
echolocation systems, traffic systems, surveillance footage analytics, text analytics applied to texts, 
social media—a list that will expand to include novel types of sensors and fused data products as 
they are created. These sources of data will need to be managed by the national security community 
to maintain its intelligence edge. 

However, beyond these internal sources of information overload at the point of collection and 
analysis, the national security community will have to continue to compete with the same 
information overload at the point of dissemination. It’s faced with increasing competition for 
relevance as a source of information for national security decision-making, and increasing pressure 
due to its close relationship with resourcing. This has been part of a wider problem of the 
‘marginalisation of intelligence’,98 in which the ‘signal’ of actionable intelligence becomes swept up in 
the ‘noise’ of a multitude of alternative, competing hypotheses, from sources reputable and not so 
reputable in the open-source world, including the 24/7 news cycle.99 

Despite the volume, variety and velocity challenges of the national security community’s 
information-sharing problem, the ways in which analysts work has remained largely unchanged: 
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‘Analysts still mostly work alone or in small groups. Their use of formal analytic methods, let alone 
computer-aided search engines or data-mining, is limited.’100 

3.2 Applications of big data in national security 

Likely applications of big data in the national security domain include the integration of shared 
information; entity recognition and tracking; predictive analytics; the generation of novel hypotheses 
and knowledge; and preventative and predictive national security and governance. 

3.2.1 Integration of shared information 

There has been movement towards automated methods for ‘data fusion’—the stitching together of 
various sensor feeds and intelligence products from heterogeneous intelligence and national security 
disciplines to build a picture of an entity, target or other ‘object’. Data fusion automatically and 
procedurally integrates information to produce an intelligence picture. This technique is an extension 
of the work expected of a typical analyst. 

Data fusion centres, of which the US Department of Homeland Security boasts 77, have become 
ubiquitous.101 They operate via liaison officers who have access to their own organisations’ classified 
information networks and share information with each other.102 This allows investigators to bring 
together data records as diverse as: 

welfare and unemployment checks, firearm licences, car-rental information, credit 
reports, department of motor vehicles records and photos, employment histories, 
addresses, and phone numbers, pawn-shop information on customers, postal 
department inquiries, public health data, police investigation data, identity-theft 
reports, suspicious activity reports, and probation, parole, and booking information from 
police departments and correctional facilities.103 

Big-data analytics can automate the process of data fusion beyond liaison officers by finding and 
linking complementary, redundant and cooperative data feeds of common interest, such as those 
that track the same entity or are physically co-located.104 This can potentially solve the Humpty 
Dumpty problem by providing an integrated and relatively complete taxonomy of sources and facts 
that can be automatically cobbled together into a ‘picture’, cutting across the traditional problem of 
intelligence silos. What automated data fusion brings to the table is the ability to build more holistic 
intelligence pictures. 

Case study: Information integration by Palantir Technologies 

Palantir Technologies offers an information search and discovery service using otherwise 
overwhelming amounts of data. The company provides a ‘forward-deployed engineer’ who develops 
software that ‘combs through all available databases, identifying related pieces of information, and 
puts everything together in one place’.105 The software allows the ingestion of multiple different 
datasets and their visual representation in a sociogram or graphic representation of a network. In 
intelligence work, this could be used to visualise the life of a target of interest based on their 
purchases, communications, financial transactions, accommodation, vehicle use, transportation 
bookings, networks of contacts, and other pieces of data and relationships. Law enforcers could use 
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it as a unified platform for holistic and integrated case management. Financial institutions could 
apply it to financial fraud, which often involves links between people in criminal networks. 

More importantly, Palantir offers this capability to integrate multiple databases with a user interface 
that requires only natural language queries, rather than programming language, and with near real-
time responses, rather than lengthy query returns.106 And it can process data at a rate of as many as 
50,000 variables at once.107 

This enables the posing of questions of prediction and likelihood based on a number of different 
variables. For example, Palantir could be used to generate automated warnings of trends and 
patterns, in much the same way that financial institutions use ‘outlier’ behaviours as indicators of 
fraud or theft, such as when a credit card is used in another country or used for a small ‘test’ 
purchase at a remote and poorly policed petrol station before being used for a bigger and riskier 
‘payday’ purchase at a jewellery or electronics store. Palantir can also find non-obvious associations, 
as it did when it helped the Hershey Company figure out that sales went up when Hershey’s 
chocolate bars were placed next to marshmallows in retail outlets. Similarly, Palantir Defense 
ingested GIS data about the lie of the land in Baghdad, as well as trends from past improvised 
explosive device attacks, to plot the safest route through the streets of the city based on past attack 
patterns and terrain.108 

Palantir’s data aggregation and visualisation techniques allow these relationships and actions to be 
viewed in aggregate, and for more complex analytics to be run across the data to gain more deeply 
hidden insights. 

3.2.2 Entity recognition and tracking 

Unsupervised machine-learning algorithms can provide summaries of unstructured data by grouping 
information of similar semantic meaning into clusters, and that capability applies in the national 
security domain. For example, a good text analytics program with an effective machine-learning 
algorithm can read series of transcripts and documents and identify which bits of text are relevant to 
an ongoing investigation. Machine vision and video analytics can provide similar summarising 
capabilities for the hours of drone footage and feeds that analysts currently struggle to manage, as 
well as for CCTV feeds, tracking an identified entity from camera to camera. Increasingly, this can be 
done automatically and be used to provide a ‘push’ or ‘feed’ of information about a target, keeping 
analysts focused on analysis rather than on the costly manual collation of information. This isn’t a 
guarantee that the feed will be complete or have all the necessary information, but it makes collating 
the information at hand a much less strenuous and error-prone task. 

Case study: Situational awareness and entity tracking by Orbital Insight 
satellite imagery and machine vision 

Orbital Insight’s machine-vision algorithms assess satellite imagery for entities that the program has 
been trained to recognise through supervised learning, and to predict behaviour. In the case of 
retailer JC Penney, it studied the parking lots of 96 Penney premises across the US and found a 10% 
drop in the number of parked cars over the first quarter of 2017.109 It found that long-term trends in 
parking lot vacancies closely matched trends in JC Penney’s stock price; that is, parking lot vacancies 
can be considered to be a surrogate for the company’s day-to-day performance in attracting 
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customers and revenue. This type of analytics is called a ‘macroscope’—a tool that allows analysts to 
scan objects too large for the human eye.110 

Figure 4 Orbital Insight’s satellite imagery analytics 

 
Source: Adrianne Jeffries, ‘JC Penney’s troubles are reflected in satellite images of its parking lots’, The Outline, 28 February 2017, 
https://theoutline.com/post/1169/jc-penney-satellite-imaging. 

Case study: Situational awareness and entity tracking by SpaceKnow 

SpaceKnow, a satellite imagery and image analytics company, compares photos of more than 
6,000 industrial sites across China and watches for indicators of production, such as visible inventory, 
new construction and other telltale signs. The results are aggregated into the Satellite Manufacturing 
Index, which is designed to serve as an independently generated index to be compared against the 
official state Purchasing Manager’s Index.111 

Figure 5 SpaceKnow’s Satellite Manufacturing Index 

 

Source: Pavel Machalek, ‘China Satellite Manufacturing Index’, AngelList,  
https://angel.co/projects/369322-china-satellite-manufacturing-index.  



 

20 
 

Case study: Situational awareness and entity tracking by Immersive 
Intelligence Pod 

In Australia, the Data to Decisions Cooperative Research Centre provides a satellite imagery analysis 
capability. The Immersive Intelligence Pod project observes geospatial datasets and visualises entities 
and the way in which they converge, co-locate (meet) and diverge (leave) at different locations over 
periods of time. The project aims to identify basic or routine patterns of behaviour of the entities in 
question, as well as complex relationships and networks that they are part of. The technology has 
been licensed to GIS company Esri Australia, which is developing it for the Department of Defence.112 

Figure 6 Data to Decisions CRC’s Immersive Intelligence Pod for entity visualisation 

 
Source: ‘New data visualisation tools for the Department of Defence’, media release, Data to Decisions CRC, 3 March 2017, 
www.d2dcrc.com.au/news/new-data-visualisation-tools-for-the-department-of/. 

These summarising techniques may mean that effective heuristic and search systems can be placed 
over the top of unstructured data, obviating the need for human analysts to conduct expensive and 
tiresome data labelling. This can enable a system in which analysts tune topic modelling, text 
analytics and interest weighting to build a tagged, searchable, automated feed of information that’s 
‘pushed’ to them, rather than tediously pulled from databases, ‘effectively pushing the needle out 
from inside the haystack’.113 

These techniques will also allow the visualisation of mass movements, structures or networks, and 
the tracking of entities within those networks. Social network analysis has taken off in our 
interconnected age, in which sociograms of Facebook relationships, Twitter communities and other 
‘filter bubbles’ summarise human networks and relationships. This has included their effects on 
terrorist networks, such as those active in the Gaza Strip.114 This is useful for analysts, as it allows the 
quick exploration of leads down to targets of interest, such as important nodes within communities. 

3.2.3 Predictive analytics 

This strategic view and understanding of how networks operate can be the basis for predictions 
about the location and nature of ‘missing links’ within network analyses. 
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This has been considered an important capability for analysts trying to map networks of hazards. 
Social network analysts commonly cite the example of the 9/11 terrorists being within one or two 
‘steps’ or ‘hops’ of two people who had been photographed at a known gathering of terrorists in 
Malaysia,115 as well as within one or two steps/hops of the suspects in the bombing of the USS Cole in 
2000—a relationship that would have been readily visible on a sociogram or network graph but that 
wasn’t obvious to analysts at the time. The argument for social network analysis is that, based on 
past analysis, popular and well-connected nodes in a social network graph can be indicative of threat 
actors elsewhere in the network. 

Prediction in this sense broadly means using available information to predict, or probabilistically 
infer, information that isn’t available. Medical diagnosis is a classic example of a predictive task in 
which a clinician is tasked with predicting the existence of a disease based on imperfect information, 
such as list of symptoms. Even a task that humans consider routine and in the ‘present’, such as 
picking up objects in a warehouse, is a prediction problem. Amazon continues to host an as-yet-
unsolved Picking Challenge to find software that can ‘see’ different shapes with different weights and 
firmness and ‘predict’ the correct grasping angle to use, and do so without dropping or crushing the 
object. This is a prediction task that humans handle routinely and from an early age, but that state-
of-the-art approaches in machine vision continue to struggle with (although robotic arms have more 
than enough dexterity).116 

In the commercial world, the main use of big data has been in predictive analytics based on 
consumer behaviour. For example, Google AdSense builds ‘models’ or ‘profiles’ of individual users 
based on their search histories and other data and then ‘predicts’ the best recommendations based 
on a mixture of similar user profiles and the common features between past searches and potential 
recommendations. This has been demonstrated in advertisements, such as Netflix’s and Amazon’s 
recommender systems, in which personalised suggestions are a function of a behavioural profile and 
predictive algorithms based on past viewing and purchasing data.117 Google’s predictive search and 
autocomplete functions also feature prediction, but with a greater emphasis on matching search 
queries to other users’ search queries and topic models, rather than purchasing habits. This process 
of training-data-based predictions and forecasts can be used to project the traditional (weather, 
stock market, bets, creditworthiness) and the not-so-traditional (uprisings occurring due to social 
movements, tracking disease spread, product recommendation systems). 

Similarly, in the national security domain, there’s the opportunity to use automated indicators in 
which past behavioural, financial and other profiles of detrimental activities and actors are analysed 
to indicate potential impending threats. The New York State Intelligence Center’s ‘terrorism 
indicators reference card’ lists several indicators in individual traveller profiles that correlate with 
past terrorists’ profiles and could provide warning of future attacks, such as ‘recent travel overseas’, 
‘has student visa, but not proficient in English’, ‘refusal of maid service’, ‘owning a GPS unit’ and an 
‘unusually calm and detached behaviour’.118 Alternative indicators have also included jihadist groups 
having a history of exercising at paintball courses in Australia.119 Other behaviours, based on analyses 
of past patterns of terror attacks and terrorist actors, for example, can similarly be analysed for 
indicators and predictors, and those indicators can be automated to provide predictive, probabilistic 
warning about future attacks. 
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The combination of data fusion, automated heuristics of data feeds, social network analysis and 
predictive indicators and warning analysis has produced high hopes for approaches to national 
security ‘event prevention’.120 Event prevention entails the prediction of likely-to-happen events and 
the monitoring of the potential threats to enable disruptive or preventative actions as necessary. 

3.2.4 Novel hypothesis generation and knowledge discovery 

Big-data analytics’ inductive, bottom-up approach to knowledge has enabled the mining of relevant 
criminal and security datasets to uncover correlations, patterns and trends that were previously not 
considered, or even discoverable by human minds.121 This promises a ‘next generation’ of national 
security intelligence analysis, in which innovative analytics mine past data and uncover new 
indicators of national security events. 

Therefore, big data promises two benefits for predictive analytics. Supervised learning algorithms 
allow the structuring of indicators and warning frameworks into automated early-warning alert 
systems, while unsupervised learning algorithms can find new indicators and warnings in the ‘noise’ 
of big data, enabling the discovery of novel indicators and the creation of new predictive models. 

However, big data isn’t a panacea for ‘black swan’ events or the unknowable future. Predictions 
based on estimative probability and statistics rely on the assumption that past performance is a 
predictor of future performance, extrapolating a best fit based on past data to determine what the 
future is most likely to look like. This makes it unlikely that that big-data analytics will foresee 
massive inflection points arising from sources exogenous to the data, such as black swan events, or 
from events that don’t present indicators and warnings in the data used to construct the model. 

Case study: Data mining and predictive analytics by Target Guest Marketing 
Analytics 

Mining data in order to find novel insights and trends isn’t new. Target, the department store 
retailer, has been using customer analytics manually for some years. Target creates a ‘guest ID’ 
number for each shopper. At every turn, it links demographic information to the guest ID, including 
age; marriage; kids; town; driving distance/time to the nearest Target store; estimated salary; recent 
moves; credit cards; websites; ethnicity; job history; magazines read; bankruptcy; divorces; 
mortgages/houses; topics talked about online; brands of coffee, paper towels, cereal and applesauce 
consumed; political leanings; reading habits; charitable giving; and number of cars owned.122 

Based on those details, Target’s Guest Marketing Analytics Department used the science of habit 
formation to identify periods when customers’ brand loyalties shift, such as during the second 
trimester of a pregnancy. Studying the guest ID data of women during the time they were pregnant, 
the analytics team produced a list of 25 products that, analysed together, generated a reliable 
prediction score for women in their second trimester. Those products included calcium, magnesium, 
and zinc supplements; soap; cotton balls; scent-free and extra-large bags; and hand sanitisers and 
washcloths. 

The model’s predictive accuracy was demonstrated when Target sent coupons to one of the women 
it predicted to be pregnant. The father of the woman was furious and stormed into a Target store to 
complain about what Target might be suggesting she do. After a follow-up customer service call a 
few days later, the father was apologetic, having found out that his daughter had already been 
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pregnant. 123 This anecdote is usually pointed to as one of the best examples of the predictive 
benefits of data mining. Critics have called it a case of one lucky true positive among far more but 
less visible false positives (such as when non-pregnant women are sent coupons related to pregnancy 
products), and said that the real rates of predictive accuracy would be relatively mundane.124 

Case study: Data mining and knowledge discovery by IBM’s Chef Watson 

IBM Watson, a ‘cognitive system’ designed to deal with unstructured data (specifically, national 
language question answering) was spun off into a demonstrator project called Chef Watson. 

Chef Watson ingested research material on the chemical composition of hundreds of different food 
ingredients, as well as a corpus of 10,000 recipes from the Bon Appetit website. It then combined the 
data and trawled through it for recurring patterns and combinations of up to four different 
ingredients, which would suggest that those ingredients work well together.125 It’s since been 
updated to include other recipes, books, academic studies, and even tweets scraped from the 
internet,126 as well as spreadsheets on the molecular makeup of flavour and odour compounds in 
food and ‘hedonic psychophysics’ research papers on smells and tastes that people find pleasurable. 
Watson uses that corpus of data to generate a recommended recipe base of ingredients or to 
extrapolate a suggested recipe using the few ingredients that a user has available, alongside a 
percentage rating of the ingredients’ ‘synergy’.127 

Some of these data products are raw and unsuitable for immediate use, requiring further analysis 
and judgement before being used—like Watson’s suggestion to combine tomato, garlic, onion and 
purple seedless grapes into a ‘Purple Seedless Grape Starch Dish’.128 However, when paired with a 
professional chef, Chef Watson proved to be useful in finding novel combinations that a human 
would previously have not considered, providing a middle ground between a deductive, non-
deviating approach to recipes and an overly creative, inductive, trial-by-error approach. 

IBM designed Chef Watson as a metaphor for the ‘creative thinking’ that Watson is able to 
contribute in finding novel relationships, combinations, patterns and other correlations that can lead 
to knowledge discovery. 

These data-mining techniques for finding novel ‘generators’ or ‘leads’ for a model-based theory are 
now being increasingly automated through the application of machine-learning algorithms to cluster 
data and find associations that aren’t obvious to human analysts, whether because of the volume of 
the data or the cognitive blind spots of the analysts. 

3.2.5 Preventative national security and predictive government 

Predictive big-data analytics has reinvigorated one of the most contentious issues in contemporary 
national security studies: the idea of preventative policing or national security. This approach 
involves a change from a slower, post hoc monitoring and indicator regime to an automated and 
continuously operating one. 

More importantly, predictive analytics now allows these insights to be derived relatively 
automatically and procedurally, and in short order. Increasingly, it’s now possible to provide ‘now-
casting’ services, in which events are logged as they happen and an alert is provided to a waiting 
analyst or decision-maker. This approach has already been used in specific, highly disciplined 
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domains, such as military airborne warning and control systems using traditional electronic and 
signals intelligence. But, in the era of big data, machine learning and the IoT, more and more real-
world features are being converted into data and automatically scanned and analysed for meaningful 
signals, which can then be tested and deployed as indicators for warning analysis. 

In summary, the data-to-intelligence cycle of the rapidly approaching future will involve the 
automating of analytical processes and datasets that the national security community knows are of 
intelligence value. It will also involve the discovery, in databases, of knowledge that’s not currently 
known—finding novel patterns, trends and correlations. Once they have been found, they can be 
placed in an automated indicators and warning program, which will allow the national security 
community to generate complex strategic early warnings about events and threats as diverse as 
cyber threats, data breaches, foreign intelligence operations, mass-casualty attacks and lone-wolf 
attacks. Moreover, the predictions can be continually compared to the real-world data and then 
optimised to better reflect that data and trends. Paul Symon and Arzan Tarapore argue that this 
automated, predictive and inductive approach to intelligence analysis will be a paradigm shift from 
the ‘current industrial age model of linear finished intelligence production to an information age 
model of integrated and adaptive assessment service delivery’.129 

Case study: EMBERS 

The Early Model Based Event Recognition Using Surrogates (EMBERS) program is a project of the US 
Intelligence Advanced Research Projects Agency, run as part of the agency’s Open Source Indicators 
program.130 The aim of EMBERS is to develop forecasts of critical events, such as civil unrest, 
diseases, protests, outbreaks and elections. It aims to provide ‘anticipatory intelligence’ on such 
social events by scanning open source indicators, and to constantly optimise itself to detect new 
types of indicators. EMBERS operated as a proof-of-concept project from August 2012 to July 2016. 

EMBERS ingested almost a dozen data sources ranging in size from weekly government reports to 
Twitter, collating a full information feed that generated about 19.2 gigabytes per day from Spanish, 
Portuguese and English sources, with a geographical focus on South America. The raw feeds were 
then enriched using entity extraction to find people, places, organisations and other features, such as 
numbers, dates and hashtags in the text, geocoding, and final sentiment analysis. This expanded the 
volume of the data being processed by the system to 40 gigabytes per day. The program searched 
the feeds for occurrences of three or more of 800 specific words or phrases that serve as semantic 
indicators of unrest,131 as well as constantly mining for other words, phrases or hashtags that were 
tied to upcoming social events. The system developed multiple machine-learning models, generally 
between six and eight algorithms per type of event.132 The models were then weighted and 
optimised based on their accuracy by a master fusion module, which combined the models in a way 
that it deemed would produce the most accurate prediction. 

On average, the system generated 50 warnings a day, based on an indicator suite of 4.6 million 
messages, of which 350 were flagged as significant by the predictive models.133 Some of the key 
events that it predicted were protests after the impeachment of the President of Paraguay, the 
Brazilian Spring (a series of demonstrations in several of Brazil’s cities), hantavirus outbreaks in 
Argentina and Chile, and widespread protests by Venezuelan students.134 It also missed many others, 
such as protests in Brazil in March 2015, protests in Mexico in December 2014 and the early onset of 
the Brazilian Spring.135 



 

25 
 

EMBERS was run for five years and scored against a monthly catalogue of events, as reported in 
newspapers, by MITRE Corporation in a ‘gold standard report’ compiled by human analysts—a 
performance review on which continued funding for EMBERS relied.136 On average, by the second 
year of the project, the program was able to provide early warning with a lead time of 7.54 days; 94% 
of forecasts matched an event from the gold standard report, and the model successfully forecast 
65% of events from the report.137 Where necessary, EMBERS could be subjected to an audit of the 
gradual ablation of its data fusion, enrichment and transformation steps. 

3.3 Conclusion 

These potential applications of big data hold great promise and relevance for solving the big-data 
challenges of national security. However, there remain serious limitations, challenges and risks that 
are particularly pernicious in a national security context, which are addressed in the next section. 
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4. Limitations, challenges, and risks arising from big 
data 
This section canvasses the potential downsides of big-data analytics in the national security domain. 

4.1 Limitations 

Big-data analytics can be limited by problems of representation; bias and discrimination; false 
positives and negatives; and feedback loops. 

4.1.1 Representation issues 

Data scientists have commented on the ‘unreasonable effectiveness’ of data,138 noting that having 
more data yields better predictive performance than more carefully designed algorithms (to a point). 
The White House noted in its report on big data that some trends become visible only in big data, 
citing a case in genetic research in which genetic markers relating to schizophrenia were entirely 
undetectable in small samples but hit an inflection point and became statistically significant and 
identifiable in a dataset of 35,000 cases.139 

While the unreasonable effectiveness of data shows great promise for solving previously 
unresolvable problems, it contributes to one of the key limitations of analytics: that is, it’s practicable 
only where the data is available. Whether the data is labelled or unlabelled, there needs to be plenty 
of it. This requirement means that big data can serve as a funnel and limit data analysis within a 
‘streetlight effect’ when analysis is limited to where the data is available rather than where data is 
needed. 140 This limitation has been noted in other knowledge domains; for example, overly WEIRD 
(white, educated, industrialised, rich and democratic) sample populations made up the experimental 
base of 96% of studies in leading American psychology journals from 2003 to 2007.141 The same 
problem applies in the digital context.142 

In the national security setting, this could mean that a big-data targeting regime could be limited to 
only those targets that are over-represented in the data, resulting in too tight a focus on those types 
of target in investigations and operations, at an opportunity cost of inattention to other targets. 

Conversely, the problem of under-representation poses unique and pernicious problems in the 
context of algorithmic classification. Researchers have found that when a subgroup represents only 
30% of the data in a wider dataset, a learning algorithm will be uncertain about predictions for that 
minority. For example, a credit application approval algorithm looking at a population of 
500 applicants consisting of two subgroups will be assigned differing approval weightings, even 
where the probability of repayment is uniformly and universally 95% across the 500. If a minority 
subpopulation consists of 10% of the population of 500, it will only achieve an average approval 
score of 80%. At 20%, this increases to an approval score of 85 and at 30% to an approval score of 90; 
at 40%, the minority group approaches a 95 approval score.143 Only then does the algorithm 
accurately predict the risk. 

In this hypothetical, the only difference in the underlying data was that one population was less 
represented, which generated greater uncertainty. This led to fewer loan approvals and therefore 
created different impacts among two different populations. In this case, the two populations were a 
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simple representation of whites and non-whites. This results in the problem of ‘uncertainty bias’, in 
which, all other things being equal, uncertainty can result in greater perceived risk.144 

4.1.2 Bias and discrimination 

The contribution of uncertainty to biased outcomes highlights some of the problems inherent in a 
statistical risk scoring and threshold system. Within any risk scoring system of this kind, it’s difficult 
to determine the ‘correct’ way to set the threshold. 

The level at which a threshold is set is generally dictated by the outcome desired, as in the case of 
creditworthiness scoring systems. Set the threshold too high, and too many people who should be 
given loans are denied them; set it too low, and too many people who will default are given loans. A 
study on discrimination and machine learning has demonstrated how different kinds of threshold can 
have diverse and discriminatory outcomes for two subgroups.145 For example, a threshold may be set 
in a way that maximises profits from the loans by making only ‘correct’ lending decisions (lending to 
those who will repay and (not or) denying loans to those who won’t repay and avoiding ‘incorrect’ 
decisions (lending to those who won’t repay and denying loans to those who will repay). Maximising 
this correct:incorrect ratio may only be possible if two different populations (‘blue’ and ‘orange’, say) 
are offered two different thresholds, which means that they have been held to two different, and 
therefore discriminatory, standards. Alternatively, an entirely group-agnostic approach may set the 
same threshold for both the blue and orange populations, but this would mean that, between two 
equal populations, one would be granted fewer loans overall and otherwise creditworthy applicants 
would be at a disadvantage. Alternatively, a ‘quota’ system of ensuring equal total loans to both 
populations would discriminate against either the blue or the orange population. At some point, a 
trade-off decision is made about which threshold is best for the overall population, with an 
understanding of the disparate impacts that it will have on each subpopulation. 

These hypotheticals demonstrate how bias and discrimination are present in even a basic 
classification algorithm with streamlined and reliable inputs, outputs and independent factors that 
affect the result. 

These kinds of group-based inferences, associations and clusters are not acceptable, and the use of 
such sensitive personal information in creditworthiness ratings is prohibited under law and in 
practice. That is, populations are not to be explicitly subdivided into ‘white’ and ‘non-white’, or ‘blue’ 
and ‘orange’. However, the nature of unsupervised machine-learning algorithms means that such 
groups will be naturally associated or formed over time where machine-learning methods can and 
often do probabilistically infer hidden variables by using other data as a probabilistic substitute or 
proxy.146 The nature of association rule learning and clustering algorithms may result in forms of guilt 
by association—not by intent or by design but through the clustering and association functions of the 
algorithm. More directly, such learning algorithms can reproduce the patterns of discrimination, 
prejudiced decision-making or other widespread biases that are present in the data they are 
analysing. 147 Most perniciously, ‘any form of discrimination that happens unintentionally can also be 
orchestrated intentionally.’148 
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4.1.3 False positives 

As demonstrated above for credit rating systems, any risk assessment algorithm results in false 
positives, no matter how accurate the model, profile or data that sits behind it. In the case of 
national security, this creates a risk that innocent people will be subjected to intrusive, disruptive and 
costly investigations by national security agencies. Even a 99% accurate data mining and alert system 
will suffer from a 1 in 100 false positive incidence rate, which, in an input of 1 trillion indicators, 
means 10 billion potential positives that need to be reviewed by analysts.149 

These unhelpful results are an issue because of the bugbear of machine learning: spurious 
correlations.150 That is, the bigger your data, the more false positives and spurious correlations will 
turn up in it. As data scientist Vincent Granville has written, ‘[It is] not hard, even with a data set that 
includes just 1,000 items, to get into a situation [that involves] many, many millions of 
correlations.’151 Further false positives can be generated if the classification or prediction algorithm 
isn’t generalised correctly. Machine-learning algorithms can be overtrained, so that the algorithm 
learns to ‘overfit’ the data on which it was trained and makes predictions based on features of the 
training data that aren’t useful for the predictive model when working with real-world data.152 

The costs of responding to such false positives are not trivial. They involve the expenditure of serious 
resources, an invasion of the privacy of those that didn’t need to be investigated, and a degradation 
of the national security community’s analytical resources. That is, every false positive has an 
opportunity cost.153 Furthermore, the investigation of false positives can risk appearing to be without 
reasonable cause. This relates to one of the key methodological challenges of statistical and data 
analysis, in which ‘data mining’ or ‘data dredging’ were originally derogatory terms used to refer to 
untrained statisticians ‘fishing’ through the data without a rigorous or well-thought-out theory. An 
overly expansive analytics regime can come to constitute endless fishing expeditions154 in which 
every possible lead, correlation or target is chased without a rigorous and targeted approach and 
without regard for individualised suspicion,155 with negative impacts on the social licence with which 
the national security community operates. 

Ultimately, false positives arise when data analytics algorithms overfit the parameters or data they 
are given, resulting in decision paralysis or analyst fatigue or, more perniciously, in overpolicing and a 
feedback loop of recidivism and community fragmentation. 

4.1.4 False negatives 

The risk of false negatives is serious in the national security context. Fortunately, there are few past 
examples of actors working against Australia’s national security, but such threats are extremely 
diverse in location, nature, methods, purpose and networks. There’s no large dataset of terrorist 
behaviour that can be reliably drawn upon to produce robust models, which is entirely unlike 
traditional data-mining for credit reporting. This dilutes the pool of data available for national 
security classification tasks.156 Moreover, not only do we lack such a baseline of established 
behavioural data, but the data being analysed has been purposely altered by adversaries who seek to 
use covert methods and blend in with the normal population in order to disguise their activities. 

In machine learning, this problem of individuals forcing false negative results is particularly 
challenging. It results in a continuous trade-off in classification problems, in which an analyst can 
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drive the rate of false positives to zero or the rate of false negatives to zero, but not simultaneously 
and not necessarily in the same proportion.157 In national security policy and the public eye, there’s 
significant political pressure to drive the number of false negatives to zero, ‘but this political 
requirement belies the technical reality that the number of false negatives can never be zero.’158 A 
false negative, in this instance, would be a target of interest who should be under suspicion but is 
overlooked and able to act to the detriment of Australia’s national security. 

This creates three specific hazards: 

• First, national security agencies can suffer extreme reputational damage if a false negative is 
let through. 

• Second, the agencies can aggressively remove as many false negatives as possible from their 
predictive systems, at the cost of having to investigate significantly more false positives. 

• Third, with increasing volumes of data, the likelihood that false negatives will exist in national 
security datasets also increases. The Defence Science and Technology Organisation has 
described this challenge as the ‘unknown known’: national security organisations hold the 
pieces of a puzzle, the solution of which could have prevented a negative national security 
event, but due to the deluge of information did not or were not able to act on that 
information.159 

4.1.5 Feedback loops 

Feedback loops also limit predictive action. If someone is under suspicion, then the increased 
attention will cause what would have otherwise been smaller, unnoticed, infractions to instead 
become negative blips on their record, triggering more aggressive surveillance or monitoring, which 
in turn is likely to result in further tickets and penalties, further worsening their record. These small 
decision errors, whether stemming from over-representation or over-surveillance, can produce a 
negative feedback loop, risking overpolicing and radicalisation. This limitation is due precisely to the 
automated, aggregated and accelerated system that big data provides.160 

Big-data analytics can automatically take inputs that contain factors of discrimination, whether 
through qualitative errors; incomplete, incorrect or outdated data; selection bias; or the 
unintentional perpetuation and automation of historical biases that existed within the data. It’s for 
this reason that privacy and criminology scholars have begun to consider the dangers of big data and 
automated decision-making. Their concern is that past criminal data could reinforce rather than 
reduce disparities in policing and criminal sentencing, resulting in biased outcomes in event 
prevention and law enforcement.161 Moreover, this bias could result in a feedback loop in which 
historical data becomes the basis for more aggressive monitoring measures, resulting in systemic 
overpolicing.162 

Predictive analytics and recommender systems have had such feedback-loop effects on social groups 
and communities online. On the internet, there’s been a proliferation of ‘filter bubbles’, which are a 
type of ‘informational determinism’ in which constant web personalisation slots users into specific 
communities and directs them towards certain products, which in turn becomes the basis for further 
profiling in ‘an endless you-loop’.163 This phenomenon has also been termed an ‘echo chamber’, in 
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which people within the same filter bubbles reinforce their own biases, perspectives and arsenal of 
facts within closed communities, leading to a net intensifying effect similar to radicalisation.164 This 
fragmentation of social groups online has been identified as a threat to public discourse and open, 
informed debate. Data scientist Gilad Lotan demonstrated what this fragmentation looks like in a 
sociographic visualisation of the online debate between supporters of Israel and supporters of 
Palestine, demonstrating in an intuitive and simple way the divide in information sources, 
communication and network links that over-personalisation can create and the risks of extremism 
that arise from the fragmentation of public communities.165 

4.2 Challenges 

Challenges to big-data analytics include overhyped expectations; the inherent complexity of big data; 
the difficulty of cost–benefit analyses; data siloes and fragmentation; and the opacity of algorithms. 

4.2.1 Overhyped expectations 

Industry pitches on big data have tended to promise a ‘one-stop shop’ solution. This has conveyed 
‘the idea that big data is magic. You get your data, you press a button and all of a sudden you have 
extremely valuable output. This idea is very wrong and dangerous.’166 Rather, data science is 
extremely time consuming. Although technologies and methods for managing and analysing big data 
have come a long way, many of the difficulties of managing data remain the same: for example, 
analysts find that they spend most of their time chasing data rather than analysing it, even in a highly 
automated big-data analytics process.167 

The too simple expectation that big-data analytics is a simple layer, funnel, filter or button has been 
echoed in the national security community. A survey of the Australian national security community 
found an expectation that big data would allow the creation of a ‘find terrorist button’. Those 
expectations underestimate the difficulty and complexity of big data. 

4.2.2 The complexity of big data 

Complexity presents a fundamental challenge in big data. It revolves around enterprise-level 
technology, which involves a pipeline of technologies, a lot of hard work on the part of human 
analysts, and good systems integration to bring it all together. As a technology, big-data analytics 
isn’t readily visible or touchable: it’s back-end ‘plumbing’ that’s difficult to visualise.168 It’s a long and 
complicated chain of technologies from data capture to data storage, cleaning, query, analysis, 
visualisation, and then down to the end user, and each step needs to be integrated seamlessly for 
the system to work. The distributed nature of big data arguably makes implementation that much 
more challenging, as the system has myriad small moving parts working in concert. This is counter to 
the singular image of the lone data scientist as having ‘the sexiest job of the 21st century’.169 

The pipeline of data collection, management and analysis means that a diverse and talented team is 
needed, and not just in data science but all across the analytical spectrum. A non-exhaustive list of 
the skills needed includes ‘data management, machine learning, parallel computing, security, 
software engineering, statistical analysis, inference, and visualisation.’170 The new skills requirements 
for data analysis have crystallised into the new discipline of ‘data science’, which involves the 
merging of disciplines and subject-matter expertise to produce composite analytical products 
covering various sectors. The role is needed because of the limitations of current data-mining tools 
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and because it is ‘not straightforward to perform analytics. Most of the time is consumed in 
preparatory work to the application of data mining methods’,171 requiring skilled data scientists to 
shape automated analytics suites through careful, continuous and iterative processes. 

This demand for a complex suite of requisite skills and familiarity with the tools has resulted in a 
large projected skills shortage and workforce gap. The McKinsey Global Institute has provided what’s 
now the most widely used estimate of the shortage that big data faces: 250,000 data scientists with 
specific big-data experience and skills.172 There will also be a wider shortfall within the community of 
managers and analysts required to have big-data knowledge, which a previous estimate placed at 
1.5 million.173 In this projected environment, the national security community will find it difficult to 
compete with private firms for analysts with the skillsets needed for the big-data analysis pipeline. 

4.2.3 The difficulty of estimating the costs and benefits of big data 

Overinflated expectations worsen the already dismal prospects of success that IT projects face. An 
ongoing annual survey by Standish Group since 1994 has found that only 16.2% of IT-related projects 
undertaken have been considered ‘successful’ (that is, on time, to budget, and with all contract-
specified functionality).174 This low success rate has improved somewhat in surveys conducted since 
2002, reaching 29% in 2015.175 Furthermore, projects valued at over US$10 million experienced a 0% 
success rate, whereas smaller projects with total budgets of less than US$750,000 have had a 
relatively high probability of success, at 55%.176 The larger and more complex the project, the more 
likely it is to encounter a delay, cost overrun or failure. Big-data projects are, by their nature, big and 
complex. 

Whereas the costs and risks of big-data projects are clear and daunting, the benefits aren’t as clear. 
There remain considerable challenges in methodically gauging their value. This stems from the 
unconventional ways in which big data generates value. Rather than the value of data being 
immediately obvious, the datasets involved in big data demonstrate their value only after analysis. 
Furthermore, while data has a high ceiling of potential value, there’s a high probability that a dataset 
will have low value. However, there’s also a low probability that a collection of datasets will have 
high potential value, and that potential value becomes more probable as more datasets are linked 
together. This relationship has been expressed in terms of data having ‘networked value’ or a 
‘network effect’, in which each data source may have a specific, limited purpose.177 The combination 
of data sources, however, may uncover new meanings.178 As data increases in quantity, so too does 
its potential intelligence value, generating a strong incentive to collect all of the data available. 

This means that the true, final value of data isn’t always obvious ex ante, and the data that an 
organisation has is likely to increase in value as more and alternative data is acquired, which has 
driven the big-data land grab. This makes estimates of costs and benefits extremely difficult in the 
big-data context, making the management of big-data projects more difficult and their prospects for 
success less certain. 

This isn’t to say that big-data analytics has so little application as to not be useful. There are many 
applications for which it’s uniquely suited, but others in which the benefits of the analysis aren’t 
worth the increased costs of computing and algorithmic complexity. Estimating and managing this 
trade-off will be difficult, given the networked value of data. 
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Finally, there’s the possibility that some problems can’t be solved by simply collecting more data. 
Such a limitation won’t become evident until reasonably exhaustive analysis has been conducted, if it 
becomes evident at all. This problem is illustrated in attempts to predict earthquakes: 

Despite all the science, data, and models that have been thrown at predicting 
earthquakes, there has been no appreciable progress. It could be the data is insufficient, 
or that the models are incomplete, or that the system is too chaotic (in a mathematical 
sense) to make it capable of being modelled on the sort of information that could 
realistically be collected.179 

4.2.4 Data silos and fragmentation 

Comparative intelligence scholars have noted that certain intelligence communities tend to be 
integrative and others disintegrative, as in the case of the British community and the US community, 
respectively.180 The Australian intelligence community has been noted to be particularly secretive,181 
and fragmented across far more data silos than its counterparts in the UK, the US, Canada and New 
Zealand.182 

This has led to challenges in integrating the information-sharing practices of the Australian national 
security agencies. One consistent challenge has been the continuing difficulty in ‘stitching’ together 
the Humpty Dumpty composite intelligence picture from all of the patchwork and bespoke 
intelligence collection, management and analysis ICT systems that exist in separate agencies: 

[A] broad estimate means there are 10 domestic collection and surveillance capabilities, 
all feeding into 10 databases that—due to connectivity problems, source protection, and 
compartmentalisation—do not effectively disseminate information into the security 
community.183 

Overcoming these institutional and cultural implementation challenges will be difficult. They are 
challenges external to big data, but they need to be resolved before big data can be used in a 
meaningful way within the national security community. However, integrating big-data approaches 
and technologies requires an ability to understand the costs of implementing such approaches and 
the benefits that integration provides. Due to the networked effect of information value, such a 
cost–benefit argument will be difficult to formulate. 

4.2.5 Algorithmic opacity 

There’s been increasing concern that machine-learning algorithms are difficult to interpret and 
increasingly opaque, and that they could become an ‘algorithmic black box’.184 

Jenna Burrell has defined three sources of algorithmic opacity.185 The first is opacity from intentional 
corporate or state secrecy, whereby developers protect proprietary trade secrets and their 
competitive advantage and also protect the efficacy of their algorithms against adversarial users. The 
second source of opacity arises from technical illiteracy: understanding machine-learning algorithms 
requires an advanced ability to read and write code. 

The third source of opacity is what’s most directly problematic: certain types of algorithms are simply 
too complex for any one person to understand, no matter how much access they have or how 
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technically competent they are. Burrell terms this ‘unavoidable complexity’ and asks whether it will 
remain possible for human code auditors to meet the challenge of big datasets and big-data analytics 
algorithms, given the amount of data, code and learning iterations involved. Furthermore, taking 
matrices of numbers and providing an explanation of probabilities, priorities and reasons over the 
top of them is inherently problematic and difficult to do, as it requires a level of human 
interpretation that involves a loss of fidelity. This problem of complexity, and particularly the nature 
of the probabilistic and mathematical learning that these algorithms conduct, have led computer 
scientists to term the problem as ‘machine interpretability’, not ‘machine explicability’. 

The rise of ensemble machine-learning algorithms and artificial neural networks means that 
unavoidably complex algorithms are more likely to be used in the future. It won’t be as simple as 
making the algorithms less complex, as there’s a direct ‘trade-off between the representational 
capacity of a model and its interpretability’.186 Simply put, more complex machine-learning 
algorithms outperform less complex ones. Complexity seems to be the price of analytical accuracy, 
and this means that as analytics become more accurate they’ll also become more opaque. 

A potential solution to the problem of algorithmic oversight has been posed in arguments in favour 
of ‘a human in the loop’ within the analytics process. However, it will be a costly compliance measure 
for a human analyst to interpret and hold to account a complex machine-learning system. Analysts 
may be able to go back through the audit trail of such an algorithm, but it’s unlikely that 
policymakers will be able to depend entirely upon the judgement of the analysts to catch algorithmic 
errors on a systemic and consistent basis while maintaining the efficiency benefits of automation. 

The importance of maintaining a level of accountability, review and audit of these algorithms is clear, 
as was demonstrated in a case in which researchers applied machine-learning methods to predict 
pneumonia mortality in hospitals in order to better triage patients and direct their care.187 However, 
several of the models found an association showing that those patients who had pneumonia and 
asthma tended to have far better rates of survival and incorrectly inferred that, therefore, those 
patients were at lower risk than patients suffering only from pneumonia. 

The only reason this association was found was that it was stated in the data, but what the data 
didn’t state was that patients with pneumonia and asthma were immediately admitted to the 
hospitals’ intensive care units because the medical staff correctly identified the dual conditions as 
high risk. If this task of triage were left purely to the algorithm, it would not have correctly identified 
this problem and would have suggested that such patients be provided less care as outpatients, 
which would have caused mortality rates among pneumonia–asthma patients to spike. 

Moreover, the researchers were only able to audit the algorithms and find this dangerous association 
when they reviewed a simple rule-based algorithm, and weren’t able to do so readily for their neural 
network. They therefore deemed neural networks unsuitable for use due to their lack of 
intelligibility. That is, if another such specious and dangerous association occurred in the models 
generated by their neural network, they were concerned that they wouldn’t be able to identify it. 
The use of such machine-learning methods is now routine, but they are just as, if not more, 
unintelligible. 

The ability of human oversight to keep pace, or ‘scale’, with machine learning and big data has been 
a key issue for researchers, and is particularly relevant for Australia’s national security community. 
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4.3 Risks 

Risks in big-data analytics arise from public opinion, privacy concerns, data security, and adversarial 
evasion and attacks. 

4.3.1 Public opinion 

Even if the serious limitations and challenges to machine learning and big-data analytics are 
overcome, there remain considerable risks to public opinion about the national security community’s 
use of big data. 

One risk stems from the introductory adage in statistics that ‘correlation does not necessarily mean 
causation.’ While unsupervised data mining allows analysts to discover novel indicators and patterns, 
those patterns don’t necessarily represent a causal or mechanistic link. Establishing that they do 
requires detailed, deductive experimentation and proofs. The ways in which correlation is 
distinguished from causation, and the extent to which causes and mechanisms are considered robust 
explanations, will always be an area of debate and considered analysis. 

However, some correlations will simply not be acceptable to the general public. For example, Xerox 
Services introduced an online evaluation system that incorporates personality testing, cognitive-skill 
assessment and multiple choice questions about how applicants would handle specific possible work 
scenarios and then scores them. It found that one of the strongest predictors for employee 
engagement at work and employee retention was the distance between home and work.188 While 
this wouldn’t be considered an acceptable subject of discussion at an employee performance review, 
let alone a cause for termination,189 it remains one of the strongest predictors for performance and 
suitability that employment data science has discovered. 

Big-data analytics also faces more general reputational risks not just from the way it interacts and 
collides with our current conceptions of privacy, but also in terms of its legitimacy as a method for 
making decisions. Researchers have found a pervasive and ongoing lack of trust in algorithms among 
the general population, even when it has been demonstrably proven to people that algorithms 
outperform humans—a phenomenon that the researchers termed ‘algorithm aversion’.190 Algorithm 
aversion and a general distrust in automated systems have also ignited ethical debates over 
autonomous vehicles.191 These issues will be a source of considerable reputational risk when it comes 
to the use of big data. 

4.3.2 Privacy 

Australia’s current privacy framework is based on the Privacy Act 1988 and the Australian Privacy 
Principles, which generally prescribe a self-management approach to privacy.192 Individuals are 
expected to decide whether to consent to the sharing of their ‘personal information’,193 and 
government policies provide a framework for mandatory disclosures that attempt to inform that 
consent.194 

However, like the networked value of big data noted above, individuals’ privacy also suffers from 
‘networked liability’ in which ‘little bits of innocuous data can say a lot in combination’ to produce a 
networked ‘aggregation effect’,195 defeating an individual’s privacy protections and consent-based 
limits to disclosure. The aggregate nature of privacy harms in the big-data context highlights a key 
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problem with the norm of privacy self-management. In a big-data, always-on, information-age world, 
individuals are expected to accurately and reasonably gauge all the risks and trade-offs of sharing 
their information with a multitude of applications and social media networking websites. They are 
expected to assess the risks of an ecosystem of fellow users, corporations, data brokers, 
governments and even criminals, assess the risks of ‘downstream data use’196 across that ecosystem, 
and then make a decision about whether to share their data. The decision needs to be made in a 
binary yes-or-no choice at the point of information collection, without a clear indication of how long 
that decision to consent will be considered specific, and without a clear indication of what a 
‘reasonable’ ‘secondary purpose’ to data collection might be. Moreover, people are incentivised to 
consent and penalised for not doing so in an increasing number of settings, from insurance to 
healthcare and employment.197 It’s for this reason that pre-existing privacy principles will require 
new legal approaches. 

Data anonymisation, or the removal of personally identifiable information from datasets, has been 
suggested as a way of safely using big data for research purposes without the expense of revealing 
individual identities. However, privacy researchers have noted that re-identification methods have a 
technological and mathematical edge over anonymisation methods.198 In 2000, using 1990 US Census 
summary data, Latanya Sweeney demonstrated that 87% of the entire US population, or 216 million 
people, could be identified based solely on their zip code, gender and date of birth.199 The President’s 
Council of Advisors on Science and Technology has summarised the problem of re-identification and 
the ineffectiveness of notice and consent in an era of big data as follows: 

[I]t is increasingly easy to defeat anonymisation by the very techniques that are being 
developed for many legitimate applications of big data. In general, as the size and 
diversity of available data grows, the likelihood of being able to re-identify individuals 
grows substantially.200 

While emerging techniques for de-identifying data, such as differential privacy,201 show more 
promise, the ability to ‘anonymise’ disclosed data can no longer be taken for granted. Promises that 
anonymised data can enable a safe ‘release-and-forget’ approach to the disclosure of data for 
research and business purposes need to be more carefully assessed, and protections should extend 
to de-identified data, not just identified data. 

While these challenges to privacy don’t arise directly from the use or disclosure of big data by the 
national security community, they present intersectional challenges that can damage the social 
licence through which the community enjoys its wide array of exemptions from the Privacy Act when 
using data.202 The current debate around the term ‘metadata’, though limited to less sensitive types 
of network information (email addresses, IP addresses, timestamps), demonstrates how 
controversial such issues can be in the public eye. 

4.3.3 Data security 

Even if data is successfully anonymised, it will remain vulnerable both in motion and at rest. 
Electronic healthcare records and data have become particularly attractive to cybercriminals looking 
for sensitive data, as medical records can’t be cancelled or changed like credit card details.203 A 
Ponemon Institute study of data breaches worldwide found that the costs of breaches averaged 
more than US$2.2 million per healthcare organisation, and estimated the total costs of all healthcare 
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organisations’ data breaches at US$6.2 billion from 2015-16.204 Healthcare records were priced at 
US$50 each on the black market, according to the World Privacy Forum in 2012.205 This has since 
dropped to a price ranging from US$1.50 to US$10 in 2016 as a result of an increase in the supply of 
data.206 For the buyers of illicit information, the average profit per record was estimated to be 
US$20,000, generated from medical billing fraud, identity theft and other scams using the personal 
details. And, in the largest data thefts, individual records can be sold even more cheaply at scale: 
9.3 million patient records went on sale for US$820,000 in 2016.207 This monetisation of data and 
high incentives to commit data theft, and the issue of anonymisation of data, were the reasons 
behind the concern of the Australian public over the retention of names in the 2016 Census.208 This 
demonstrates the incentives for the breach, disclosure or similar acquisition of personal information, 
which will be an ongoing problem in the big-data context. 

While the incentives to attack big datasets are high, protections remain relatively immature. The 
large attack surface of a big-data pipeline,209 as well as the relative newness of the technologies 
involved, mean that most software solutions are built to solve specific issues as modules of a 
stitched-together larger whole, without a built-in consideration for systems integration. 
Furthermore, several big-data technologies, such as NoSQL databases, were built to tackle database 
challenges in an ad hoc way,210 meaning that several big-data security solutions remain ad hoc, 
unintegrated and relatively immature. 

4.3.4 Adversarial evasion 

Further complicating the problem, research has found potent and effective ways for adversaries to 
exploit machine-learning algorithms and leverage the trade-offs involved between false positives and 
false negatives. Adversaries can attempt to defeat or, worse, turn machine-learning algorithms to 
their advantage by ‘attacking’ the algorithm. This involves what’s been called ‘raising the noise floor’: 
an adversary bombards a learning model with false positives, which leads to analysts raising the alert 
threshold, which means there’s now a point ‘under the threshold’, within the noise, within which 
attackers can structure their behaviour to avoid notice.211 

This underlying reliance on the data in machine-learning algorithms has been targeted as a ‘data diet 
vulnerability’212 in which ‘adversarial examples’213 are used to ‘poison’ an algorithm’s training data. 
These adversarial examples involve a small, imperceptible shift in an input (for example, a few 
discoloured pixels in an image) and are able to completely undermine a machine-learning algorithm’s 
ability to recognise an image accurately (for example, causing an algorithm to misclassify a panda as 
a gibbon with extremely high confidence).214 

This has serious implications for the reliability and veracity of machine-learning algorithms and data-
based decisions. In the words of the researchers working on adversarial examples: 

These vulnerabilities cannot be simply brushed off by a plea for new, robust methods. 
The theoretical foundations of machine learning are largely built on the assumption that 
training data adequately describes the underlying phenomena addressed by learning. 
This assumption is obviously violated if either the training or the test distributions are 
intentionally altered.215 



 

37 
 

Similar vulnerabilities have been demonstrated in poisoning, obfuscating or evading machine-
learning algorithms that analyse behavioural malware clustering for cybersecurity against 
polymorphic malware families. Researchers found that even a corruption of 3% of the data from 
which such clustering analysis generalises can completely subvert the clustering process.216 

There are areas where such adversarial techniques can be used to evade detection and tracking 
systems. The use of adversarial images to imperceptibly fool the entity-recognition and tracking 
algorithms in surveillance systems, for example, could cause vital parts of video data to go entirely 
untagged by the analytics system and, therefore, to be likely to go unnoticed by analysts who have 
come to rely on analytics and algorithms to track targets of interest across a multitude of sensors and 
systems. Adversarial techniques could be used in a similar way to defeat optical character 
recognition or other text analytics systems that are used to track entities in written passages, or used 
to gauge or measure sentiment in social media. Adversarial spoofing is likely to continue to affect 
machine-learning algorithms and diminish the advantages of algorithmic automation by requiring 
human auditing and review. 

These concerns about information integrity and protection against manipulation or deception aren’t 
new to the national security community. However, such risks could previously be managed at 
discrete points of collection, analysis or intrusion. In the big-data context, in which information is 
automatically ingested, analysed and incorporated into aggregated risk assessment, this risk of 
deception becomes less reliant on an intrusion or breach into a dataset. 

4.3.5 Adversarial attacks 

Another source of adversarial risk is the increasing democratisation of machine learning and big-data 
technologies. As cheap computing clusters, machine-learning algorithms and more complete and 
mature software toolkits for data science permeate the market, often on an open-source and 
complimentary basis, more ‘citizen data scientists’ will emerge with a do-it-yourself approach to 
analytics. While this will allow better public uses of big data, it poses a risk if it increases the strength 
of social engineering attacks, in which machine learning can be used to assess a wide variety of 
targets to find the weakest link.217 The rise of machine learning will allow adversaries to ‘scan’ and 
assess a wide arrange of targets and to ‘tailor’ attacks much more effectively. 

One suggested way in which machine learning will improve adversaries’ capabilities is by accelerating 
carefully tailored social engineering attacks. McAfee Labs has predicted that machine-learning 
predictive models will allow attackers to assess a wide variety of organisations and ‘identify high-
value targets’ far more easily, and thereby more quickly find the weakest links in the cybersecurity 
chain as part of a business model that provides ‘target acquisition as a service’.218 In this form of 
cybercrime, cybercriminals use massive data leaks and breaches to build models for high-value 
targets to sell to those cybercriminals willing to take on the risk of committing a cyberattack once the 
costly and complex process of identifying a target has been done for them. 

Moreover, other analysts predict a rise in the use of automated ‘spear-phishing’, which is a 
confluence of two options into a single, more potent hybrid attack. A phishing attack is a form of 
social engineering that sends a message trying to convince a user within a secure system to click on a 
link, install software or otherwise grant access to the secure system or even directly pay out money 
to an external account (as in the case of the ‘business email compromise’ scam219). The message 
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itself doesn’t contain any harmful code but relies on its ability to convince and be seen as legitimate 
to induce the target to click on the link, which injects the malware. Previously, there were two 
approaches: either a bulk, but imprecise, phishing campaign or a precise, but individual, spear-
phishing attempt. However, in today’s context a machine-learning algorithm can generate 
automated, tailored spear-phishing campaigns that have been found to have a 30–60% success rate, 
compared to a manual, tailored spear-phishing success rate of 45% and an automated bulk phishing 
success rate of 5–14%.220 This demonstrates the benefits of a machine-learning algorithm in 
automating the targeting and tailoring process behind a social engineering attack, such as phishing. 

4.4 Conclusion 

Ultimately, a great deal of these risks, vulnerabilities and challenges arise from overblown 
expectations about big data unaccompanied by an equal consideration of the limitations and risks. 
This results in poorly informed decisions and policy or, worse still, decisions and policy that operate 
on false positives or false negatives. 

Addressing these limitations, challenges and risks will be essential if the national security community 
is to use big data effectively. 
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GIS geospatial information system 

IoT internet of things 
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IT information technology 
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