Transanal Excision of Rectal Cancer: What Next?

November 10th 2017
Meagan Costedio MD FACS FASCRS
Medical Director Colorectal Surgery
University Hospitals Ahuja Medical Center
Associate Professor - Division of Colorectal Surgery

Disclosures

- Nothing to disclose
Objectives

• Discuss the indications for TAE
• Is local excision safe for ca?
 - Local recurrence rate?
 - Distant recurrence rate?
 - Overall survival rate?
• HOW DO YOU FOLLOW UP?
• What are the ramifications of recurrence after TEM/TAE?

Indications for Local Excision

• Endoscopically unresectable rectal polyp
• T1 cancers
 - No lymphovascular OR perineural invasion
 - Well to moderately differentiated
 - No tumor deposits or budding
 - Negative margins
• T1 –T3 IF….
 - Pt refuses convention surgery/stoma
 - Pt unfit for major abdominal surgery
 - Palliation
 - In conjunction with XRT and or chemo
 - WITH COUNSELING!!!
Current Techniques

- Traditional transanal excision
- Transanal Endoscopic Microsurgery (TEM)
- (TEO)
- (TaMIS)

Transanal Excision

- < 8 cm from anal verge
- Peritoneal reapproximation is very difficult
- Circumferential lesions are easier
- Good for low lesions
TEM

- Must be reachable by rigid sigm. (<15cm)
- Size of operating proctoscope (4cm)
- Circumferential lesions are possible, but difficult
- Positioning in obese
- Start up costs

TEO

- Must be reachable by rigid sigm. (<15cm)
- Size of operating proctoscope (4cm)
- Circumferential lesions are possible, but difficult
- Positioning in obese
- Pneumorectum changes
TAMIS

- Difficult close to the dentate line
- Difficult in the high rectum
- Circumferential lesions are easier
- Less expensive
- Suction can be difficult without added equipment

Moore, Cataldo, Osler et al. Transanal Endoscopic Microsurgery is more Effective than Traditional Transanal Excision for Resection of Rectal Masses. DCR, 2008; 51: 1026–1031.
Moore, Cataldo, Osler et al. Transanal Endoscopic Microsurgery is more Effective than Traditional Transanal Excision for Resection of Rectal Masses. DCR. 2008; 51: 1026–1031.

- Margins comparable
- 30% of TAMIS group was unable to suture defect
Recurrence after TEM

Adenomas
- 5-12% at 5 years
- All treated with local reexcision

Carcinoid
- 0%

Cancer
- T1 = 0-13%
- T2 = 5-40%
- T3 = 0-100%

TEM vs Radical Resection

Salvage Surgery – Early

• 5/34 - permanent stoma
• Overall survival
 - 1 year – 91%
 - 5 year – 83%
• TME Grade
 - 23 (64%) – good
 - 6 (16.6%) – moderate
 - 7 (19.4%) - poor

Salvage Surgery – Early

• Factors leading to inferior specimen
 - Lower rectum
 - >7 weeks to surgery
 - Full thickness TEM specimen
Salvage Surgery: Late

- Median time to recurrence 1.9 years
- Patterns
 - Mesorectum 35%
 - Lumen 33%
 - Presacral 22%
 - Iliac 9%
 - Distant 18%
 - Both 15%
- R0 = 80%
- 33% sphincter preservation rate
- 5YS 63%

You YN, Roses RE, Chang et al. Multimodality Salvage of Recurrent Disease after Local Incision for Rectal Ca, Dis colon and rectum 2012: 55, 1213-9

Detection

- Rectal endoscopic exam -28%
- CEA rise- 13%
- Abnormal imaging -43%
- Symptoms - 11%

You YN, Roses RE, Chang et al. Multimodality Salvage of Recurrent Disease after Local Incision for Rectal Ca, Dis colon and rectum 2012: 55, 1213-9
Salvage Surgery: Late

- **U Minn**
 - 29 pts
 - 79% - R0 resection
 - Upstaged 93%
 - 39 mo follow up
 - 59% with NED
 (Friel et al., DCR 2002)

- **MSKCC**
 - 50 pts
 - Median time to recur – 20 months
 - 33 mo follow up
 - 97% - R0 resection
 - 5-yr DSS 53%
 (Weiser et al. DCR 2005)

Table 1. LE of early rectal cancer

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of tumor from anal verge</td>
<td>5.8 ± 2.5 (2.0–10.3)</td>
</tr>
<tr>
<td>CEA level (g0 LE), mean ± SD</td>
<td>2.1 ± 3.0</td>
</tr>
<tr>
<td>Local excision</td>
<td></td>
</tr>
<tr>
<td>Performed at Mayo Clinic</td>
<td>7</td>
</tr>
<tr>
<td>At outside institution</td>
<td>20</td>
</tr>
<tr>
<td>Final pathology of LE specimen</td>
<td></td>
</tr>
<tr>
<td>No invasive cancer identified (Tis)</td>
<td>2</td>
</tr>
<tr>
<td>Microscopic focus of cancer, could not be ascertained (Tis)</td>
<td>2</td>
</tr>
<tr>
<td>T1</td>
<td>16</td>
</tr>
<tr>
<td>T2</td>
<td>7</td>
</tr>
<tr>
<td>Pathology</td>
<td></td>
</tr>
<tr>
<td>Performed at Mayo Clinic</td>
<td>7</td>
</tr>
<tr>
<td>Slides reviewed at Mayo Clinic</td>
<td>17</td>
</tr>
<tr>
<td>Only pathologic report available</td>
<td>3</td>
</tr>
<tr>
<td>Lymphovascular invasion</td>
<td>7</td>
</tr>
<tr>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Not reported</td>
<td>20</td>
</tr>
</tbody>
</table>

N = 27, LE = local excision

Table 2. Clinical staging of salvage multidisciplinary therapy for recurrent rectal cancer after LE

<table>
<thead>
<tr>
<th>Variable</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of recurrence after LE</td>
<td></td>
</tr>
<tr>
<td>Local control</td>
<td></td>
</tr>
<tr>
<td>Median distance to recurrence, wk</td>
<td>62</td>
</tr>
<tr>
<td>Prognostic factors</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
</tr>
<tr>
<td>Pathologic stage</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
</tr>
<tr>
<td>Pathologic stage</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
<tr>
<td>Pathologic stage</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
<tr>
<td>Pathologic stage</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
</tr>
<tr>
<td>Pathologic stage</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
</tbody>
</table>

Salvage Surgery - Late

Table 3
ODDS Ratios for any stoma and colostoma hazard ratios for local recurrence and survival.

<table>
<thead>
<tr>
<th></th>
<th>TEM—TME</th>
<th>TME trial</th>
<th>P-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any stoma (OR)</td>
<td>1.20</td>
<td>1 (ref)</td>
<td>0.575</td>
<td>0.64—2.26</td>
</tr>
<tr>
<td>Colostoma (OR)</td>
<td>2.51</td>
<td>1 (ref)</td>
<td>0.006</td>
<td>1.30—4.86</td>
</tr>
<tr>
<td>Local recurrence (HR)</td>
<td>6.8</td>
<td>1 (ref)</td>
<td><0.0001</td>
<td>2.71—16.96</td>
</tr>
<tr>
<td>Survival (HR)</td>
<td>0.39</td>
<td>1 (ref)</td>
<td>0.061</td>
<td>0.14—1.04</td>
</tr>
</tbody>
</table>

Follow up

- Needs to include systemic follow up

 - Every 3-4 month, exam, flex sigm and CEA
 - 6 months CT C/A/P
 - Alternating with 6 month MRI’s
Conclusions

• TEM/TAMIS are better than transanal excision
 - Higher negative margin rate
 - Decreased fragmentation
 - Decreased recurrence rate
• TEM is better for closure of intraperitoneal defects (high, anterior lesions)
• TEM/TAMIS is reasonable for low risk T1 cancers or pts unfit for large operation WITH COUNSELING
• TEM
 - Higher local recurrence rate in stage 1a
 - Similar distant recurrence and survival rates
• We need to follow these patients systematically
• Incomplete TME and permanent stoma rate may be higher in salvage resection after TEM followed by RR vs RR alone