Port Kembla Steelworks & Springhill
Analyst Site Visit

Noel Cornish
Chief Executive Australian & New Zealand Steel Manufacturing Businesses
September 2009
THIS PRESENTATION IS NOT AND DOES NOT FORM PART OF ANY OFFER, INVITATION OR RECOMMENDATION IN RESPECT OF SECURITIES. ANY DECISION TO BUY OR SELL BLUESCOPE STEEL LIMITED SECURITIES OR OTHER PRODUCTS SHOULD BE MADE ONLY AFTER SEEKING APPROPRIATE FINANCIAL ADVICE. RELIANCE SHOULD NOT BE PLACED ON INFORMATION OR OPINIONS CONTAINED IN THIS PRESENTATION AND, SUBJECT ONLY TO ANY LEGAL OBLIGATION TO DO SO, BSL DOES NOT ACCEPT ANY OBLIGATION TO CORRECT OR UPDATE THEM. THIS PRESENTATION DOES NOT TAKE INTO CONSIDERATION THE INVESTMENT OBJECTIVES, FINANCIAL SITUATION OR PARTICULAR NEEDS OF ANY PARTICULAR INVESTOR.

TO THE FULLEST EXTENT PERMITTED BY LAW, BLUESCOPE STEEL LIMITED AND ITS AFFILIATES AND THEIR RESPECTIVE OFFICERS, DIRECTORS, EMPLOYEES AND AGENTS, ACCEPT NO RESPONSIBILITY FOR ANY INFORMATION PROVIDED IN THIS PRESENTATION, INCLUDING ANY FORWARD LOOKING INFORMATION, AND DISCLAIM ANY LIABILITY WHATSOEVER (INCLUDING FOR NEGLIGENCE) FOR ANY LOSS HOWSOEVER ARISING FROM ANY USE OF THIS PRESENTATION OR RELIANCE ON ANYTHING CONTAINED IN OR OMITTED FROM IT OR OTHERWISE ARISING IN CONNECTION WITH THIS.
Introduction
Single point of focus for Australian & New Zealand Steel Manufacturing Businesses

Managing Director and CEO
Paul O’Malley

Legal (Michael Barron)
CFO (Charlie Elias)
People and Organisation Performance (Ian Cummin)

Aus/NZ Steel Manufacturing Businesses
- Noel Cornish

Australian Coated and Industrial Markets
- Paul O’Keefe

Australian Distribution and Solutions
- Keith Mitchelhill

Corporate Strategy and Innovation; North America,
- Mark Vassella

Asia
- Sanjay Dayal

China
- Bob Moore

Oversees all manufacturing facilities in Aus/NZ; responsible for driving safety, process excellence and meeting production schedule at lowest cost.

- PKSW
- Springhill
- Western Port
- Western Sydney
- Acacia Ridge
- Glenbrook NZ
• Safety

• Water conservation

• Community

• Port Kembla Steelworks
 – Process and Production
 – Costs and Raw materials
 – Capital
 – No. 5 Blast Furnace reline
 – Sinter Plant upgrade

• Coated Businesses
 – Process and production

• Summary
Safety – Australian & New Zealand Steel Manufacturing Businesses

Lost Time Injury Frequency Rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>99/00</td>
<td>4.3</td>
</tr>
<tr>
<td>00/01</td>
<td>3.7</td>
</tr>
<tr>
<td>01/02</td>
<td>3.0</td>
</tr>
<tr>
<td>02/03</td>
<td>2.2</td>
</tr>
<tr>
<td>03/04</td>
<td>1.8</td>
</tr>
<tr>
<td>04/05</td>
<td>0.7</td>
</tr>
<tr>
<td>05/06</td>
<td>1.3</td>
</tr>
<tr>
<td>06/07</td>
<td>0.3</td>
</tr>
<tr>
<td>07/08</td>
<td>0.8</td>
</tr>
<tr>
<td>08/09</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Medically Treated Injury Frequency Rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>99/00</td>
<td>34.0</td>
</tr>
<tr>
<td>00/01</td>
<td>17.8</td>
</tr>
<tr>
<td>01/02</td>
<td>14.1</td>
</tr>
<tr>
<td>02/03</td>
<td>10.4</td>
</tr>
<tr>
<td>03/04</td>
<td>7.7</td>
</tr>
<tr>
<td>04/05</td>
<td>4.9</td>
</tr>
<tr>
<td>05/06</td>
<td>5.3</td>
</tr>
<tr>
<td>06/07</td>
<td>4.7</td>
</tr>
<tr>
<td>07/08</td>
<td>3.5</td>
</tr>
<tr>
<td>08/09</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Port Kembla Steelworks
- World class water efficiency for an integrated steelworks.
- 14,700 ML of recycled water used since Oct 2006.
- Options being investigated for further reductions.

Springhill Works
- Water input is >50% recycled water.

Federal Government’s proposed Carbon Pollution Reduction Scheme (CPRS) will be reviewed after this presentation.
Community Engagement

• Policy of supporting education, youth, arts and culture

• Active participation in a variety of community initiatives e.g. Youth Unemployment Committee

• Support 30+ Illawarra organisations

• $500,000 in sponsorships

• $80,000 in donations towards charities, schools, sport, employees and their families
Markets and Supply Chain

- Western Port
- Illawarra

Domestic

Export

Direct

Distribution & Solutions Australia

Manufacturing

Pipe & Tube

Building & Construction
Port Kembla Steelworks overview

• Fully integrated plant with steel making capacity of 5.3Mtpa. Optimal unit size.

• Situated on 760 hectares and employing 3,400 permanent employees (plus 1,500 - 2,500 contractors on any given day).

• Amongst world’s most technically advanced producers of quality carbon steel products.

• Excellent technical and operational skills and experience.

• Focus on:
 - Safety
 - Customers
 - Environment
 - Community
 - Productivity
 - Quality
 - Costs
 - Flexibility
Overview of Steel Production Process – Port Kembla Steelworks

- **Iron Ore**
- **Coal**
- **Coke**
- **Sintered ore**
- **Molten pig iron**
- **Slag**
- **“Graded” Liquid Steel**
- **Slab**
- **Hot Rolled Coils**

Processes:
- **SINTERING**
- **CONVERTER (BOS)**
- **BLAST FURNACE**
- **COKE OVEN**
- **REFINING STAND**
- **CONTINUOUS CASTING**
- **REHEAT FURNACE**
- **ROLLING MILL**
PKSW – Production & Despatch Flow, FY2008 & FY2009

Notes:
(1) Slab, HRC and plate.
(2) See Coated Australia Annual Capacities slide for Western Port Works capacities
(3) Domestic HRC ex Port Kembla Steelworks only; ie excludes export HRC despatches from Western Port when reconciling from the ASX Release, Attachment 1
(4) Export HRC ex Port Kembla Steelworks only; ie excludes export HRC despatches from Western Port when reconciling from the ASX Release, Attachment 1
(5) See Coated Australia Annual Capacities slide for Springhill Works capacities
(6) See ASX Release, Attachment 1 for detail
Port Kembla Steelworks – No.5 Blast Furnace Reline
No.5 Blast Furnace Reline

• History – No. 5 BF
 – Nameplate capacity approximately 2.6 Mtpa of hot metal

• No.5 reline undertaken from 18 January to 19 August 2009

• Total capital cost in line with budget of A$372M

• Restarted on 19 August 2009 and has operated continuously since blow-in

• No safety or environmental incidents
Reline activities have entailed the following stages:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Details</th>
</tr>
</thead>
</table>
| Shut-down & tap salamander | • Copy book run-down;
 | • 580 t salamander tapped; no blasting in hearth required |
| Demolition | • Site manpower peaked at just under 1,200 people / day |
| | • Excellent safety performance - LTIFR =1.0 and MTIFR=12.5 on 2 million man-hrs |
| Construction | • Extensive equipment testing prior to start-up |
| | • Furnace has operated continuously for 40 days with no significant equipment issues |
| Cold commissioning | • Operations stable ; Quality in Specification |
| Hot commissioning | |
No.5 Blast Furnace Reline
…major capital investments in our future

Photo courtesy Illawarra Mercury
No.5 Blast Furnace Reline
…major capital investments in our future

Photos courtesy Illawarra Mercury
No.5 Blast Furnace Reline

- The carbon hearth, refractories and staves (furnace shell cooling elements) were completely stripped out of the blast furnace and replaced with new ones. Internal platforms enabled work at multiple levels.
Port Kembla Steel Production

- No. 6 Blast Furnace has been operating at capacity.
- No. 5 Blast Furnace is going through the final stages of its ramp up process following completion of the reline.
- Average combined capacity utilisation for 1Q is expected to be approx 70%.
- Stronger domestic and export demand in first quarter supporting 100% capacity utilisation.
- If current levels of demand continue we would expect to run at 100% utilisation in Q2 FY 2010.
- The continued strengthening of A$ vs US$ remains a concern.
- A market update will be provided at the Annual General Meeting in November.
Sinter Plant Upgrade

- Sinter plant re-commissioned 29 June 2009
- Total capital cost approximately A$140m
- No.3 Sinter machine at PKSW (prior to upgrade)
 - was single source of 5.3 Mtpa of sinter for No. 5 & No. 6 Blast Furnaces
 - the typical blast furnace burden mix prior to the upgrade was 57% sinter (fines based); 25% pellets; 18% lump
- Outcome post upgrade and from FY2010 onwards (and after No. 5&6 operating at full capacity)
 - increased sinter production capacity by 1.1 Mtpa to 6.6 Mtpa (nameplate was 5.5 Mtpa)
 - this will require + 1.1 Mtpa of fines BUT would displace 1.0 Mtpa of pellets
 - after the upgrade typical blast furnace burden mix will be approx 70% sinter (fines based); 16% pellets; 14% lump
 - increased Pulverized Coal injection rates (cost saving as use more thermal and less coking coal) due to blast furnace permeability being improved by higher quality sinter
The Sinter Plant underwent a major upgrade and 20% increase in capacity

Photos courtesy Illawarra Mercury
Port Kembla Steelworks – cost profile

Chart shows cost of despatches
Conversion costs include depreciation
Raw material includes iron ore, coal, scrap and alloys but not scrap purchased on behalf of OneSteel
Global iron ore fines, coking coal and semi soft coal benchmark prices

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Ore Fines</td>
<td>$17.97</td>
<td>$17.54</td>
<td>$19.12</td>
<td>$22.68</td>
<td>$38.88</td>
<td>$46.27</td>
<td>$50.66</td>
<td>$91.14</td>
<td>$61.06</td>
</tr>
<tr>
<td>US$/dmt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>4.3%</td>
<td>-2.4%</td>
<td>9.0%</td>
<td>18.6%</td>
<td>71.5%</td>
<td>19.0%</td>
<td>9.5%</td>
<td>79.9%</td>
<td>-33%</td>
</tr>
<tr>
<td>Hard Coking Coal</td>
<td>$42.75</td>
<td>$48.10</td>
<td>$46.20</td>
<td>$57.20</td>
<td>$101.00</td>
<td>$116.00</td>
<td>$98.00</td>
<td>$300.00</td>
<td>$129.00</td>
</tr>
<tr>
<td>US$/wmt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>7.5%</td>
<td>12.5%</td>
<td>-4.0%</td>
<td>23.8%</td>
<td>76.6%</td>
<td>14.9%</td>
<td>-15.5%</td>
<td>206%</td>
<td>-57%</td>
</tr>
<tr>
<td>Semi-soft Coal</td>
<td>$35.15</td>
<td>$32.80</td>
<td>$30.80</td>
<td>$40.00</td>
<td>$80.00</td>
<td>$59.00</td>
<td>$65.00</td>
<td>$240.00</td>
<td>$85.00</td>
</tr>
<tr>
<td>US$/wmt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>-6.7%</td>
<td>-6.1%</td>
<td>29.9%</td>
<td>100%</td>
<td>-26.2%</td>
<td>10.2%</td>
<td>269%</td>
<td>-64.6%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Based on Australian iron ore fines settlement with Japan at 62.5% Fe. Brazilian fines settlement was -28% at 66% Fe.
 Pricing under the new iron ore contract with BHP Billiton (effective from 1/7/2009) will be reviewed quarterly and linked to movements in iron ore prices paid by BHP Billiton’s other customers in Asia.
PKSW – Consumption of primary raw materials

<table>
<thead>
<tr>
<th></th>
<th>FY2007</th>
<th>FY2008</th>
<th>FY2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coking</td>
<td>2.9</td>
<td>3.0</td>
<td>2.2</td>
</tr>
<tr>
<td>PCI</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Anthracite</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>3.7</td>
<td>3.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Iron Ore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>3.9</td>
<td>4.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Lump</td>
<td>1.7</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Pellets</td>
<td>2.2</td>
<td>2.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>7.8</td>
<td>7.9</td>
<td>5.5</td>
</tr>
<tr>
<td>Scrap (1)</td>
<td>1.0</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Raw Steel Production</td>
<td>5.3</td>
<td>5.3</td>
<td>3.5</td>
</tr>
<tr>
<td>Export Coke despatches</td>
<td>248kt</td>
<td>264kt</td>
<td>282kt</td>
</tr>
</tbody>
</table>

Note: (1) 40-50% of scrap feed is sourced externally; balance, internally sourced scrap

- Coking coal principally sourced from local BHP Billiton Illawarra mines (30 year contract from July 2002)
- PCI coal sourced from a range of suppliers, not currently under long term contract
- Contracts in place with BHP Billiton (5.0mtpa; 10 year contract from July 2009) and Savage River (Grange Resources 0.6mtpa; 3 year contract from 1 July 2009)
- Also supplied by IOC (Rio), OneSteel and Vale, not currently under long term contract
Port Kembla Steelworks productivity

Largely due to:
- Undertaking blast furnace reline; and
- Material reduction in global steel demand
Springhill – Coated Products
Springhill – Coated Products

- Springhill’s Coupled Pickle Cold Mill 990kt
- Metal Coating Lines (3 lines) 825kt
- Springhill Paint Line 200kt
Coated Australia – Annual Capacities

Port Kembla Steelworks

- Western Port
 - Hot Strip Mill 1,430
 - Pickle Line 1,150
 - Cold Mill 1,000
 - Metal Coating Lines 830
 - Paint Lines 330
 - HRC
 - Slab
 - HRC

Slab

HRC

Notes:
(1) Numbers reflect capacities in kt.
Summary
• Continued focus on safety, community and environment
• Successful ramp up of upgraded facilities
• Continued focus on cost reduction initiatives
• Responding to meet market demands
Cokemaking

Coke Oven Batteries

<table>
<thead>
<tr>
<th>4 Batteries</th>
<th>4,5,6 & 7A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oldest</td>
<td>1966</td>
</tr>
<tr>
<td>Youngest</td>
<td>1987</td>
</tr>
<tr>
<td>Capacity</td>
<td>2.2 – 2.4 Mtpa</td>
</tr>
</tbody>
</table>
Cokemaking process overview

3.0Mtpa BLENDED COAL

GAS PROCESSING

SULPHATE
39Kt

TAR
86Kt

BTX (Benzene)
23ML

Interworks energy (boilers, furnaces)

COKE OVENS GAS 19,000TJ

COKE SCREEN

LUMP (25 – 80 mm)
86%

TATA (20 – 50 mm)
7%

NUT (10 – 25 mm)
2%

BREEZE (< 10 mm)
5%

Types of coke solids produced
• Lump
• Tata
• Nut
• Breeze

1 tonne of coke solids is equivalent to 1.30t coking coal

Export coke
BlueScope approach is to sell excess production on a spot basis. Generally offered in 30-45kt cargo sizes.
282kt of coke sales in FY2009

Typical yearly Coke usage (reflective of FY 2008)
Blast furnaces 1.9Mtpa
Sinter plant 0.2Mtpa
Export 0.2Mtpa
2.3Mtpa
Ore Preparation – sinter and raw materials handling

No.3 Sinter Machine

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Built</td>
<td>1975</td>
</tr>
<tr>
<td>Revamped</td>
<td>2009</td>
</tr>
<tr>
<td>Grate Area</td>
<td>480 m²</td>
</tr>
<tr>
<td>Production</td>
<td>6.6 Mtpa</td>
</tr>
<tr>
<td>Productivity</td>
<td>38-40 t/m²/d</td>
</tr>
<tr>
<td>BF Burden</td>
<td>~60 - 70%</td>
</tr>
</tbody>
</table>
What is sinter?

FINE ORES
Blended and Fluxed in Sinter Machine to Produce Sinter

PELLETS

FINE ORES

LUMP ORES

PREPARED BURDENS

BLAST FURNACE
Raw materials- iron ore lump, sinter, pellets, coke (coal) and limestone are fed into the top of the blast furnace.

Hot air, gas and PCI is fed into the blast furnace through the tuyeres.

Coke and gases burn to create temperatures up to 2200°C; “chemical reduction” process creates molten iron and CO2 while limestone (flux) melts and forms slag.

Molten iron and slag fall to the furnace bottom (hearth) where they are drained out through one of three tapholes into a torpedo ladle.

Molten slag to by-products processing.

Torpedo car – iron to BOS

• 2 Blast Furnaces (No.5 & No.6)
<table>
<thead>
<tr>
<th></th>
<th>No.5BF</th>
<th>No.6BF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built</td>
<td>1972</td>
<td>1996</td>
</tr>
<tr>
<td>Relined</td>
<td>1978, 1991, 2009</td>
<td>-</td>
</tr>
<tr>
<td>Campaign Life</td>
<td>15 - 20 yrs</td>
<td>>20yrs</td>
</tr>
<tr>
<td>Output</td>
<td>2.6 Mtpa</td>
<td>2.6 Mtpa</td>
</tr>
</tbody>
</table>
Molten iron (250t)
Scrap steel (approx 60t)
Oxygen blowing

Basic Oxygen Steelmaking (BOS)

* Annual Scrap Usage (indicative) 1mtpa (approximately 40% sourced externally)

Steelmaking process

Refractory lined BOS furnaces 3 x 280t
Continuous Slab Casters

5.3 Mtpa

Max. width = 2200mm

Max. length = 12.5m

Max. thickness = 300mm
Slabmaking

<table>
<thead>
<tr>
<th></th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOS</td>
<td>1972</td>
<td>1972</td>
<td>1983</td>
</tr>
<tr>
<td>Caster</td>
<td>1978</td>
<td>1986</td>
<td>1986</td>
</tr>
</tbody>
</table>

5.3Mtpa total output
Hot Strip Mill
2.9 Mtpa

HRC process

Slabs ex Slab Casters
Reheated to 1225°C
Dual reheat furnaces

Roughing-Reversing Mill 300mm – 25mm
Coil box
Six Stand Finishing Mill min. gauge 1.48mm

Product flow
Hot Strip Mill

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built</td>
<td>1955</td>
</tr>
<tr>
<td>2nd Walking Beam Furnace</td>
<td>2006</td>
</tr>
<tr>
<td>Capacity</td>
<td>2.9Mtpa</td>
</tr>
</tbody>
</table>
Plate process

450ktpa capacity

Commissioned 1963 5mm-180mm thick x 1200mm-3400mm wide

Shearing, stencilling, shot blasting, prime painting & inspection

Product flow

Slabs ex Slab Caster
Reheat Furnaces

Finishing Mill
Roughing Mill
Descaling Box

Hot leveller
Plate Mill

<table>
<thead>
<tr>
<th>Description</th>
<th>Year</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No1 Furnace & Stand 1 Rolling Mill</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>No2 Furnace & No2 Stand Rolling Mill</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
<td>450,000t</td>
</tr>
</tbody>
</table>
External Product Sales Mix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab</td>
<td>44%</td>
<td>49%</td>
<td>31%</td>
<td>33%</td>
<td>22%</td>
</tr>
<tr>
<td>HRC</td>
<td>41%</td>
<td>39%</td>
<td>53%</td>
<td>53%</td>
<td>62%(1)</td>
</tr>
<tr>
<td>Plate/Oth</td>
<td>15%</td>
<td>12%</td>
<td>16%</td>
<td>14%</td>
<td>16%</td>
</tr>
</tbody>
</table>

(1) The difference between HRC external despatches reported here and Attachment 1 to ASX Release relates to HRC sales from Western Port (old Coated Products Australia).

51% sold domestically and 49% exported, with geographic split being:
- Asia: 36%
- USA: 3%
- Other: 61%

100% exported, with geographic sales split:
- Asia: 98%
- USA: 2%
- Other: 0%
Taking account of the benefit of the sinter plant upgrade the indicative raw material mix is as follows:

- **Coking coal (dry tonnes)**: 0.5t
- **PCI**: 0.13t
- **Iron ore**
 - Fines: 1.0t
 - Lump: 0.3t
 - Pellets: 0.25t
- **Scrap (ext purchased)**: 0.1t

Excludes Coal used for coke despatches.

Benchmark price quoted in wet tonnes; 8% moisture content difference to dry tonnes.
Port Kembla Steelworks Capital Expenditure

<table>
<thead>
<tr>
<th>Commissioning</th>
<th>Project</th>
<th>Capex (A$m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>No. 6 Blast Furnace</td>
<td>478</td>
</tr>
<tr>
<td>2000</td>
<td>5mtpa Project</td>
<td>90</td>
</tr>
<tr>
<td>2001</td>
<td>Coke Side Emission Control</td>
<td>91</td>
</tr>
<tr>
<td>2004</td>
<td>Sinter Plant Emission</td>
<td>94</td>
</tr>
<tr>
<td>2006</td>
<td>Hot Strip Mill Expansion</td>
<td>100</td>
</tr>
<tr>
<td>2009</td>
<td>No. 5 BF Reline</td>
<td>372</td>
</tr>
<tr>
<td>2009</td>
<td>Sinter Plant Upgrade Project</td>
<td>140</td>
</tr>
</tbody>
</table>
Springhill – cold rolling

Process: Hot rolled coil is pickled in hydrochloric acid to remove iron oxide to prepare the strip for cold rolling. Cold rolling reduces steel thickness by passing the hot rolled pickled strip through a series of five rolling stands. High roll force and strip tension allows the strip to be progressively reduced at each stand without changing the width. The CPCM is a continuous pickling operation coupled to the cold reduction process.

Output: Sold as cold reduced uncoated steel, or sent to metal coating lines for further processing.

Capacity: 990 kt/a
Springhill – metal coating

Technical Capabilities
- MCL1 – Thick 0.03 – 3.30 mm Width 610 – 1240 mm
- MCL2 – Thick 0.50 – 3.50 mm Width 610 – 1240 mm
- MCL3 – Thick 0.30 – 1.00 mm Width 610 – 1240 mm

Process: Cold reduced coils are hot dipped coated with ZINCALUME® coating (Nos 1 & 3 Lines) or galvanised (zinc) coating (No 2 & 3 Lines) to provide corrosion protection.

Output: Sold as ZINCALUME® coil or galvanised coil to building and manufacturing industries or processed further by our Paint Lines.

ZINCALUME®, ZINCSEAL®, ZINCANNEAL®, GALVASPAN®

Capacity: 825 kt/a
Process: Uncoated or metal coated strip is thoroughly cleaned and chemically treated to provide best surface to apply a primer coat followed by a finish coat of paint, via roller application, which is then oven cured.

Output: Building, packaging and manufacturing markets
COLORBOND®, AQUAPLATE®

Capacity: 200 kt/a
Springhill – zinc / aluminium consumption

Zinc
Aluminium

Tonnes

Springhill Site History

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1939</td>
<td>John Lysaght (Australia) Springhill Works begins full operation</td>
</tr>
<tr>
<td>1955</td>
<td>4 stand continuous Cold Rolling Mill commissioned</td>
</tr>
<tr>
<td>1968</td>
<td>Cold Rolling Mill upgraded to 5 stands</td>
</tr>
<tr>
<td>1961</td>
<td>First continuous galvanising line commissioned</td>
</tr>
<tr>
<td>1964</td>
<td>Second continuous galvanising line commissioned</td>
</tr>
<tr>
<td>1966</td>
<td>Third continuous galvanising line commissioned</td>
</tr>
<tr>
<td>1970</td>
<td>BHP acquires 50% of Lysaght’s</td>
</tr>
<tr>
<td>1976</td>
<td>MCL1 converted to Zinc/Aluminium galvanising No.3 Paint Line commissioned</td>
</tr>
<tr>
<td>1979</td>
<td>BHP acquires 100% of Lysaght’s</td>
</tr>
<tr>
<td>1989</td>
<td>New pickle line coupled to 5 stand Cold Rolling Mill (CPCM)</td>
</tr>
<tr>
<td>1994</td>
<td>Decommissioning of Electrolytic Cleaning and Galvanising Line facilities</td>
</tr>
<tr>
<td>1996</td>
<td>CPCM Carousel Recoiler and Entry Accumulator upgrade Integrated Coil Packaging and Handling Project</td>
</tr>
<tr>
<td>2000</td>
<td>Closure of Batch Coil Annealing and Temper Rolling facilities</td>
</tr>
<tr>
<td>2002</td>
<td>Transfer of the Slit Recoil Line to Acacia Ridge</td>
</tr>
<tr>
<td>2003-05</td>
<td>Brownfield capacity increases</td>
</tr>
<tr>
<td>2005</td>
<td>Packaging Products site integrated under Springhill management as Illawarra Coated Products</td>
</tr>
<tr>
<td>2007</td>
<td>Packaging Products Tinplate & Finishing department closed</td>
</tr>
<tr>
<td>2008</td>
<td>Closure of CRM</td>
</tr>
<tr>
<td>2009</td>
<td>Closure of Packaging Cold Mill</td>
</tr>
</tbody>
</table>
Springhill environment

- Springhill site is a zero process water discharge site
 - all process water is treated through waste water treatment and returned to Sydney Water for recycling.
 - only stormwater is received into the local environment.
- Recertified to ISO 14001 April 2008.
- Current DECCW site licenses.
- DECCW recognition for make safe activities tin plating and finishing, considered benchmark
- Greenhouse gas targets are being established via benchmarking exercise.
- Water and energy intensity targets established.
- Achieving better than target on electricity energy intensity.
- Water use and intensity continues to track at record lows.
- Promote BlueScope Water products with installation of several 2 thousand litre rain water tanks.
- Continue to recycle 100% of by-product steel, solvent, HCL, with rags, gloves and oil
Port Kembla Steelworks & Springhill Analyst Site Visit

Noel Cornish
Chief Executive Australian and NZ Steel Manufacturing Businesses
September 2009