<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 9:05</td>
<td>Introduction</td>
<td>Les Marchant</td>
</tr>
<tr>
<td>9:05 – 9:10</td>
<td>WARRIP</td>
<td>Jon Griffin</td>
</tr>
<tr>
<td>9:10 – 9:35</td>
<td>Trial Planning and Mix Design</td>
<td>Willie Valenzuela</td>
</tr>
<tr>
<td>9:35 – 9:50</td>
<td>EME2 Pavement Design</td>
<td>Jon Griffin</td>
</tr>
<tr>
<td>9:50 – 10:00</td>
<td>Questions</td>
<td>All</td>
</tr>
<tr>
<td>10:00 – 10:15</td>
<td>Morning Tea Break</td>
<td></td>
</tr>
<tr>
<td>10:15 – 11:00</td>
<td>Production and Construction</td>
<td>Chris Skantzos</td>
</tr>
<tr>
<td>11:00 – 11:25</td>
<td>Conformance and Research Testing</td>
<td>Steve Halligan</td>
</tr>
<tr>
<td>11:25 – 11:35</td>
<td>What’s Next</td>
<td>Steve Halligan</td>
</tr>
<tr>
<td>11:35 – 11:50</td>
<td>Questions</td>
<td>All</td>
</tr>
<tr>
<td>11:50 – 12:00</td>
<td>Closing Remarks</td>
<td>Les Marchant</td>
</tr>
</tbody>
</table>
Program Objectives

• Conduct **leading research** of road pavements and surfacings, asset management and structures

• **Implementation** of innovative practices that reduce cost and increase rate of return

• Improve specialist **technical capability** in Western Australia

• Contribute to the body-of-knowledge and **collaboration** with other national research programs such as Austroads and NACoE
Current Program (1 of 2)

Pavement Design
• Best practice for major projects - underway
• Cost effective pavement design - underway
• Engineering Road Note 9 Update - underway
• Full-depth asphalt (FDA) temperature profiles - underway
• Asphalt fatigue at elevated temperatures - underway
• Dynamic heavy vehicle loading effects - scope development

Asset Management
• Preliminary trial of traffic speed deflectometer (TSD) - completed
• Australian National Risk Assessment Model (ANRAM) using TSD - underway
• Improved decision making using TSD data - scope development
• Best practice road asset management - scope development
Current Program (2 of 2)

Pavement Technology

- Review of future pavement technologies - completed
- **High modulus asphalt (EME2) - underway**
- Stone mastic asphalt (SMA) - underway
- Crumb-rubber modified open-graded asphalt (OGA) - underway
- Specifications & guidelines for warm-mix asphalt - underway
- Increased reclaimed asphalt pavement (RAP) utilisation - underway
- Review of Tonkin & Reid Hwy trial sections - underway
- Investigation of hydrated cement treated crushed rock base (HCTCRB) trial sections - underway
- Light-emitting lane demarcation - scope development
- Asphalt modification using Nano-technology - scope development
EME2 Workshop
Pre-trial Planning
- Mix Design
- Brisbane
- Site

Willie Valenzuela
EME2
Enrobés á Module Élevé Class 2

- EME2 = high modulus asphalt.
- Mixes are produced using a hard-paving grade bitumen applied at a higher binder content in comparison to the conventional asphalt with unmodified binders.
- High modulus asphalt allows for a significant reduction in pavement thickness.

Properties
- Stiff
- Rut resistant
- Fatigue resistant
- Moisture resistant
- Workability
EME2

Characteristics

- Low air voids content (<6%)
- High binder content (approximately 6%)
- Hard binder: penetration 10-25 pu
- Performance based design
EME2 Mix Design
Specifications Guidelines
Properties of EME2 Binder

<table>
<thead>
<tr>
<th>Method of test</th>
<th>Unit</th>
<th>Property</th>
<th>EME2 binder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>AS 2341.12</td>
<td>pu (Note 1)</td>
<td>Penetration at 25°C (100g, 5s)</td>
<td>15</td>
</tr>
<tr>
<td>AS 2341.18</td>
<td>°C</td>
<td>Softening point</td>
<td>56</td>
</tr>
<tr>
<td>AS/NZS 2341.2</td>
<td>Pa.s</td>
<td>Viscosity at 60°C (Note 2)</td>
<td>900</td>
</tr>
<tr>
<td>AS/NZS 2341.10</td>
<td>%</td>
<td>Mass change</td>
<td>-</td>
</tr>
<tr>
<td>AS/NZS 2341.10 and AS 2341.12</td>
<td>%</td>
<td>Retained penetration (Note 3)</td>
<td>55</td>
</tr>
<tr>
<td>AS/NZS 2341.10 and AS 2341.18</td>
<td>°C</td>
<td>Increase in softening point after RTFO treatment (Note 4)</td>
<td>-</td>
</tr>
<tr>
<td>AS/NZS 2341.2, AS 2341.3, AS/NZS 2341.4 or AGPT/T111</td>
<td>Pa.s</td>
<td>Viscosity at 135°C</td>
<td>0.6</td>
</tr>
<tr>
<td>AS 2341.8</td>
<td>% mass</td>
<td>Matter insoluble in toluene</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>Penetration index</td>
<td>Report</td>
</tr>
<tr>
<td>AS/NZS 2341.10 and AS/NZS 2341.2</td>
<td>Pa.s</td>
<td>Viscosity at 60°C after RTFO (Note 2)</td>
<td>Report</td>
</tr>
<tr>
<td>AS/NZ 2341.10 and AS/NZS 2341.2</td>
<td>%</td>
<td>Viscosity at 60°C, percentage of original after RTFO treatment</td>
<td>Report</td>
</tr>
</tbody>
</table>
Aggregate Properties

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirement</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Abrasion value</td>
<td>35% maximum</td>
<td>WA220.1</td>
</tr>
<tr>
<td>Flakiness Index</td>
<td>25% maximum</td>
<td>WA 216.1</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>2% maximum</td>
<td>AS 1141.6.1</td>
</tr>
<tr>
<td>Wet strength</td>
<td>100 kN minimum</td>
<td>AS 1141.22</td>
</tr>
<tr>
<td>Wet/dry strength variation</td>
<td>35% maximum</td>
<td>AS1141.22</td>
</tr>
<tr>
<td>Degradation Factor</td>
<td>50% minimum</td>
<td>AS 1141.25.2</td>
</tr>
<tr>
<td>Petrographic examination</td>
<td>Statement of suitability for use as an asphalt aggregate</td>
<td></td>
</tr>
</tbody>
</table>
Requirements of the combined filler

<table>
<thead>
<tr>
<th>Method of test</th>
<th>Unit</th>
<th>Property</th>
<th>Mineral filler</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 1141.17</td>
<td>%</td>
<td>Voids in dry compacted filler</td>
<td>Min: 28, Max: 45</td>
</tr>
<tr>
<td>EN 13179–1: 2000 (Note2) and AS 2341.18</td>
<td>°C</td>
<td>Delta ring and ball (Note 1)</td>
<td>Min: 8, Max: 16</td>
</tr>
</tbody>
</table>
Mix design criteria of EME2

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air voids in specimens compacted by gyratory compactor at 100 cycles</td>
<td>–</td>
<td>6.0%</td>
</tr>
<tr>
<td>Stripping potential of asphalt – tensile strength ratio</td>
<td>80%</td>
<td>–</td>
</tr>
<tr>
<td>Wheel tracking at 60°C and 30,000 cycles (60,000 passes)</td>
<td>–</td>
<td>4.0mm</td>
</tr>
<tr>
<td>Wheel tracking at 60°C and 5,000 cycles (10,000 passes)</td>
<td>-</td>
<td>2.0mm</td>
</tr>
<tr>
<td>Flexural stiffness at 50 ± 3 με, 15°C and 10 Hz</td>
<td>14,000MPa</td>
<td>–</td>
</tr>
<tr>
<td>Fatigue resistance at 20°C, 10 Hz and 1 million cycles</td>
<td>150 με</td>
<td>–</td>
</tr>
<tr>
<td>Richness modulus</td>
<td>3.4</td>
<td>–</td>
</tr>
</tbody>
</table>

Specimens shall be compacted to an air void content of 1.5 – 4.5% (SDD)
EME2 Mix Design Process

- Resilient Modulus
- Tensile Strength Ratio
- Fatigue Resistance
- Wheel tracking

Flexural Stiffness
EME2 Wheel tracking results

Proportional rut depth (%) vs. Number of passes/cycles
EME2 Modulus Master Curve

\[E^* \text{ [MPa]} \]

\[\text{Frequency [Hz]} \]
EME2 Mix Design Validation

Properties to be tested by European Laboratory

<table>
<thead>
<tr>
<th>Property</th>
<th>Test method</th>
<th>Note</th>
<th>Limit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air voids in specimens compacted by gyratory compactor at 100 gyratory cycles</td>
<td>EN 12697-31</td>
<td></td>
<td>Maximum</td>
<td>6%</td>
</tr>
<tr>
<td>Water sensitivity</td>
<td>EN 12697-12</td>
<td></td>
<td>Minimum</td>
<td>70%</td>
</tr>
<tr>
<td>Wheel tracking at 60 °C and 30 000 cycles(^{(1)})</td>
<td>EN 12697-22</td>
<td>Large size device, 2 slabs</td>
<td>Maximum</td>
<td>7.5%</td>
</tr>
<tr>
<td>Minimum stiffness modulus at 15 °C and 10 Hz(^{(1)})</td>
<td>EN 12697-26 Method A</td>
<td>Two point bending trapezoidal specimens</td>
<td>Minimum</td>
<td>14 000 MPa</td>
</tr>
<tr>
<td>Fatigue resistance at 10 °C, 25 Hz and 10(^6) cycles(^{(1)})</td>
<td>EN 12697-24 Method A</td>
<td>Two point bending trapezoidal specimens 3 strain levels, 6 specimens for each strain level</td>
<td>Minimum</td>
<td>130 με</td>
</tr>
</tbody>
</table>

Specimens shall be compacted to an air void content of 3–6% (mensuration).
EME2 Brisbane Trial - March 2017

Location
EME2 mix was placed on Gateway North on the Brisbane outskirts.

Pavement Composition
- 160 mm thick layer of unbound granular material treated with a cementitious stabilising agent. Sealed with CRS 60 emulsion with 10 mm aggregate.
- EME2 base layer design thickness was 110 mm. Placed in one layer on top of the working platform seal.

Mix Design
- EME2 trial mix design was prepared by Boral and verified by TMR.
EME2 Brisbane Trial
EME2 Brisbane Trial

Full Pavement Thickness

- Subgrade (design CBR 7%)
- 160mm improved layer unbound granular material
- 10mm Primer seal
- 110mm EME2 asphalt (placed in 1 layer)
- 50mm DG14HS asphalt
- Seal 10mm PMB
- 50mm SMA 14 asphalt

Production

- EME2 mix production: 100 tonnes per hour, with a total of approximately 700 tonnes with a production temperature between 180º C and 190ºC.
- Paving took place in a northbound direction in one single layer.
EME2 Brisbane Trial

Placement

• A material transfer vehicle (MTV) was used to received the asphalt mix from the trucks and remix it before depositing it into the hopper of the paver.

• Advantages of using an MTV include:
 – Prevents trucks from bumping the paver resulting in an uneven compacted surface.
 – Increasing the material buffer available to the paving operation, which could improve the continuity of the paving process.
 – Remixing the material preventing heat segregation and therefore, improving homogeneity of compaction.
EME2 Brisbane Trial
EME2 Brisbane Trial

• During the trial several different tests were performed to ensure quality control. TMR mix requirements for daily routine of testing consist of four test:
 • Particle size distribution
 • Binder content
 • Maximum density
 • Compaction tests
EME2 Brisbane Trial

EME2 Finished Surface
EME2 Brisbane Trial

Learned Knowledge

- For any project, additional emphasis should be placed on the importance of not exceeding the maximum production temperature of 190°C.
- EME2 is a mix with a high dust percentage (±40%) therefore extreme care should be taken with the dust moisture content as this could affect achieving the desired production temperature. A good practice should cover the dust especially during the wet season.
EME2 Perth Trial Location

- EME2 mix was placed on the new southbound right turn pocket on Tonkin Highway with Kelvin Road Orange Grove WA 6109. The geographic coordinates for the trial section are: 32°01’46.4”S 116°00’22.1”E.
EME2 Perth Trial Location
EME2 Perth Trial Location
Thank you
EME2 Pre-trial Pavement Design

- Pavement design concepts
- High modulus asphalt (EME2)
- Performance-based asphalt design
- Interim design approach
Pavement Design Concepts

- Minimise subgrade vertical compressive stress/strain
- Limit horizontal tensile strain in bound layers
- Manage the development of horizontal shear stress

Source: Du, Shen & Cross (2008)
Pavement Design Concepts

- Material modulus
- Layer thickness
High Modulus Asphalt (EME2)

- Enrobés à module élevé “asphalt with an elevated modulus”
- French technology developed in mid-1970s
- High performance structural asphalt for heavy-duty pavements
- High rut resistance → incorporates hard grade bitumen
- High fatigue resistance → richness modulus > 3.4
Performance-based Asphalt Design

- Mechanistic structural design approach incorporating mix specific characteristics

Source: Dupuy (2017)
Performance-based Asphalt Design

• Mechanistic structural design approach incorporating mix specific characteristics

<table>
<thead>
<tr>
<th>Performance Characteristic</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air voids in specimens compacted by gyratory compactor at 100 cycles</td>
<td>AS/NZS 2891.8</td>
</tr>
<tr>
<td>Stripping potential of asphalt – tensile strength ratio</td>
<td>AG:PT/T232</td>
</tr>
<tr>
<td>Wheel tracking at 60°C and 30,000 cycles (60,000 passes)</td>
<td>AG:PT/231</td>
</tr>
<tr>
<td>Wheel tracking at 60°C and 5,000 cycles (10,000 passes)</td>
<td>AG:PT/231</td>
</tr>
<tr>
<td>Flexural stiffness at 50 ± 3 µε, 15°C and 10 Hz</td>
<td>AG:PT/T274</td>
</tr>
<tr>
<td>Fatigue resistance at 20°C, 10 Hz and 1 million cycles</td>
<td>AG:PT/T274</td>
</tr>
<tr>
<td>Richness modulus</td>
<td>ERN13 (draft) Section 4</td>
</tr>
</tbody>
</table>
Interim Design Approach

• Compatible with existing Austroads mechanistic design procedure

<table>
<thead>
<tr>
<th>Design speed (kph)</th>
<th>WMA PT (°C)</th>
<th>Binder Volume (%)</th>
<th>Design Modulus (MPa)</th>
<th>Parameter - k</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>29</td>
<td>13.5</td>
<td>5 500</td>
<td>3921</td>
</tr>
<tr>
<td>80</td>
<td>29</td>
<td>13.5</td>
<td>5 300</td>
<td>3989</td>
</tr>
<tr>
<td>60</td>
<td>29</td>
<td>13.5</td>
<td>4 800</td>
<td>4134</td>
</tr>
<tr>
<td>50</td>
<td>29</td>
<td>13.5</td>
<td>4 500</td>
<td>4231</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>13.5</td>
<td>3 800</td>
<td>4496</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>13.5</td>
<td>2 500</td>
<td>5228</td>
</tr>
<tr>
<td>Site Conditions</td>
<td>Design Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMAPT (°C)</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design traffic (ESA)</td>
<td>3.8 * 10^7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy vehicle speed (kph)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR5/ESA</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Subgrade CBR (%)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR7/ESA</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design period (years)</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability (%)</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wearing course</th>
<th>14 mm intersection mix</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterproofing seal</td>
<td>14 mm intermediate</td>
<td>50</td>
</tr>
<tr>
<td>Wearing course</td>
<td>14 mm intersection mix</td>
<td>50</td>
</tr>
<tr>
<td>Base course</td>
<td>20 mm intermediate</td>
<td>220</td>
</tr>
<tr>
<td>Subbase</td>
<td>Limestone</td>
<td>150</td>
</tr>
<tr>
<td>Subgrade</td>
<td>Sand</td>
<td>∞</td>
</tr>
</tbody>
</table>

- Traditional pavement = 460 mm
- High modulus pavement = 410 mm
<table>
<thead>
<tr>
<th>Site Conditions</th>
<th>Design Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMAPI (°C)</td>
<td>29</td>
</tr>
<tr>
<td>Design traffic (ESA)</td>
<td>1.3 * 10^8</td>
</tr>
<tr>
<td>Heavy vehicle speed (kph)</td>
<td>80</td>
</tr>
<tr>
<td>SAR5/ESA</td>
<td>1.13</td>
</tr>
<tr>
<td>Design Subgrade CBR (%)</td>
<td>12</td>
</tr>
<tr>
<td>SAR7/ESA</td>
<td>1.64</td>
</tr>
<tr>
<td>Design period (years)</td>
<td>40</td>
</tr>
<tr>
<td>Reliability (%)</td>
<td>95</td>
</tr>
</tbody>
</table>

Wearing course	
10 mm open grade	30
10 mm dense grade	40

Waterproofing seal	Wearing course
14 mm intermediate	50
20 mm intermediate	190

Base course	
14 mm EME2	185
Subbase	
Limestone	150

| Subgrade | |
| Sand | ∞ |

Traditional pavement = 460 mm
High modulus pavement = 405 mm
References

- Main Roads Western Australia, Draft, *High Modulus Asphalt (EME2) Mix Design*, Engineering Road Note 13, Government of Western Australia.
EME2 Workshop
Production and Construction of EME2 Trial
Mix Details

• Enrobés à Module Élevé Class 2 (EME2)
• Produced : Downer Asphalt Plant - Gosnells
• Aggregate : Holcim Granite to Specification 511- Gosnells
• Bitumen : SAMI – Produced in Brisbane 15/25 Pen
• A Production and Placement trial only
• Tonkin/Kelvin Intersection Turning Pockets
Plant Production

• Just like a Normal Asphalt mix with tighter controls
 Heating of binder lines prior to 15/20 Pen
 – Extended preheating and extended shutdown times
 – Running mix with other binder or aggregates to heat plant
 – Production rate comfortable at 75% max production (100 t/h)
 – Batching temperature in Draft Specification 514
 tolerance ranging between 175°C-190°C
Plant Production

- 3 semi trailers of 15/25 Pen for the yard trial and 2 days site trial
- 0.3% adhesion agent for trial production at SAMI
- Direct feed of binder from tankers to plant
Plant Sampling - Bitumen

- Very important for EME2 asphalt
- 2 sample increments for 100 ton yard trial
- 3 sample increments per day per tanker, targeted at:
 - 5000 L
 - 10000 L
 - 15000 L
- On transfer during production
Plant Sampling - Asphalt

- Production testing
 - PSD
 - Binder Content
 - Max Density, and
 - Production Moisture

- No laboratory compaction testing...yes not even Marshalls
Plant Sampling - Asphalt

- Bulk Sample for performance testing off site
 - Workability - 100 cycle gyratory
 - Tensile Stripping Ratio
 - Resilient Modulus
 - Wheel Tracking
 - Flexural Stiffness @15°C (Beam Modulus)
 - Beam Fatigue Testing
 - Hamburg Wheel Tracker Testing
Transportation

Pros

• Under 6.0km from the Downer Asphalt Yard exit to Site
• Low amount of heat loss
 – Covered trucks
 – Short distance
 – Good climatic conditions
Transportation

Cons

• Waiting for trucks
 – Close Distance
 – Direct Blending
 – Improved day 2 with additional trucks
Subbase

- Subbase Levels were good and in Specification
Subbase

- Subbase quality was variable
 - Spalled areas
 - Late cutting
- Not Primed
 - Binder Logistics
 - Rain
 - Dryback
 - WE WANT PRIMED SUBBASE!!
Construction

- 26 and 27 of April 2017
- 26.1°C and 26.7°C days, low wind, sunny, no rain
- 2 layers of 14mm EME2
- 210mm thick (2@105mm)
- 2 x 3.5m wide turning pockets
- One edge against existing basecourse
- One side unconfined
- One hot joint
- 100t yard trial, 1000t over 2 days.
Expertise

- French
 - Monsieur Pierrick Dupuy
 - Reunion Island
 - Had no issues with our processes
- Downer Infrastructure Services
 - Eric Clauss
 - Project Manager
 - EME2 experience
Placement

- Paver tamper set to medium
- Preheating of screed
- Bulking factor 25% loose
Mix Temperature

• Mix in truck at plant
 – Within Draft Specification 514
 – Probe - 169°C – 183°C
• Mix Delivery to site
 – Within Draft Specification 514
 – Probe - 162°C – 180°C
• Back of Paver
 – Infrared - Typically 135°C-155°C
 – Probe Internal – Typically 150°C+
Mix Temperature
Compaction

- Order of rollers
 - Steel Drum,
 - 9 ton, 2 passes static, 3 passes medium vibe
 - Multi rubber tyre
 - 14 ton, 4-6 passes
 - Steel Drum
 - 7 ton, 4 static passes
Compaction

- Rollers as close to paver as possible
- Overlapping of all 3 rollers
Compaction

- Indent from first roller pass
Compaction

- Marks from Rollers
Joints

- Critical for EME2 asphalt
- Cutting, and Pressing of Joints
- Tacking joint edge
- Overlapping joint
- Butting up, rolling and pressing of joints not throwing mix
Joints

- Cut
Joints

- Cut
- Clean
Joints

- Cut
- Clean, and
- Press
Joint Overlapping

• 2 Techniques
 – “Standard Practice” racking and flicking edge
 – Butting up, rolling and pressing of joints
Joint Overlapping
Compacting Joints

- Overhang one steel roller
- Compact over rolled joint
Joint Temperature
Finished Joints

What Joint???????????
EME2 Levels

EME2 Layer 1 (LR1 & LR2)

EME2 Layer 2 (LR1 & LR2)
Surface Finish

- Similar to a 10mm DGA
Surface Finish

- Flush patches
- No issue
Tack coating

- Didn’t meet requirements of Specification
 - Streaking/tram tracked
 - Not even
 - Applied with works truck
- Has been rectified and truck now sprays evenly
Density Testing

• Conformance - Cores to AS2891.2
• Standard Specification 201 frequency
• Research - Nuclear Thin Layer Gauge
• Site compaction Indication – Downer Pavement Quality Indicator
Wearing course

- No Seal
- Tack coated
- 50mm of 14mm Intersection Mix with A15E PMB
Lessons Learnt

• Just Like Normal Asphalt
• Vertical tank for Binder
• Pickup grid should occur more frequent for levelling software (5m)
• Increase of loose bulking factor
• Tight compaction train
• Rollers Overlapping
• Temperature control of whole process
• Coring next day
Lessons Learnt

- Rollers off if too hot and mobile
- Roller tyres to be wet
- Don’t leave roller stationary on mat
- Multi to have skirts
- Joints are critical
 - Offset roller so one drum is overhanging unsupported edge
 - Cutting of joints as per Specification 510/Draft Specification 514
 - Overlapping of joints as per Specification 510/Draft Specification 514,
 - Butting up, rolling and pressing of joints not throwing mix
Thanks

- Downer
- SAMI
- ARRB
- Main Roads Laboratory Staff
- Main Roads Contract team on Tonkin/Kelvin
- Pierrick Dupuy
- WBHO
Questions

• Please have a think and ask any questions at the end of all presentations
EME2 Workshop
Binder, Mix and In-situ Properties of EME2
<table>
<thead>
<tr>
<th>Property</th>
<th>Variation from Target</th>
<th>Property</th>
<th>Variation from Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder Content</td>
<td>- 0.1 to +0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSD Passing 13.2</td>
<td>- 3 to +1</td>
<td>PSD Passing 13.2</td>
<td>-1 to +2</td>
</tr>
<tr>
<td>9.5</td>
<td>- 6 to +1</td>
<td>0.6</td>
<td>-0.9 to +1.7</td>
</tr>
<tr>
<td>6.7</td>
<td>-5 to +6</td>
<td>0.3</td>
<td>-0.6 to +1.7</td>
</tr>
<tr>
<td>4.75</td>
<td>-5 to +3</td>
<td>0.15</td>
<td>-0.7 to +1.1</td>
</tr>
<tr>
<td>2.36</td>
<td>-2 to +3</td>
<td>0.075</td>
<td>-0.7 to +0.8</td>
</tr>
</tbody>
</table>
Mix Properties #2

- Particle Coating 100%
- Moisture Content 0% and 0.1%
- Maximum Density 2.483 to 2.499 t/m³
- Air Voids after 100 cycles gyratory compactor were 3.0% and 3.2% (Limit ≤ 6.0%)
Binder Samples #1

- Pre-trial 12/4 - 2 samples, 1 full test
- Trial 26/4 – 6 samples, 3 full tests
- Trial 27/4 – 6 samples, 3 full tests
Binder Samples #2

<table>
<thead>
<tr>
<th>Date</th>
<th>V60</th>
<th>V135</th>
<th>Pen</th>
<th>SP</th>
<th>V60 after RTFO</th>
<th>SP after RTFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/4</td>
<td>14781</td>
<td>2.69</td>
<td>18</td>
<td>73</td>
<td>47924</td>
<td>78.5</td>
</tr>
<tr>
<td>26/4 am</td>
<td>11019</td>
<td>2.52</td>
<td>19</td>
<td>71</td>
<td>40549</td>
<td>77.5</td>
</tr>
<tr>
<td>26/4 pm</td>
<td>10477</td>
<td>2.45</td>
<td>20</td>
<td>71</td>
<td>44074</td>
<td>78</td>
</tr>
<tr>
<td>27/4 am</td>
<td>10025</td>
<td>2.31</td>
<td>19</td>
<td>70.5</td>
<td>34444</td>
<td>76.5</td>
</tr>
<tr>
<td>27/4 pm</td>
<td>5802</td>
<td>1.87</td>
<td>22</td>
<td>67.5</td>
<td>34827</td>
<td>77</td>
</tr>
</tbody>
</table>
Filler

<table>
<thead>
<tr>
<th>Property</th>
<th>Results</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voids in dry compacted filler</td>
<td>33 %</td>
<td>28 – 45</td>
</tr>
<tr>
<td>Softening point supplied bitumen</td>
<td>72.5 °C</td>
<td>56 - 72</td>
</tr>
<tr>
<td>Softening point mastic (bitumen + filler)</td>
<td>76.0 °C</td>
<td></td>
</tr>
<tr>
<td>Delta ring & ball</td>
<td>3.5</td>
<td>8 - 16</td>
</tr>
</tbody>
</table>
In-situ Properties

Air Voids % Layer 1

| Layer 1 | 2.7 | 3.7 |

Air Voids %
In-situ Properties

Air Voids % Layer 2

Air Voids %

Layer 2

- In-situ Air Voids %

4.1

3.3

- Graph showing in-situ air voids for Layer 2 with values 4.1 and 3.3.
Voids Top and Bottom Half - Layer 2

Air Voids % Top Half

Air Voids % Bottom Half
Performance Tests – Moisture Sensitivity

Average Tensile Strength - Pretrial

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>1250</td>
</tr>
<tr>
<td>Wet</td>
<td>1375</td>
</tr>
</tbody>
</table>
Performance Tests – Moisture Sensitivity

Average Strength - Day 1

Dry: 1462
Wet: 1465.5
Performance Tests – Moisture Sensitivity

Average Strength - Day 2

Tensile Strength

Dry Wet
Rutting Data

<table>
<thead>
<tr>
<th></th>
<th>10,000 Passes</th>
<th>60,000 Passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Limit</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Specimen 1</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Specimen 2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Stiffness vs Voids

Siffness Modulus vs Air Voids by SSD

$R^2 = 0.9957$
Fatigue Resistance at 20°C

\[y = 1167x^{-0.135} \]

\[R^2 = 0.899 \]
Lessons

- Handling and Storage of binder
- Construction of Joints
- Specification of Stiffness
- Measurement of Filler Stiffness
Northlink Stage 1

As per SWTC

<table>
<thead>
<tr>
<th>30mm</th>
<th>40mm</th>
<th>50mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGA</td>
<td>10 DGA</td>
<td>14 DGA</td>
</tr>
<tr>
<td></td>
<td>20 DGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>190mm</td>
<td>145mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>185mm</td>
</tr>
</tbody>
</table>

Section

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bridge 1770 Northern abutment
<table>
<thead>
<tr>
<th>Section</th>
<th></th>
<th>As per SWTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge 1771 South abutment</td>
<td>2700</td>
<td></td>
</tr>
</tbody>
</table>
Where Next with EME Pavements?

- Northlink Stage 2
- Kwinana Freeway widening
- Mitchell Freeway widening
- Roe Hwy / Kalamunda
- Specification and Design
EME2 Workshop

QUESTIONS

AN INITIATIVE BY: