Development of Specifications and Technical Guidelines for Warm Mix Asphalt
Project Overview

• Western Australia Road Research and Innovation Program (WARRIP)

• Objective: generation/modification of specifications and technical guidance documentation to facilitate implementation of WMA by Main Roads

• Anticipated benefits:

 Environmental:
 – Lower fuel consumption
 – Lower greenhouse gas emissions
 – Reduced exposure of workers to fumes
Project Overview

Performance:

• Reduced binder aging
• More time for mixture compaction
• Improved workability and compaction

Other Anticipated Benefits:

• Longer paving season
• Reduced plant wear
Warm Mix Asphalt

• The aim of the Warm Mix Asphalt (WMA) process is to reduce the high temperatures at which traditional asphalt mixes are produced and placed without adversely affecting these properties.

• Typically, WMA is produced at temperatures that are 25-40 °C below that of Hotmix Asphalt (HMA).

• Categorized in 3 main processes
 – Using Organic additive
 – Using chemical additives
 – Direct foaming technique
Project Methodology

- Literature review
 - Related Austroads and WAPARC studies
 - National and international practices
 - Quantifiable sustainable benefits of the WMA technologies available in WA

- Review of standardised tools for comparing the sustainability of asphalt materials

- Consultation with industry (2 workshops)

- Preparation of MRWA documents (specifications and technical documents)

- Preparation of a Contract Report
Austroads Projects (TT1220, TT1454)

• Review of overseas and Australasian studies
 – emphasis on the environmental differences between WMA technology and conventional HMA technology
• Development of WMA evaluation protocol
 – provide guidance on the evaluation of specific WMA technologies and processes
• Field validation of WMA pavements
• Laboratory validation of WMA mixes
• Review of the environmental aspects of warm mix asphalt
• Review of carbon calculators
Reduction (%) in Emissions and Energy cf. HMA

<table>
<thead>
<tr>
<th>Method</th>
<th>CO</th>
<th>CO₂</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>D’Angelo (tour of Europe)</td>
<td>10-30</td>
<td>15-40</td>
<td>18-35</td>
<td>18-70</td>
<td>20-35</td>
</tr>
<tr>
<td>Zeolite (foaming)</td>
<td>62</td>
<td>*</td>
<td>83</td>
<td>30</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no reliable data</td>
<td></td>
<td>no reliable data</td>
<td></td>
</tr>
<tr>
<td>Zeolite (foaming)</td>
<td>19</td>
<td>3-18</td>
<td>18</td>
<td>6-23</td>
<td>23-30</td>
</tr>
<tr>
<td>Water injection</td>
<td>10</td>
<td>11</td>
<td>*</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no reliable data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical additive</td>
<td>63</td>
<td>45</td>
<td>81</td>
<td>58</td>
<td>30-55</td>
</tr>
<tr>
<td>Organic wax compound</td>
<td>32</td>
<td>18</td>
<td>*</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no reliable data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foam</td>
<td>8-29</td>
<td>31-35</td>
<td>25-30</td>
<td>62</td>
<td>24-35</td>
</tr>
</tbody>
</table>
Austroads WMA protocol

- Purpose: provide a guide to the evaluation of specific WMA technologies and processes
- Conduct of appropriate laboratory tests and field validation projects in order that the performance of WMA and conventional HMA can be compared
- Evaluation tool only; not a specification
- Protocol written so that, as a type of WMA is evaluated, the results can be distributed and discussed through the Austroads framework
- Expectation was that the use of the protocol would encourage road agencies to accept WMA without the need for additional testing
Components of Austroads protocol

- testing of asphalt containing additives and surfactants, both in the laboratory and during production
- testing of asphalt containing foamed bitumen (during production only)
- desirable site conditions for a field validation site
- timeframe for the evaluation
- data and information exchange

Information exchange is vital if the protocol is to be successfully implemented
Austroads Field validation criteria

• WMA and ‘control’ sites should meet a number of criteria to ensure that the evaluation can be conducted as objectively as possible (length, geometry, uniformity, etc.)

• WMA and HMA sites subject to the same traffic

• Production and placement criteria as set out in protocol
 – field compaction in line with road authority requirements/specifications
Carbon Footprint

• Several carbon calculators reviewed:
 – Australia (Sustainable Aggregates SA; RTA NSW)
 – Asphalt Pavement Embodied Carbon Tool (asPECT) (UK)
 – Environmental Sustainability of Recycled and Secondary Aggregates (ESRSA, UK)
 – CO₂ Emissions Estimator Tool (UK)
 – Greenhouse Gas Calculator (NAPA, USA)

• In the absence of sufficient Australian-based emissions factors, it is premature to recommend a carbon calculation system for inclusion into the WMA evaluation protocol

• Further work needed which focuses on local data collection
Summary Austroads Projects

- Laboratory testing conducted in line with draft Protocol
 - Protocol too demanding in terms of what can be practically achieved
- Performance of WMA and HMA pavements at validation site in Melbourne excellent after 18 months
- Monitor overseas projects (e.g. NCHRP, NCAT, UCPRC) and examine outputs in terms of possible application to Australia
- Premature to recommend a carbon calculation system for inclusion in Protocol
 - need to develop data sets to allow local carbon dioxide emissions factors for the main components of road construction
WAPARC Project – Conclusions

- No perceived risks with the use of granite aggregates
- Moisture sensitivity in Sasobit®-WMA can be an issue if plant operators rush the drying of aggregates, especially in drum plants.
- Literature indicates that the performance of WMA pavements is at least equivalent to that of HMA – no immediate need for accelerated pavement test in Australia.
- Still concern regarding long-term performance: focus on moisture susceptibility, rut resistance and durability.
- Once available, outputs of NCHRP projects and relevance to Australian conditions to be reviewed.
- Risks associated with moisture require monitoring as part of QA procedures as well as moisture sensitivity testing and possibly the use of adhesion agents or hydrated lime.
WAPARC Project – Conclusions

- Potential deficiencies in rutting resistance partly addressed by choice of binder grade.
- PMBs are well suited to production using foam technology
Recent NCHRP Studies

- Project 09-47: Engineering Properties, Emissions, and Field Performance of Warm Mix Asphalt Technologies
- Project 09-47A: Properties and Performance of WMA Technologies
- Project 09-49: Performance of WMA Technologies: Stage I – Moisture Susceptibility
- Project 09-49A: Performance of WMA Technologies: Stage II – Long-Term Field Performance
- Project 09-53: Properties of Foamed Asphalt for Warm Mix Asphalt Applications
Successful Implementation in WA

- Literature review
- Review of national and international practices
- Stakeholders to understand the motivation for the use of WMA
- Technical input from asphalt producers in the preparation of specifications and technical guidelines
- Investment in changes as required by the proposed technology
- Stakeholders to commit to proposed implementation plan and innovation
- Staged approach
Suggested Workshop Discussion Topics

• Specification of WMA
 – Separate mix registration?
 – Limits on additives and water content

• WMA Technologies
 – In Australia/elsewhere and likely to be brought to WA
 – Have these technologies been extensively used and proven?

• Aim and implementation
 – Best ways to introduce it
 – Minimum reduction temperature and maximum temperature
 – Benefits for the asphalt industry
 – Logistic considerations (distance, project size, weather, etc.)
Suggested Workshop Discussion Topics

• Risks of moving to WMA
 – Moisture susceptibility/stripping, rutting durability, other?
 – Main risks for the contractor/MRWA
 – Risks of implementation with RAP
 – WMA with PMB
 – Perceived risks with the use of granite aggregates

• Management of risks
 – Additional testing to assess moisture susceptibility
 – Additional testing to assess rutting
 – Implementation of higher quantities of RAP and WMA technologies
 – Implementation of WMA in PMB mixes
 – Lower layers
 – Initially in large construction contracts in Perth and not resurfacing maintenance or small contracts