The Australian Government is delivering Inland Rail through the Australian Rail Track Corporation (ARTC), in partnership with the private sector.
INLAND RAIL

Transforming the way we move freight around the country
WHY INLAND RAIL?

- Generate $16 Billion in additional economic benefits
- Create 16,000 direct and indirect jobs
- Make the nation safer and more efficient by removing +200,000 trucks from the road by 2050
- Help reduce congestion on the main arteries to our capital cities
- Provide the backbone for a world-class supply chain
- Help meet Australia’s freight challenge
NATIONAL AND STATE BENEFITS

GDP/GSP BOOST

- NATIONAL: $16+ Billion
- QUEENSLAND: $7.2 Billion
- NEW SOUTH WALES: $2.6 Billion
- VICTORIA: $7.0 Billion

JOBS

- QUEENSLAND: 7,200
- NEW SOUTH WALES: 5,000
- VICTORIA: 2,800
- NATIONAL: 15,000
Approximately 300km of Inland Rail is in Victoria – almost 20% of the total length from Melbourne to Brisbane (1700km)

Boost to the Victorian Gross State Product by $7 billion – benefiting residents living in cities and in regional Victoria. Reflects the fact Victoria is the origin or destination of virtually all the interstate freight which will be carried on Inland Rail
The Melbourne region will gain the greatest economic benefit given its relative importance to the state economy. The increases in Gross Regional Product resulting from Inland Rail is estimated as follows, by region:
MEETING AUSTRALIA’S FREIGHT CHALLENGE
Brisbane to Melbourne, Adelaide and Perth corridors

Inland Rail is about more than modal shift
Inland Rail will also grow total freight capacity

- 6.7 mt (2015)
- 10.5 mt (2030)
- 17.9 mt (2050)

16.7 mt
MOVING FREIGHT WITHOUT INLAND RAIL

- **2015**
 - ROAD: 70%
 - RAIL: 30%

- **2030**
 - ROAD: 63%
 - RAIL: 37%

- **2050**
 - ROAD: 58%
 - RAIL: 42%
MOVING FREIGHT WITH INLAND RAIL

2015
- ROAD: 70%
- RAIL: 30%

2030
- ROAD: 46%
- RAIL: 54%

2050
- ROAD: 38%
- RAIL: 62%
WHAT TYPE OF FREIGHT ARE WE MOVING?

- **Coal and Minerals**: 25%
- **Agriculture**: 9%
- **Intercapital**: 66%

2050 Net Tonne Kilometres
OUR VISION FOR INLAND RAIL

- CONNECTED
- FAST
 - Straight and flat
- RELIABLE
 - 98%
- COST EFFECTIVE

NOW 33hrs
FUTURE <24 MELBOURNE TO BRISBANE

Safer, less congested roads

COST REDUCTION COMPARED TO ROAD (2025)

35%
HOW WE’RE DELIVERING OUR VISION

WITH SUPPORT FROM GOVERNMENT
$9.3bn commitment

IN PARTNERSHIP WITH THE PRIVATE SECTOR

HAND-IN-HAND WITH THE COMMUNITY
NETWORK ENGAGEMENT LOCAL SUPPORT JOBS
INLAND RAIL DEVELOPMENT PROCESS OVERVIEW

Is Inland Rail feasible?
- need and demand for Inland Rail
- broad alignment options considered

Output
- 2006 North South Rail Corridor Study
- 2010 Inland Rail Alignment Study Report
- 2013 Federal Budget $300m to fund development work

Should Inland Rail be a national priority?
- need and demand for Inland Rail
- focused alignment options

Output
- 2015 Inland Rail Implementation Group Report
- 2015 Inland Rail Business Case
- 2015 Infrastructure Australia Priority Project

Is Inland Rail affordable?
- appropriate funding mechanisms
- $16b GDP benefit from Inland Rail

Output
- 2016 Federal Budget $594m for land acquisition and pre-construction activities
- 2017 Federal Budget $8.4b equity to ARTC to deliver Inland Rail
- PPP Delivery model for three sections in QLD

ARTC SELECTED BY AUSTRALIAN GOVERNMENT AS INLAND RAIL DELIVERY AGENCY

Inland Rail Programme Phases

Concept
- 2015 Inland Rail Base Case Alignment
- 2015 Inland Rail Service Offering

Feasibility
- Project design and rail corridor determination
- Environment Impact Statements and other project approval documents

Implementation
- Construction
 - Materials and services procurement
 - Jobs creation
 - Economic benefits
- Supply chain benefits and reduced freight cost
- Enhanced rail connectivity and interoperability
- 200 000 less freight trucks p.a. from 2050
- Stronger GDP and GSP growth

Operation

Landowner and Stakeholder Consultation
2006 – North – South Rail Corridor Study –

- East?
- West?
- Central?

CORRIDOR SELECTION

Responsible Federal Minister
Hon Warren Truss
2010 – Inland Rail Alignment Study (IRAS)

Responsible Federal Minister
Hon Anthony Albanese
Key question
what is the best combination of existing (brownfield) and new (greenfield) corridors?
Endorsed the IRAS alignment

Infrastructure Australia endorsed the ARTC Inland Rail Business Case (May 2015)

Inland Rail declared a priority infrastructure project

KEY FINDINGS
IRIG 2015

Endorsed the IRAS alignment

Infrastructure Australia endorsed the ARTC Inland Rail Business Case (May 2015)

Inland Rail declared a priority infrastructure project

Inland Rail Implementation Group (2015)
CONNECTED SUPPLY CHAIN BACKBONE
POTENTIAL REGIONAL FREIGHT VOLUMES – VIC

Feeding from Victorian Regional Network

Benalla / Oaklands Line
[Joining Inland Rail at Benalla]

Shepparton / Tocumwal Line
This line is currently broad gauge and tonnages off the line were not included in the Inland Rail Business Case.
POTENTIAL REGIONAL FREIGHT VOLUMES – QLD

FEEDING FROM QUEENSLAND REGIONAL NETWORK

MILLMERRAN LINE
[joining Inland Rail at Inland Rail]
Grain: 150,000 tonnes
0 500K 1M Tonnes p.a.

GOODWINDI / THALLON LINE
[joining Inland Rail at Yelarbon Jn]
Grain & export containers: 500,000 tonnes
0 500K 1M Tonnes p.a.

WESTERN LINE
[joining IR near Gowrie Junction]
Cook: 6.1 mtpa
3 5 10 Metric tonnes p.a.
Grain and livestock: 303,000
Tonnes p.a.

WARWICK LINE
[joining IR at Gowrie Junction]
There is the potential for small volumes off this line.
POTENTIAL REGIONAL FREIGHT COST CHANGES

P2N PILOT STUDY

Potential freight rate cost reductions averaging $76p/t by changing from road to Inland Rail
PARTNERING WITH THE PRIVATE SECTOR TO DELIVER REGIONAL BENEFITS

GENERAL
- Intermodal/Terminals
- Workforce training and development
- New Business Ventures

NEW BUSINESS VENTURES
- Quarries
- Water Supply
- Precast Concrete
- Bus Transport
- Crane Hire
- Containers and site offices
- Survey
- Plant and equipment maintenance

P2N CURRENT
Construction contract $300m+
- Ballast/capping supply $17m
- Culverts $13m
- Turnouts $4m
- Concrete sleepers $17.5m
- Steel rail $18m
Culvert deliveries
Unclipping the old rail

Base for new culverts
Old rail taken away by train for reuse

Earthworks
FREIGHT PRECINCTS OF THE FUTURE

Freight precincts with road/rail intermodals terminals.

Likely to provide facilities for both Interstate and Import/Export container movements, facilitating port shuttles.

Co-located logistics and general freight activities provide for significant land uplift value capture, especially in metro areas.

Regional terminals scalable from modest volumes ~ 10,000 TEU pa.
The 126 km section from Toowoomba to Kagaru, including large scale tunneling, will be delivered through a Public Private Partnership (PPP).

Generally follows the protected Gowrie to Grandchester corridor and the Southern Freight Rail Corridor as per request of Queensland Government.
PPP

Bringing innovation where it is needed most

- **Cut to Fill**: 11,700,000m³
 - Cut to 10,400,000m³ fill Formation (capping) layer
 - 194,327m³

- **131 Culverts of various sizes**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**
- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**
- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**
- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**
- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**
- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**
- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**
- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**

- **131 Culverts**
- **51 bridges totalling 3.94km in length**
- **11 viaducts totalling 8.07km in length**
- **6 road over rail grade separations**
- **Active – 10, Passive – 11**
- **8.51km in length**
- **133.6km of new dual gauge track, 11 passing loops to cater for 1.8km trains**
<table>
<thead>
<tr>
<th>Project name</th>
<th>Project Status/EIS Environmental Assessment</th>
<th>Construction Start*</th>
<th>Forecast Construction Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZA</td>
<td>TBD</td>
<td>Q3 2019</td>
<td>Q1 2021</td>
</tr>
<tr>
<td>A2I</td>
<td>TBD</td>
<td>Q2 2021</td>
<td>Q4 2021</td>
</tr>
<tr>
<td>I2S</td>
<td>Q1 2020</td>
<td>Q4 2020</td>
<td>Q2 2021</td>
</tr>
<tr>
<td>S2P</td>
<td>TBD</td>
<td>Q4 2021</td>
<td>Q3 2020</td>
</tr>
<tr>
<td>P2N</td>
<td>Q4 2017</td>
<td>6 Sep 2018</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>N2N</td>
<td>Q2 2020</td>
<td>Q4 2020</td>
<td>Q4 2021</td>
</tr>
<tr>
<td>N2NS</td>
<td>Q4 2017</td>
<td>Q4 2019</td>
<td>Q4 2019</td>
</tr>
<tr>
<td>N52B</td>
<td>Q4 2019</td>
<td>Q3 2020</td>
<td>Q2 2021</td>
</tr>
<tr>
<td>B2G</td>
<td>Q4 2019</td>
<td>Q3 2020</td>
<td>Q4 2021</td>
</tr>
<tr>
<td>G2H</td>
<td>Q1 2020</td>
<td>Q4 2020</td>
<td>Q4 2021</td>
</tr>
<tr>
<td>H2C</td>
<td>Q4 2019</td>
<td>Q3 2020</td>
<td>Q3 2021</td>
</tr>
<tr>
<td>C2X</td>
<td>Q4 2019</td>
<td>Q3 2020</td>
<td>Q3 2021</td>
</tr>
<tr>
<td>K2ARB</td>
<td>Q1 2021</td>
<td>Q4 2021</td>
<td>Q1 2023</td>
</tr>
</tbody>
</table>

*Note the Quarters are in calendar years.
ARTC recognises its responsibility to deliver and operate Inland Rail with the least social impact possible, while enhancing the benefits Inland Rail will deliver to the people of Australia at both a local and national scale.
RECAP: VICTORIA MAJOR BENEFITS

Improved safety and sustainability for the community.

- Fewer heavy vehicle movements on the Hume Highway
 - Each 1800m double-stacked train on Inland Rail will replace 110 B Doubles
- Reduction in congestion and environmental costs
- Improved residential amenity flowing from diversion of freight from road to rail
RECAP: VICTORIA MAJOR BENEFITS

Improved safety and sustainability for the community.

• Safer structures where new road bridges will be delivered
 o Built to latest standards and address existing issues around blind spots and tie-ins to the road network at a number of locations

• Connecting people and businesses on the east coast to cities, regions and export ports

• Improving community linkages and connectivity
 o Works will see enhanced connectivity for pedestrians, cyclists and mobility scooter users
THANK YOU