Machine Learning Methods for Radio Host Cross-Identification with Crowdsourced Labels

Matthew Alger (ANU),
Julie Banfield (ANU/WSU),
Cheng Soon Ong (Data61/ANU),
Ivy Wong (ICRAR/UWA)

Host Galaxy Cross-Identification

- **Problem:** match radio emission to its host galaxy at other wavelengths
- **Hard:**
 - Radio emission can be extended at scales of tens of arcminutes
 - Often no clear relationship between radio emission and host galaxy

FIRSTJ023838.0+023450 at 1.4 GHz.
Image: FIRST

FIRSTJ023838.0+023450 in infrared.
Image: WISE
Host Galaxy Cross-Identification

Current approaches:

- Manual
- Crowdsourcing
- Nearest neighbours
- Bayesian methods
- Likelihood ratio

Bayesian model fit to a radio triple.
Image: ATLAS (radio), SWIRE (infrared), Fan et al. 2015
Our approach:

- Casts cross-identification as *object localisation* so we can use algorithms from computer vision
- Allows training cross-identification methods using existing cross-identification datasets
Radio Galaxy Zoo

- Crowdsourced, citizen science project
- Volunteers cross-identify radio emission from FIRST and ATLAS-CDFS with infrared host galaxies from WISE and SWIRE-CDFS
- See Ivy’s talk later this session
ATLAS-CDFS

- ~2000 sources in ATLAS DR3
- Radio Galaxy Zoo source identifications and SWIRE host cross-identifications
- ~500 sources cross-identified with SWIRE in ATLAS DR1

ATLAS observations of CDFS.
Image: ATLAS, Franzen et al. 2015
Supervised Machine Learning

- Encompasses classification, regression, and other function approximation tasks
- Promising methods for handling very large datasets
- Training requires a large set of labelled data
- Application requires converting problem into a function approximation problem
- Binary classification best understood
Machine Learning for Cross-Identification

- Allows use of Radio Galaxy Zoo data for training
- Need to convert cross-identification into a machine learning task
- First pass from computer vision:
 - Sliding window approach
 - Given an image of radio emission, classify each square patch based on whether the AGN is located there
 - Not terribly efficient
 - Binary classification!

Scanning to find the host galaxy.
Image: FIRST
Machine Learning for Cross-Identification

- Second attempt:
 - Assume host galaxies visible in infrared
 - Given an image of radio emission, classify each candidate host galaxy in that image based on whether it is the host galaxy
 - Much more efficient!
Cross-Identification with Binary Classification

(,) → 1

(,) → 0

Representation of galaxy Whether galaxy has an AGN
Cross-Identification with Binary Classification
Cross-Identification with Binary Classification

- Input radio source
- Compact? (Yes/No)
- Find nearest infrared object if Yes
- Find nearby infrared objects if No
- Classify objects
- Find highest probability object
- Host galaxy
Experimental Method

- Three classifiers:
 - Logistic regression
 - Random forests
 - Convolutional neural networks

- Labelled training data:
 - Inputs are square image cutouts centred on candidate host galaxies
 - Expert labels from ATLAS DR1
 - Crowdsourced labels from Radio Galaxy Zoo

- Split CDFS into resolved/compact sources
- Train on 75% of CDFS
- Test by comparing outputs to ATLAS DR1 on remaining 25%
Classification Accuracy on SWIRE-CDFS
Cross-Identification Accuracy on SWIRE-CDFS

Resolved Accuracy (%)

All Accuracy (%)

Expert RGZ

0 20 40 60 80 100

80 60 40 20 0

95 90 85 80 75 70

LR CNN RF
Key Assumptions

● Assumptions on search radius:
 ○ One host galaxy in radius
 ○ All radio emission from a source is contained in radius

● Assumptions on candidate host galaxies:
 ○ Host galaxies visible in infrared

● Assumptions on sliding window radius:
 ○ Information in sliding window sufficient to determine host galaxy

● We defer these problems for now
Failure Case — Multiple Hosts

- Assumption: One host galaxy in search radius
 - Search radius = 1’ (as in Radio Galaxy Zoo)
 - Assumption often broken
Failure Case — Nearby Candidate Hosts

- Hard to distinguish between nearby candidate hosts
- A prior could help resolve this issue
Failure Case — Misidentified Lobe

- Abundance of compact objects in training data bias the classifier toward bright radio lobes
- Larger datasets with more varied radio doubles would likely resolve this issue
- Larger window sizes can help (but too large provides the classifier with too many inputs)
Failure Case — Search Radius

- Search radius of 1’ too small to find all host galaxies
- ...But making the search radius too large worsens the problem of multiple hosts
Future Work

- More data for convolutional neural network training
 - Radio Galaxy Zoo-FIRST?
 - Simulations?
- Dynamically choose window sizes and search radii
- Combine computer vision methods with radio source identification methods
Summary

- We developed a machine learning approach for host galaxy cross-identification
- We trained the method on both expert cross-identifications from ATLAS DR1 and volunteer cross-identifications from Radio Galaxy Zoo
- Crowdsourcing provides a promising source of supervised machine learning training data
- Better model selection and incorporating source identification would improve accuracy