The ESA/ESOC Analysis Center Progress and Improvements

Tim Springer1, Florian Dilssner1, Volker Mayer1, Francesco Gini1, Erik Schönenmann1, Rene Zandbergen1, Werner Enderle1

1ESA/ESOC, Darmstadt, Germany

Abstract

ESA/ESOC is a very active Analysis Centre within the IGS and it is providing excellent products to the IGS. This poster presents the quality and consistency of the ESA products over the last years. Main topics that will be addressed are:

- Multi-GNSS
- Orbit Modelling
- Radiation Pressure Modelling
- ESA/ESOC GNSS Activities
- Rock model revisited
- SLR Validation

ESA/ESOC GNSS Activities

We closely monitor the quality of all our different ESA GNSS solutions to capture all unexpected events and/or overlooked side effects of model changes.

We are preforming integer ambiguity resolution for GPS, Galileo, Beidou and QZSS. This is reflected by a significant improvement of the orbit overlap statistics (plot top left).

Earlier this year the GPS system did activate its flex power ability. Although this did not affect the quality of our GPS products it did significantly affect the pseudo range observations (plot bottom left). Also some receivers failed during this event. So flex-power is something the IGS should monitor.

In the last years the several Beidou satellites have moved away from going into "orbit normal mode" during the eclipse season. They now stay in "yaw steering mode" similar to what the other GNSS systems do (plots on the right). Most recently Beidou C16 used the yaw steering mode during its most recent eclipse season.

Effect of Ambiguity Resolution (GPS and Galileo) on orbit overlap

Effect of GPS Flex-power on the pseudo range observations

Rock model revisited

We have done significant work in this area in the last years and have shown the importance of an accurate, or at least adequate, radiation pressure model for GPS, GLONASS, and Galileo in particular. Our GPS box-wing models are in principle based on the information contained in the Fliegel papers. This raises the question why the ROCK model T20 failed where the box-wing model worked?

To try and understand this we made a simple yet effective and in our opinion representative test. We used a full year of reprocessed orbits and made 3-day orbit fits using the satellite positions as pseudo observations. For each satellite the state vector and the 9 parameters of the ECM model were used. Three different solutions were generated, one using no apriori model, one using our box-wing models as apriori model, and one using the ROCK models as apriori model. ROCK T20 for the GPS block II/IA satellites and ROCK T30 for the block IIR satellites. The resulting fitted orbits were compared with each other in the radial, along- and cross-track directions. We used the results without any apriori model as reference and compared the box-wing and ROCK results to these "reference" results. We did this separately for the block II/IA and block IIR satellites. The resulting differences are shown here on the right for the radial and cross-track differences. Along-track is much less interesting.

The two plots with the red circles highlight the results for the block IIA satellites with the ROCK T20 model. They are clearly very different from the other results. Given that shape wise the block II/IA and IIR satellites are both pretty much square boxes one would expect the signature of the radiation pressure accelerations to be rather similar. For the box-wing results we can see that this is the case. But for the ROCK model results this is clearly not the case.

Our conclusion is that something went wrong in the generation of the ROCK T20 model whereas the ROCK T30 results show that the software that was used to generated the ROCK models can generate good results. We did also use the ROCK T30 model in a full year of reprocessing and the results were comparable to the box-wing results.

SLR Validation

The availability of SLR reflector arrays on most of the GNSS satellites, with the notable exclusion of GPS, allows the completely independent validation of the GNSS orbit quality by means of the SLR observations. The two plots below show the validation of our Galileo orbit estimates without box-wing (on the left) and with box-wing (on the right). The results clearly show the improvement thanks to the box-wing radiation pressure model.

Conclusions

- The ESA/ESOC Analysis Center remains fully dedicated to the IGS
- Despite 20 years of service still significant progress can be made
- Radiation pressure modelling getting more and more important as the GNSS satellites getting both larger and lighter and the area mass ratio is one of the critical issues. The other issue is the area ratio of the X and Z surfaces.
- Moving to ray-tracing technique using the ARPA software
- PhD work of F. Gini, at ESOC and Univ. Padova
- Initial models for Galileo generated
- Initial model for QZSS generated, next steps in preparation
- Also review ROCK and JPL type of models because of ease of use and in the JPL approach no need for information about the satellite

Radiation Pressure Modelling

Almost three decades ago Henric Fliegel wrote on the radiation pressure force model of the GPS satellites:

"To generate the highly precise ephemerides of Global Positioning System satellites necessary for modern geodetic applications, one must have an accurate force model that includes the pressure of solar radiation and spacecraft thermal emission"

ESA/ESOC Next Step: Ray-Tracking

We have extended our activities in this area now moving on from the relatively simple box-wing modelling to much more detailed models based on ray-tracking using the ARPA software.

None versus Rock T20 (IIA) and T30 (IIR) model

None versus Rock T20 (IIA) and T30 (IIR) model

None versus Box-wing model

None versus Box-wing model

Ray-source simulating the Sun or the Earth

Given the complex shapes of the GNSS spacecrafts we believe that the ray-tracking models should perform significantly better than the simpler but more accurate, box-wing models we have been using until now.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{fig1}
\end{figure}