Initial Orbit Determination of Third-Generation BeiDou MEO Spacecraft

F. Dilssner, T. Springer, E. Schönemann, W. Enderle
Outline

- Introduction
- Spacecraft dimensions
- Processing strategy
- Pseudorange data quality
 - Post-fit residuals, multipath metrics MP1 & MP2
- Orbit and clock estimates
 - Overlaps, SLR residuals, clock residuals, comparison to BRDC ephemeris
- Solar radiation pressure estimates
- Satellite antenna offset estimates
- Summary and conclusions
Introduction

- Built-up of third-generation BeiDou system (BDS-3) started in 2015
 - Launch of five experimental test vehicles (3 MEOs, 2 IGSOs)
 - Goal is to have 27 MEOs, 3 IGSOs, and 5 GEOs by 2020
- Build-up of operational BDS-3 constellation since 2017
 - 16 nonexperimental MEO SVs from Nov 2017 to Oct 2018
 - Launched in batches of two from Xichang in southwest China
 - Dispersed in all three orbital planes (A, B, C)
 - Built by two different manufacturers
 - 8 by China Academy of Space Technology (CAST)
 - 8 by Shanghai Engineering Center for Microsatellites (SECM)
 - Still undergoing in-orbit testing and operational evaluation
 - Transmit legacy B1 open service signal at 1561.098 MHz
 - Signal is being tracked by growing number of IGS stations
 - Motivated us to do initial orbit determination
- New SVs much lighter and less cuboid as second-generation MEOs
 - Rectangular shape with a ratio of about 2:1 for main body axes
- Estimate effect the varying cross section of the body has on SRP
 - Difference maximum minus minimum radiated area divided by mass
 - Higher for BDS-3 as for BDS-2 MEOs but still moderate compared to other GNSS SVs

<table>
<thead>
<tr>
<th>GNSS SV</th>
<th>x-panel [m²]</th>
<th>z-panel [m²]</th>
<th>A<sub>max</sub> – A<sub>min</sub> [m²]</th>
<th>m [kg]</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>QZSS-1</td>
<td>13.99</td>
<td>5.52</td>
<td>9.52</td>
<td>2000</td>
<td>5.7</td>
</tr>
<tr>
<td>Galileo FOC</td>
<td>1.32</td>
<td>3.04</td>
<td>1.99</td>
<td>700</td>
<td>3.4</td>
</tr>
<tr>
<td>GLONASS-M</td>
<td>4.20</td>
<td>1.66</td>
<td>2.86</td>
<td>1400</td>
<td>2.4</td>
</tr>
<tr>
<td>GPS-IIF</td>
<td>5.72</td>
<td>5.40</td>
<td>2.47</td>
<td>1450</td>
<td>2.0</td>
</tr>
<tr>
<td>BDS-3M SECM</td>
<td>1.24</td>
<td>2.58</td>
<td>1.62</td>
<td>1030</td>
<td>1.9</td>
</tr>
<tr>
<td>BDS-3M CAST</td>
<td>1.22</td>
<td>2.25</td>
<td>1.34</td>
<td>1014</td>
<td>1.6</td>
</tr>
<tr>
<td>BDS-2M</td>
<td>3.44</td>
<td>3.78</td>
<td>1.67</td>
<td>2000</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Processing strategy

- Processing carried out in daily batches with latest version of NAPEOS (4.2)
- 11-month period from January 1 to October 25, 2018
- Precise orbit determination (POD) solution for GPS constellation
 - Same set-up we use for our operational IGS Final processing
- Follow-up BeiDou solution to estimate satellite orbits and clocks while holding all other parameters fixed
 - Station positions, receiver clocks, troposphere, and EOPs fixed to GPS solution
 - Very simple orbit model – constant acceleration D0 in spacecraft-Sun direction plus constant tightly-constrained along-track CPR
 - First-order ionospheric delays removed by averaging the B1 phase and pseudorange observables ("GRAPHIC" method)
- Combination of daily NEQs to estimate BeiDou satellite antenna offsets
Pseudorange data quality

- Data post-fit residual RMS of less than 0.2 m
 - 40% smaller than for BDS-2 MEOs
- Compute TEQC multipath metrics MP1 & MP2
 - Use dual-frequency data from 10 IGS PolaRx5 station receivers over 10 days
 - 48% (MP1) and 26% (MP2) lower RMS values compared to BDS-2
 - No evidence for existence of elevation-dependent group delay biases
Satellite orbit and clock overlaps

- Compute day-boundary orbit and clock differences as measure for consistency
- Total RMS of 1.0 m for orbit overlaps and 0.7 m for clock overlaps
 - 0.3 m in radial, 0.9 m in transversal, and 0.3 m in cross direction
- No substantial differences in overlap statistics between CAST and SECM SVs
Comparison to broadcast ephemeris

- Different orbit reference points to be taken into account
 - ESOC orbits ⇒ center of mass (COM), BRDC orbits ⇒ antenna phase center (APC)
 - Radial differences reveal broadcast antenna z-offsets ($z_{\text{CAST}} \approx 1.3 \text{ m}$, $z_{\text{SECM}} \approx 1.1 \text{ m}$)
 - Jump on April 25, indicating transition of BRDC orbits from COM to APC coordinates
- Overall 3D-RMS agreement of 1.4 m between ESOC and BRDC orbits
SLR residuals

- SLR normal point data for 4 SVs from 18 ILRS sites
- 1-way SLR residuals as measure for radial orbit accuracy
 - Total RMS over all stations/satellites of 0.14 m
- Linear trend for CAST SVs when plotted over EPS angle
 - Shows up for both ESOC and BRDC orbits
- 1-m SLR bias wrt BRDC orbits, confirming size of APC z-offset
Satellite clock residuals

- Clock estimates after second-order fit as indicator for orbit modeling issues
- Once-per-rev signature in clock residuals of CAST SVs
 - Amplitude of up to ±0.1 m, depending on Sun elevation angle
 - Linear trend again when plotted over EPS angle, matching well with SLR residuals
 - Identifies the need for a “real” radiation model
Satellite clock residuals

- Clock estimates after second-order fit as indicator for orbit modeling issues
- Once-per-rev signature in clock residuals of CAST SVs
 - Amplitude of up to ±0.1 m, depending on Sun elevation angle
 - Linear trend again when plotted over EPS angle, matching well with SLR residuals
 - Identifies the need for a “real” radiation model
Solar radiation pressure estimates

- SRP acceleration on CAST spacecraft twice as large as on SECM spacecraft
 - Mean D0 estimate for CAST and SECM SV of -141 nm/s² and -73 nm/s², respectively
 - Indicates approximately factor two larger solar array on CAST satellite (≈ 27 m²)
 - Size of D0_{SECM} fits well to weight and solar array size of SECM SV (Xia et al. 2018)
- Variation in D0 of only 1-2 nm/s² between low and high beta angles
 - Matches quite well the expectations (see “impact” factors on slide 4)

![Daily SRP estimates for CAST–built BeiDou–3 MEOs](image1)

![Daily SRP estimates for SECM–built BeiDou–3 MEOs](image2)
Satellite antenna offset estimates

- Estimated mean offset for CAST SV of (-0.3 m, 0.0 m, 2.5 m)
 - Transmit antenna array is clearly offset in x (see mechanical drawing)
 - z-offset doubtful as it places APC almost 2 m outside the physical bounds of the SV
- Estimated mean offset for SECM SV of (0.0 m, 0.0 m, 1.3 m)
 - z-offset matches well with broadcast z-offset but less well with manufacturer value (z = 0.73 m; Xia et al. 2018)
Summary and conclusions

- First orbits and clocks for “operational” BeiDou-3 series of SVs generated
 - Very preliminary solution – single frequency data, small network, simple orbit model, no integer ambiguity fixing
 - Systematics seen in SV clock & SLR residuals are indicative of expected orbit modeling issues
- Overlaps indicate 3D orbit accuracies better than 1 m (1-sigma)
 - Radial component accurate to better than 0.2 m according to SLR
- Differences between CAST- and SECM-built spacecraft identified
 - Solar array size
 - Antenna phase center location
- Pseudoranges less noisy and w/o elevation-dependent biases
 - No need for additional group delay corrections to resolve integer ambiguities
References

- http://mgex.igs.org/IGS_MGEX_Status_BDS.php