Towards a Multi-Constellation combination

Pierre Sakic ¹, Gustavo Mansur ^{1,2}, Benjamin Männel ¹

- 1 : GFZ Deutsches GeoForschungsZentrum
 Space Geodetic Techniques Section, Potsdam, Germany
- 2 : Technische Universität Berlin, Germany

IGS AC Workshop 2019, Potsdam

Combination Software

- Combination software based on the method developed by Springer & Beutler (1993), and Kouba et al. (1994)
- The current IGS final products are GPS-only
- A strong limitation for end users who want to perform Multi-GNSS processing

 $x,y,z,\delta t$?

MGEX Analysis Centers Used

intern. ID	Name	Country	GNSS processed	1st epoch used
com	CODE	Swi./Ger.	G,R,E,C,J	w1690 (2012/05)
gbm	GFZ	Germany	G,R,E,C,J	w1777 (2014/01)
grm	GRGS/CNES/CLS	France	G,R,E	w1692 (2012/06)
jam	JAXA	Japan	G,R,J	w1945 (2017/04)
wum	Wuhan University	China	G,R,E,C,J	w1722 (2013/01)

NB: No pole alignment for some ACs

Prototype for a new combination strategy

- Developed in *Python 3*
- Based on the same theory so far
- Designed to add easily new functionalities

Further developments

- Weights according to the constellations
- Considering the different ACs' processing parameters (Orbit modeling ...) as annex weight information.
- Alignment to the ITRF based on ground station coordinates (Needs of SINEX)
- Combination of clocks

New combination software

Days

2014-08 2014-12 2015-04 2015-08

Preliminary results

cmg = Combination
Multi-GNSS

reference:

Multi-GNSS Combination produced with the official software

2015-12 2016-04 2016-08 2016-12 2017-04

Summary & Perspectives

- Orbit combination: ~30mm RMS w.r.t individual ACs
 ~10mm RMS w.r.t. IGS Final Combi.
- Can be improved with pole alignment for all ACs
- Clock combination is unstable so far
- Instabilities during recent weeks (lot of exclusions)
- A new software is under development, for an easier implementation of new features

But ...

- What is the level of "emergency"?
- Should be the result of a collective discussion

Clock offsets Combination Summary

- Step 1: Radial correction (Ferland, 1999)
- **Step 2**: Alignment to a reference AC clock
- Step 3: Combination (weighted mean)
- Step 4: Outlier detection & weight computation
 - Iterative process: back to Step 3 while there is still outliers

NB: No pole alignment for some ACs

NB: No pole alignment for some ACs

"historical" constellations

"historical" constellations

2017-02

2017-08

2016-08

Days

2015-08

2016-02

25

RMS for Orbit Combination

"New" constellations

Final Orbits RMS - Galileo Satellites 200 175 150 125 com RMS (mm) gbm 75 50 25 2017-02 2017-08 2018-02 2015-08 2016-02 2016-08 Final Orbits RMS - BeiDou Satellites 200 com 175 gbm wum 150

2016-02

2016-08 **Days** 2017-02

2017-08

125

75

50

25

RMS (mm)

RMS for Orbit Combination

"New" constellations

Orbit Combination Summary

Step 1: Alignment of each AC pole to the ITRF Combination Center one

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$ar{x} = rac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

- **Step 2 :** First unweighted combination
 - Get a mean position for each satellite & epoch
 - Perform an Helmert Transformation b/w the mean and each AC
 - Compute **weights for** each **AC & Satellite**, based on differences between mean and the Helmert-transformed AC
- **Step 3:** weighted combination
 - Compute a new mean based on the weights
 - Perform an Helmert Transformation b/w the weighted mean and each AC, using the satellite weights
 - Compute a final mean based on the 2nd Helmert-transformed AC and AC weights

