New products for IGS AC in repro3: phase biases for PPP ambiguity resolution

Jianghui GENG

GNSS Research Center, Wuhan University, China

IGS AC Workshop 2019
17 April 2019
Potsdam Germany
Motivation

- Phase biases are important to enabling highly efficient ambiguity fixing at a single station
 - They can be simply taken as the fractional parts of ambiguities
- Several ACs have been able to provide such phase bias products (COD, ESA, WHU, etc.)
 - WHU has released 13 years of such products from 2006 to 2018
- Are there anything that we should pay attention to for phase bias estimation?
 - Transition from double-difference (DD) to undifferenced (UD) ambiguity-fixed network analysis
 - Alignment with legacy/code clocks
GPS network analysis

- Network analysis strategies for clock/phase bias estimation
 - UPDs

 Network analysis → Double-difference ambiguity resolution → Undifferenced amb.
 Float clocks

 Improved UPDs

 Network analysis → Double-difference ambiguity resolution → Undifferenced amb.
 Legacy clocks

 Phase clock/bias or Integer clocks

 Network analysis → Double-difference ambiguity resolution → Identify phase biases → Undifferenced amb.
 Phase clocks

 Identify single-difference ambiguities
Comparison of phase bias estimates

- Narrow lane phase biases (cycles)

<table>
<thead>
<tr>
<th>Epochs (900s)</th>
<th>UPDs</th>
<th>Improved UPDs/clocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.35</td>
<td>-0.30</td>
</tr>
<tr>
<td>12</td>
<td>-0.25</td>
<td>-0.20</td>
</tr>
<tr>
<td>24</td>
<td>-0.20</td>
<td>-0.15</td>
</tr>
<tr>
<td>36</td>
<td>-0.15</td>
<td>-0.10</td>
</tr>
<tr>
<td>48</td>
<td>-0.10</td>
<td>-0.05</td>
</tr>
<tr>
<td>60</td>
<td>-0.05</td>
<td>-0.00</td>
</tr>
<tr>
<td>72</td>
<td>-0.00</td>
<td>-0.05</td>
</tr>
<tr>
<td>84</td>
<td>-0.05</td>
<td>-0.10</td>
</tr>
<tr>
<td>96</td>
<td>-0.10</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

UPDs Peak-to-peak variation: 0.100 cycles
Improved UPDs/clocks Peak-to-peak variation: 0.024 cycles
Phase biases/clocks
Position accuracy

- Compared to IGS weekly solutions
 - UPDs
 - Improved UPDs after DD-AR
 - Integer clocks
 - Phase clock/bias
- Ambiguity-fixed phase clocks/bias or integer clocks seem to have the best performance among all phase bias solutions
Phase clock alignment with legacy clocks

- To be compatible with IGS code biases, this alignment is necessary

![Satellite clock difference graph](image)

- Integer clock: mean = 0.3437 ns
- Phase clock: mean = 0.0012 ns
Benefits of providing phase biases

- Obtain station positions accurately connected with ITRF without network analysis
- With 10 years of GPS data (2007-2016) using PRIDE PPP-AR, comparison among IGS repro2, PPP-AR and DD-AR solutions
GRACE KBR validation

- With one year of GRACE data (2010), a KBR validation of phase bias/clock products
- Dynamic orbits:
 - Float: 6.7 mm
 - PPP-AR: 1.7 mm
 - DD-AR: 1.1 mm
- Kinematic orbits:
 - Float: 19.7 mm
 - PPP-AR: 5.0 mm
 - DD-AR: 4.2 mm
Summary

- IGS ACs are encouraged to estimate phase bias products in their repro3 network analysis for orbit and clock generation
 - SD ambiguities have to be fixed for an easy-to-use phase bias products
 - After DD-AR, identify the SD-ambiguous and phase biases in order to re-estimate satellite clocks
- Phase clock products should be aligned with code/legacy clocks in order to be compatible with IGS code biases