

Preliminary tests regarding the inclusion of Galileo in IGS repro3

Paul Rebischung

based on data provided by Florian Dilssner (ESA), Arturo Villiger (AIUB), Andreas Brack (GFZ)

Questions

Ideally, we'd like repro3:

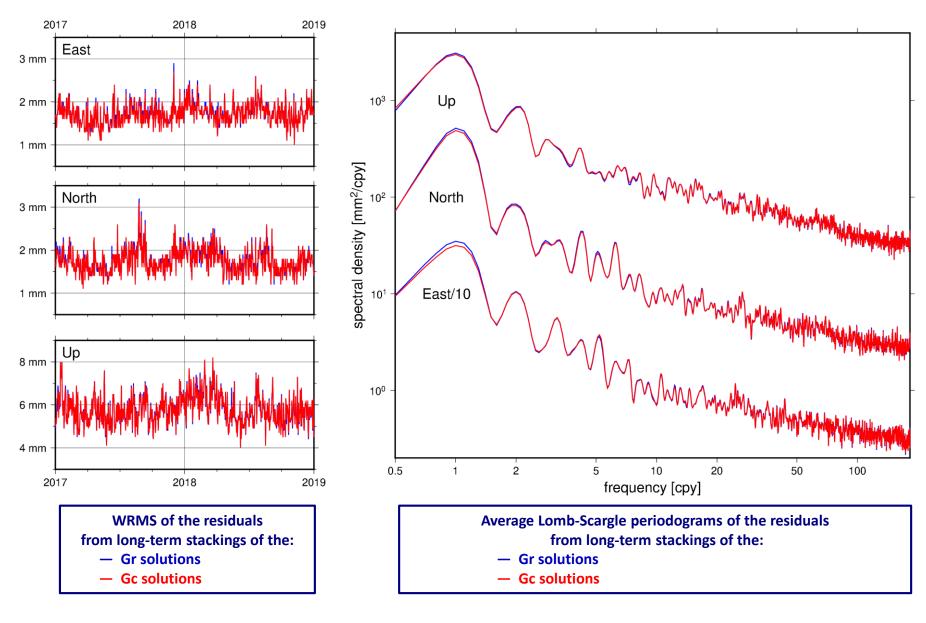
- to include Galileo
 (which currently implies switching from robot to chamber calibrations for ground antennas)
- to have its terrestrial scale based on Galileo satellite antenna calibrations
 (which implies re-estimating GPS satellite z-PCOs based on Galileo satellite z-PCOs)
- not to upset Zuheir
 (or other users of IGS station position time series)

So we need to wonder:

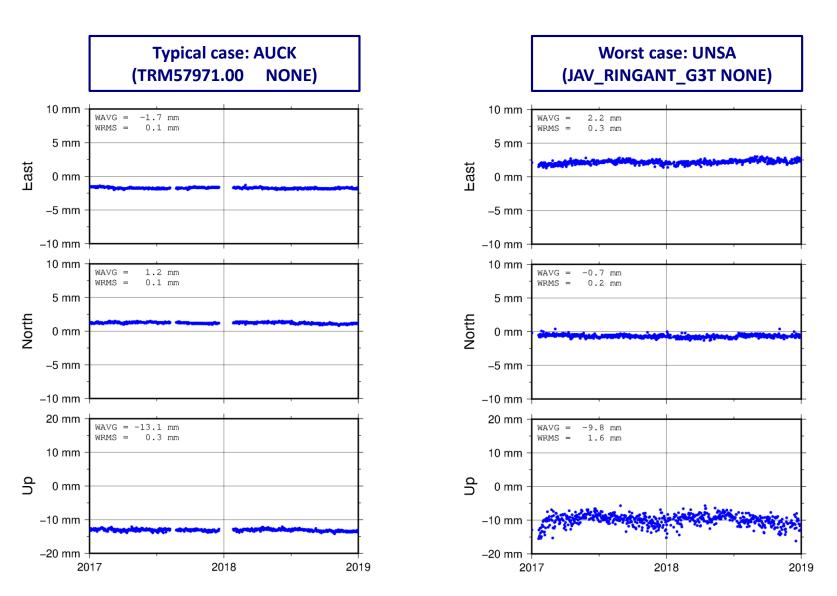
- What's the impact of switching from robot to chamber calibrations on station positions?
- What's the impact of including Galileo on station positions?
- Can we reliably re-estimate GPS satellite z-PCOs based on Galileo satellite z-PCOs?

Test dataset

 2017-2018 reprocessing by ESA (thanks!) including the following daily solutions:

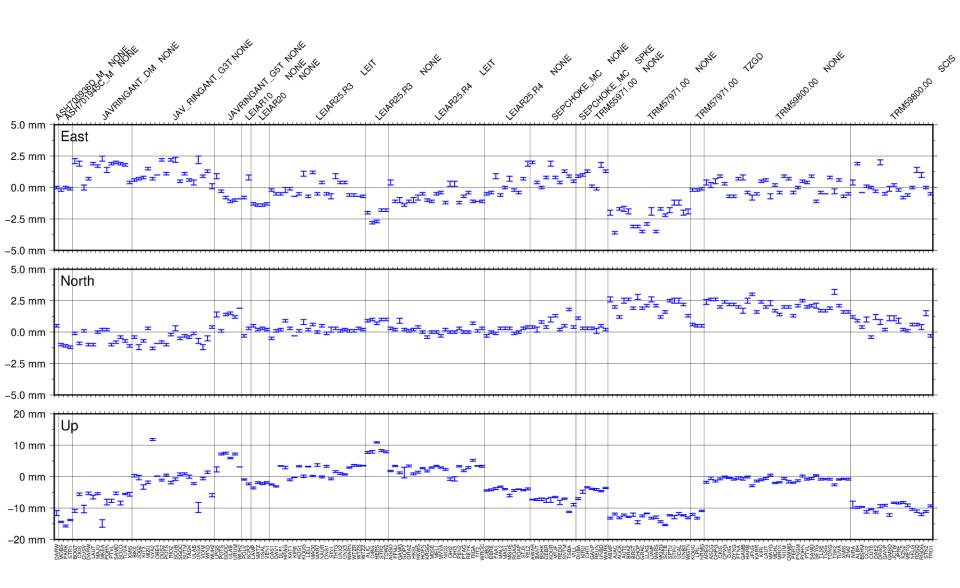

	GPS-only		Galileo-only				GPS+Galileo			
	Gr	Gc	E5r	E5c	E7r	E7c	GE5r	GE5c	GE7r	GE7c
GPS	L1+L2	L1+L2	-	-	-	-	L1+L2	L1+L2	L1+L2	L1+L2
Galileo	-	-	E1+E5a	E1+E5a	E1+E5b	E1+E5b	E1+E5a	E1+E5a	E1+E5b	E1+E5b
ground calib.	robot	cham.	robot	cham.	robot	cham.	robot	cham.	robot	cham.

- A priori satellite z-PCOs from igs14.atx, i.e.:
 - ITRF2014-scale-based for GPS satellites
- inconsistent
- from GSA calibrations for Galileo satellites
- but satellite z-PCOs included in SINEX files, hence re-estimable
- Thanks as well to CODE and GFZ for their efforts!
 - Did not have time to look at CODE's 2017-2018 repro in detail yet, but will!
 - Some unresolved issues with GFZ's 2-week sample


Part 1:

Impact of robot → chamber calibration changes on GPS-only station positions

Gc vs. Gr: long-term stacking residuals



Gc vs. Gr: station position differences

NB: The Gc and Gr solutions were differenced after having brought them to a common origin and orientation. Station position differences are thus shown up to an unknown global translation and rotation.

Gc vs. Gr: station position differences

NB: The Gc and Gr solutions were differenced after having brought them to a common origin and orientation. Station position differences are thus shown up to an unknown global translation and rotation.

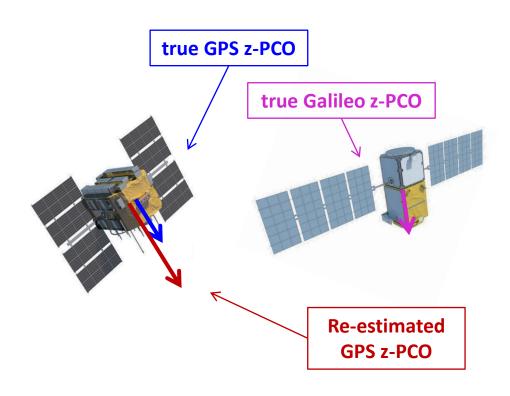
Gc vs. Gr: summary

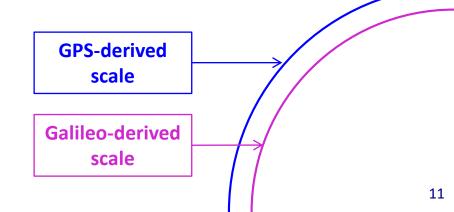
- Robot → chamber calibration changes induce:
 - large station+antenna-dependent position offsets,
 - but small time variations.
 - Similar situation as with usual robot → robot updates
- If repro3 uses chamber calibrations for ground antennas, a specific Reference Frame (IGc14) will need to be defined.
 - 1) Finalize ground antenna part of repro3 ANTEX
 - 2) Compute station+antenna-specific position offsets for IGS14 stations
 - 3) IGc14 = IGS14 + position offsets due to robot → chamber calibration changes
- Subsidiary question: Which is best? Robot or chamber?
 - Are position discontinuities due to antenna changes reduced? Amplified?
 - Are local tie residuals in ITRF combination reduced? Amplified?
 - To be investigated...

Part 2:

Can we reliably re-estimate GPS satellite z-PCOs based on Galileo satellite z-PCOs?

Re-estimation of GPS satellite z-PCOs

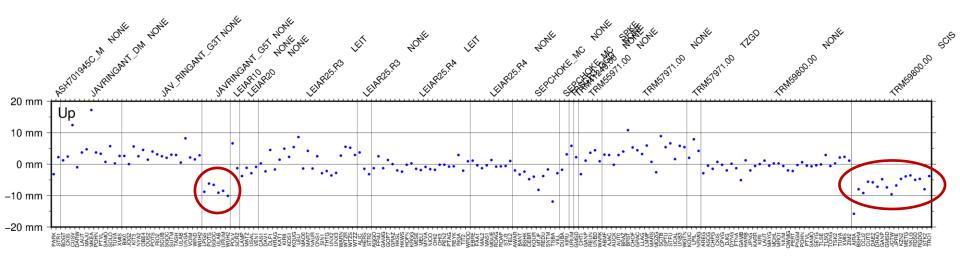

 Can we technically re-estimate GPS satellite z-PCOs based on Galileo satellite z-PCOs?


Yes:

- Take a GPS+Galileo normal equation,
- Fix Galileo satellite z-PCOs, hence the terrestrial scale,
- GPS satellite z-PCOs can be solved for.
- But doing so, we implicitly assume that the scale difference between GPS-only and Galileo-only solutions is entirely due to satellite z-PCO inconsistencies.

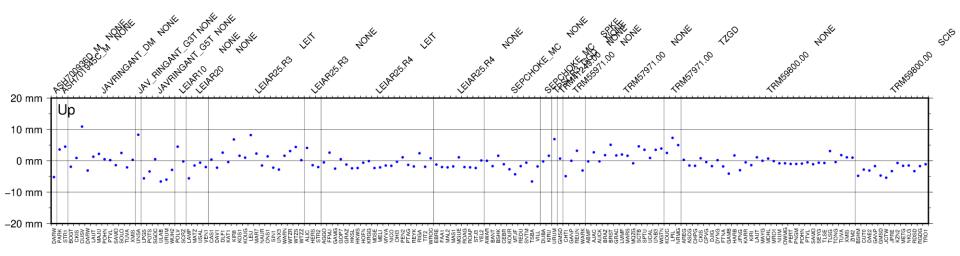
Re-estimation of GPS satellite z-PCOs

- Assume we know the true satellite z-PCOs.
- Yet, GPS-only and Galileoonly solutions yield different terrestrial scales, due to, e.g.:
 - Ground antenna calibration errors
 - Orbit modeling errors
 - ...
- Re-estimating GPS z-PCOs based on Galileo z-PCOs will:
 - Adjust GPS z-PCOs to the Galileo scale
 - Yield wrong GPS z-PCOs



Re-estimation of GPS satellite z-PCOs

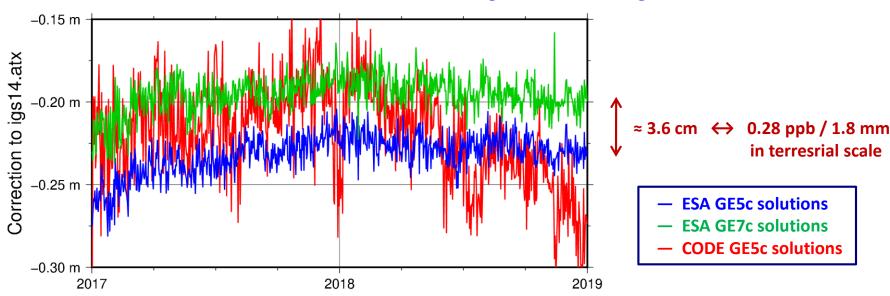
- Can we accurately re-estimate GPS satellite z-PCOs based on Galileo satellite z-PCOs?
- It all depends on whether there is no GPS/Galileo scale difference due to anything else but satellite z-PCOs, like:
 - Ground antenna calibration errors
 - Orbit modeling errors
 - ...
- How can we know?
 - Direct verification impossible: scale differences due to either satellite z-PCO inconsistencies or other causes cannot be separated
 - Look for indirect clues


E5c vs. Gc: station height differences

NB: The E5c and Gc solutions were differenced after having brought them to a common origin, orientation and scale. Station position differences are thus shown up to an unknown global translation, rotation and scale factor.

- Using chamber calibrations and E1+E5a, there are systematic biases between GPS- and Galileo-derived station heights.
 - This likely indicates frequency-dependent errors in the chamber calibrations of some antenna types.
 - This can be an issue for the re-estimation of GPS satellite z-PCOs:
 there's no reason that those station height biases average to zero.
 - This is also an issue for station positions themselves!

E7c vs. Gc: station height differences


NB: The E7c and Gc solutions were differenced after having brought them to a common origin, orientation and scale. Station position differences are thus shown up to an unknown global translation, rotation and scale factor.

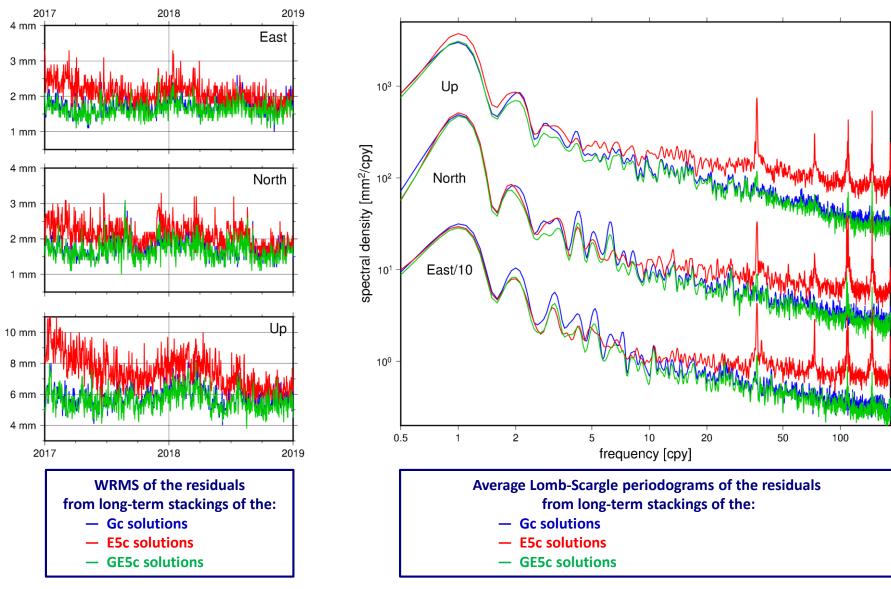
- The situation seems a bit better when using chamber calibrations and E1+E5b.
 - Likely because E5b is closer to L2 than E5a.
 - Remaining systematic biases between GPS- and Galileo-derived station heights can however not be excluded.

Re-estimation of GPS satellite z-PCOs: results

From ESA & CODE GPS+Galileo solutions:

Fix Galileo satellite z-PCOs; solve for an average correction to igs14.atx GPS satellite z-PCOs

- Part (all?) of the difference between ESA E1+E5a / E1+E5b results must come from ground antenna calibration issues (see previous slides).
- Time variations (esp. in CODE results) need further investigation.


Can we accurately re-estimate GPS satellite z-PCOs?

Not at better than several cm (↔ several mm in terrestrial scale), for now

Part 3:

Impact of including Galileo on station positions

Gc / E5c / GE5c long-term stacking residuals

NB: In the GE5c solutions, GPS satellite z-PCOs were fixed to igs14.atx values + previously derived average correction, so that consistent GPS & Galileo satellite z-PCOs were used.

Summary

- Impact of switching from robot to chamber calibrations on GPS-only station positions:
 - Large station+antenna-dependent position offsets, but small time variations
 - No problem for repro3/ITRF2020, except that a specific RF (IGc14) would have to be defined
 if chamber calibrations are adopted.
 - Still need to check impact on discontinuities due to antenna changes / local tie residuals
- Impact of including Galileo on station positions:
 - Background noise (and possibly GPS draconitics) slightly reduced
 - Periodic errors introduced at harmonics of Galileo ground repeat period
 - For some antenna types, systematic biases remain between GPS-derived and Galileo(E1+E5a)-derived station positions, even with chamber calibrations.
- Can we reliably re-estimate GPS satellite z-PCOs based on Galileo satellite z-PCOs?
 - Not at better than several cm (←) several mm in terrestrial scale), for now