Consierations about arc-length in GNSS processing

R. Dach, T. Springer, A. Sibthorpe based on contributions from the satellite geodesy research group at AIUB

Chairs of the session on Orbit Modelling

IGS AC Workshop 15–17. April 2019, Potsdam, Germany

Overview

Why longer arcs?

Benefits and issues for orbit products

Benefits for ERP products

Strategies for long-arc solutions

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

Longer arcs, on the other hand, benefitial

regarding the error propagation of the orbits,

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

Longer arcs, on the other hand, benefitial

- regarding the error propagation of the orbits,
- allowing for applications asking for continuity (e.g., LEO-POD),

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

Longer arcs, on the other hand, benefitial

- regarding the error propagation of the orbits,
- allowing for applications asking for continuity (e.g., LEO-POD),
- improve the quality of Earth rotation parameters.

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

Longer arcs, on the other hand, benefitial

- regarding the error propagation of the orbits,
- allowing for applications asking for continuity (e.g., LEO-POD),
- improve the quality of Earth rotation parameters.

Currently we have the following approaches in the IGS:

- clean daily solutions with 24 hours orbit arcs
- 24 hour solutions with continuity conditions
- solutions with arcs over 30/36 hours
- three-day long-arc solutions with orbit arcs over 72 hours

Orbit solution day n-1Orbit solution day nOrbit solution day n+1

Extracted orbit for day n-1 Extracted orbit for day n Extracted orbit for day n+1

Disadvantage of the "Extracted orbit for day n" with respect to the direct "Orbit solution day n":

- The orbits extracted from the three-day arc are not independent anymore.
- Day boundary discontinuities cannot be used as a real quality indicator anymore.

Disadvantage of the "Extracted orbit for day n" with respect to the direct "Orbit solution day n":

- The orbits extracted from the three-day arc are not independent anymore.
- Day boundary discontinuities cannot be used as a real quality indicator anymore.
- A comparison at the end of the long arcs is more appropriate as a quality measure.

Orbit Overlaps for GPS in 2013 (d: no pulses) 100 27.0 38.0 48.0 35.0 80 44.0 56.0 37.0 - 60 53.0 59.0 Satellite 66.0 34.0 46.0 - 40 51.0 - 20 32.0

250

200

day of year

300

350

55.0

n

50

100

150

Orbit Overlaps for GPS in 2013 (d: no pulses) 100 27.0 38.0 39.0 48.0 52.0 65.0 35.0 80 44.0 56.0 58.0 62.0 33.0 36.0 37.0 60 53.0 57.0 59.0 66.0 34.0 46.0 - 40 47.0 51.0 - 20 32.0 55.0 60.0 50 300 350 n 100 150 200 250

day of year

Orbit Overlaps for GPS in 2013 (p: Pulses every 12 hours) 100 27.0 38.0 39.0 48.0 52.0 65.0 35.0 80 44.0 56.0 58.0 62.0 R. Dach et al.: Consierations about arc-length in GNSS proce IGS AC Workshop, 15–17. April 2019, Potsdam, Germany 36.0 37.0 60 53.0 57.0 59.0 66.0 34.0 45.0 46.0 - 40 61.0 63.0 23.0 40.0 47.0 50.0 51.0 - 20 54.0 26.0 32.0 41.0 43.0 55.0 60.0

150

100

day of year Astronomical Institute, University of Bern **AIUB**

250

300

350

200

50

0

Orbit Overlaps for GPS in 2013 (u: Pulses at orbit midnight)

R. Dach et al.: Consierations about arc-length in GNSS proces IGS AC Workshop, 15–17. April 2019, Potsdam, Germany

Astronomical Institute, University of Bern **AIUB**

Orbit Overlaps for GPS in 2013 (u-p): blue means u is better than p)

Dach et al.: Consierations about arc-length in GNSS pro S AC Workshop, 15–17. April 2019, Potsdam, Germany

Slide 8 of 15

Orbit model extension

Galileo satellites (Galileo Satellite Metadata, URL: https://www.gsceuropa.eu).

Radiators are installed on

IOV satellites: +X, +Y, -Y

FOC satellites: +X, +Y, -Y and -Z

D. Sidorov, R. Dach, L. Prange, A. läggi: Improved orbit modelling of Galileo satellites during eclipse seasons. Presented at IGS workshop, Wuhan, China, 29 Oct. - 02 Nov. 2018.

Orbit model extension

GNSS orbits and ERPs from CODE's repro2 solutions

S. Lutz¹, P. Steigenberger², G. Beutler¹, S. Schaer³, R. Dach¹, A. Jäggi¹

Astronomical Institute of the University of Bern, Bern, Switzerland
 Technische Universität München, Munich, Germany
 Federal Office of Topography swisstopo, Wabern, Switzerland

IGS Workshop June 23–27, 2014 Pasadena (USA)

$$Xm_{i,i+1} = \left(X_{i+1} - \frac{Xrt_{i+1}}{2}\right) - \left(X_i + \frac{Xrt_i}{2}\right)$$

 $Ym_{i,i+1} = \left(Y_{i+1} - \frac{Yrt_{i+1}}{2}\right) - \left(Y_i + \frac{Yrt_i}{2}\right)$

$$Xm_{i,i+1}, Ym_{i,i+1}$$

 X_i, Y_i
 Xrt_i, Yrt_i

Misclosure of X and Y pole between day i and i+1 Polar motion in X and Y at 12 UTC on day i Polar motion rate per day in X and Y for day i

Analysis of the formal a posteriori errors

Figure 4 Time series and Bézier curves of the pole misclosures. There is almost no variation in the CO2 solution after Jan-2000. Low frequency periods in CF2 and COL are obvious.

X pole misclosures

01Jan00

01Jan96

Figure 4 Time series and Bézier curves of the pole misclosures. There is almost no variation in the CO2 solution after Jan-2000. Low frequency periods in CF2 and COL are obvious.

01Jan04

01Jan08

01Jan12

01Jan12

CF2

COL

CO2

20d

Figure 5 Spectra of the pole misclosures between Jan-1997 and Dec-2001 (GPS-only). Signatures in the CF2 solution are considerably reduced in the COL and nonexistent in the CO2 solution.

100d

70d

50d

200d

300d

Fig. 1 Amplitude spectra of *y*-pole coordinate misclosures from REPRO-2 series in 2009–2013 for six 1-day solutions (blue), two 30-hour solutions (green), and a 3-day solution

Fig. 1 Amplitude spectra of y-pole coordinate misclosures from REPRO-2 series in 2009–2013 for six 1-day solutions (blue), two 30-hour solutions (green), and a 3-day solution

Longer arcs are beneficial for estimating ERPs (in particular for the rates).

From Lutz et al.: Impact of the arc length on GNSS analysis results

Table 2: Effect of the arc length on the RMS of the geocenter series 2009–2011

Component	GPS (1-day)	GLO (1-day)	GPS (3-day)	GLO (3-day)
X	$13\mathrm{mm}$	$8\mathrm{mm}$	$9\mathrm{mm}$	$6\mathrm{mm}$
Υ	$10\mathrm{mm}$	$11\mathrm{mm}$	$8\mathrm{mm}$	$7\mathrm{mm}$
Z	$103\mathrm{mm}$	$12\mathrm{mm}$	$95\mathrm{mm}$	$9\mathrm{mm}$

From Lutz et al.: Impact of the arc length on GNSS analysis results

Table 2: Effect of the arc length on the RMS of the geocenter series 2009–2011

Component	GPS (1-day)	GLO (1-day)	GPS (3-day)	GLO (3-day)
X	$13\mathrm{mm}$	$8\mathrm{mm}$	$9\mathrm{mm}$	$6\mathrm{mm}$
Υ	$10\mathrm{mm}$	$11\mathrm{mm}$	$8\mathrm{mm}$	$7\mathrm{mm}$
Z	$103\mathrm{mm}$	$12\mathrm{mm}$	$95\mathrm{mm}$	$9\mathrm{mm}$

Longer arcs are beneficial for GCC estimates as well.

Benefits from long-arc solutions

- ERP can be estimated because of the oblatness of the Earth.
- Longer arcs are beneficial to improve the decorrelation.
- Only with longer arcs rates can be estimated (the longer the better).

Benefits from long-arc solutions

- ERP can be estimated because of the oblatness of the Earth.
- Longer arcs are beneficial to improve the decorrelation.
- Only with longer arcs rates can be estimated (the longer the better).

 For GNSS satellites flying higher than GPS there are less than two revolutions per day.

Benefits from long-arc solutions

- ERP can be estimated because of the oblatness of the Earth.
- Longer arcs are beneficial to improve the decorrelation.
- Only with longer arcs rates can be estimated (the longer the better).

 For GNSS satellites flying higher than GPS there are less than two revolutions per day.

How to realize long-arc solutions?

Approach to generate three–day solutions at CODE:

NEQ from day -1	NEQ from day ± 0	${\sf NEQ} \ {\sf from} \ {\sf day} \ +1$	
ORB	ORB	ORB	
ERP	ERP	ERP	
CRD	CRD	CRD	
TRP	TRP	TRP	
i	į	i	

Approach to generate three-day solutions at CODE:

NEQ for long–arc solution, day ± 0

ORB

ERP

CRD

TRP

R. Dach et al.: Consierations about arc-length in GNSS processing IGS AC Workshop, 15–17. April 2019, Potsdam, Germany

Approach to generate three-day solutions at CODE:

NEQ for long–arc solution, day ± 0

i

Approach to generate three–day solutions at CODE:

NEQ for long–arc solution, day ± 0

Slide 14 of 15

Approach to generate three–day solutions at CODE:

NEQ for long-arc solution, day ± 0

Approach to generate three–day solutions at CODE:

NEQ for long–arc solution, day ± 0

:

Approach to generate three-day solutions at CODE:

NEQ for long–arc solution, day ± 0

R. Dach et al.: Consierations about arc-length in GNSS processing IGS AC Workshop, 15–17. April 2019, Potsdam, Germany

What about 30 hour solutions?

Clean one-day solution:

Clean one-day solution:

- Allows the interpretation of results because each daily solution is completely independent.
- Discontinuities can be used as quality measure.

Clean one-day solution:

- Allows the interpretation of results because each daily solution is completely independent.
- Discontinuities can be used as quality measure.

Long-arc solution:

• More flexible usage of the products (also outside from the daily processing scheme).

Clean one-day solution:

- Allows the interpretation of results because each daily solution is completely independent.
- Discontinuities can be used as quality measure.
- Primary for scientific usage.

- More flexible usage of the products (also outside from the daily processing scheme).
- Better suited for the general usage.

Clean one-day solution:

- Allows the interpretation of results because each daily solution is completely independent.
- Discontinuities can be used as quality measure.
- Primary for scientific usage.
- No exception for none of the contributions can be allowed.

- More flexible usage of the products (also outside from the daily processing scheme).
- Better suited for the general usage.
- Each AC contributes with the optimal arc-length according to its capabilities.

