Consierations about arc-length in GNSS processing

R. Dach, T. Springer, A. Sibthorpe
based on contributions from the satellite geodesy research group at AIUB

Chairs of the session on Orbit Modelling

IGS AC Workshop
15–17. April 2019, Potsdam, Germany
Overview

Why longer arcs?

Benefits and issues for orbit products

Benefits for ERP products

Strategies for long–arc solutions
All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.
Why longer arcs?

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.
Why longer arcs?

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. **The use of daily processing scheme with 24 hour session seems native.**

Longer arcs, on the other hand, beneficial

- regarding the error propagation of the orbits,
Why longer arcs?

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

Longer arcs, on the other hand, beneficial
 • regarding the error propagation of the orbits,
 • allowing for applications asking for continuity (e.g., LEO-POD),
Why longer arcs?

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

Longer arcs, on the other hand, beneficial

- regarding the error propagation of the orbits,
- allowing for applications asking for continuity (e.g., LEO-POD),
- improve the quality of Earth rotation parameters.
Why longer arcs?

All input data are coming with 24 hour sampling as also the temporal resolution for the resulting parameters. The use of daily processing scheme with 24 hour session seems native.

Longer arcs, on the other hand, beneficial

- regarding the error propagation of the orbits,
- allowing for applications asking for continuity (e.g., LEO-POD),
- improve the quality of Earth rotation parameters.

Currently we have the following approaches in the IGS:

- clean daily solutions with 24 hours orbit arcs
- 24 hour solutions with continuity conditions
- solutions with arcs over 30/36 hours
- three-day long-arc solutions with orbit arcs over 72 hours
Orbit misclosures

Orbit solution day \(n - 1 \) Orbit solution day \(n \) Orbit solution day \(n + 1 \)
Orbit misclosures

Orbit solution day $n - 1$ Orbit solution day n Orbit solution day $n + 1$
Orbit misclosures

Orbit solution day $n - 1$ Orbit solution day n Orbit solution day $n + 1$

Extracted orbit for day $n - 1$ Extracted orbit for day n Extracted orbit for day $n + 1$
Orbit misclosures

Orbit solution day \(n - 1 \) \hspace{2cm} \text{Extracted orbit for day } n - 1

Orbit solution day \(n \) \hspace{2cm} \text{Extracted orbit for day } n

Orbit solution day \(n + 1 \) \hspace{2cm} \text{Extracted orbit for day } n + 1
Orbit misclosures

Disadvantage of the "Extracted orbit for day \(n \)" with respect to the direct "Orbit solution day \(n \)"

- The orbits extracted from the three-day arc are not independent anymore.
- Day boundary discontinuities cannot be used as a real quality indicator anymore.
Orbit misclosures

orbit solution day $n-1$ orbit solution day n orbit solution day $n+1$

extracted orbit for day $n-1$ extracted orbit for day n extracted orbit for day $n+1$

Disadvantage of the "Extracted orbit for day n" with respect to the direct "Orbit solution day n":

- The orbits extracted from the three-day arc are not independent anymore.
- Day boundary discontinuities cannot be used as a real quality indicator anymore.
- A comparison at the end of the long arcs is more appropriate as a quality measure.
Orbit Overlaps for GPS in 2013 (d: no pulses)
Orbit Overlaps for GPS in 2013 (s: Pulses only in the middle of eclipse)
Orbit Overlaps for GPS in 2013 (s: Pulses only in the middle of eclipse)
Orbit Overlaps for GPS in 2013 (p: Pulses every 12 hours)
Orbit Overlaps for GPS in 2013 (u−p: blue means u is better than p)
SLR residuals for SVN 101

Comparison of MGEX solutions from http://mgex.igs.org/analysis

CODE

GFZ

GRGS
SLR residuals for SVN 101

Comparison of MGEX solutions from http://mgex.igs.org/analysis

- CODE
- ECOM2 SRP model
- ERP, antenna thrust
- GFZ
- GRGS
SLR residuals for SVN 101

Comparison of MGEX solutions from http://mgex.igs.org/analysis

CODE

GFZ

GRGS
Comparison of MGEX solutions from http://mgex.igs.org/analysis

SLR residuals for SVN 101
SLR residuals for SVN 101

Comparison of MGEX solutions from http://mgex.igs.org/analysis

CODE
arc length 72 hours

GFZ
arc length 24 hours

GRGS
arc length 30 hours
Galileo satellites (Galileo Satellite Metadata, URL: https://www.gsceuropa.eu).

Radiators are installed on
- IOV satellites: \(+X, +Y, -Y \)
- FOC satellites: \(+X, +Y, -Y \) and \(-Z\)

Orbit model extension

Improved orbit modelling of Galileo satellites during eclipse seasons.

Day of year 2018
Consequences on ERPs

GNSS orbits and ERPs from CODE’s repro2 solutions

S. Lutz1, P. Steigenberger2, G. Beutler1,
S. Schaer3, R. Dach1, A. Jäggi1

1 Astronomical Institute of the University of Bern, Bern, Switzerland
2 Technische Universität München, Munich, Germany
3 Federal Office of Topography swisstopo, Wabern, Switzerland

IGS Workshop
June 23–27, 2014
Pasadena (USA)
Consequences on ERPs

- Analysis of the pole misclosures

\[
X_{m_{i,i+1}} = \left(X_{i+1} - \frac{X_{rt_{i+1}}}{2} \right) - \left(X_i + \frac{X_{rt_i}}{2} \right)
\]
\[
Y_{m_{i,i+1}} = \left(Y_{i+1} - \frac{Y_{rt_{i+1}}}{2} \right) - \left(Y_i + \frac{Y_{rt_i}}{2} \right)
\]

- Misclosure of X and Y pole between day \(i \) and \(i + 1 \)
- Polar motion in X and Y at 12 UTC on day \(i \)
- Polar motion rate per day in X and Y for day \(i \)

- Analysis of the formal a posteriori errors
Figure 4 Time series and Bézier curves of the pole misclosures. There is almost no variation in the CO2 solution after Jan-2000. Low frequency periods in CF2 and COL are obvious.
Consequences on ERPs

Figure 4 Time series and Bézier curves of the pole misclosures. There is almost no variation in the CO2 solution after Jan-2000. Low frequency periods in CF2 and COL are obvious.
Consequences on ERPs

Figure 5 Spectra of the pole misclosures between Jan-1997 and Dec-2001 (GPS-only). Signatures in the CF2 solution are considerably reduced in the COL and nonexistent in the CO2 solution.
Consequences on ERPs

Fig. 1 Amplitude spectra of y-pole coordinate misclosures from REPRO-2 series in 2009–2013 for six 1-day solutions (blue), two 30-hour solutions (green), and a 3-day solution.
Consequences on ERPs

Longer arcs are beneficial for estimating ERPs (in particular for the rates).

Fig. 1 Amplitude spectra of y-pole coordinate misclosures from REPRO-2 series in 2009–2013 for six 1-day solutions (blue), two 30-hour solutions (green), and a 3-day solution.
From Lutz et al.: *Impact of the arc length on GNSS analysis results*

Table 2: Effect of the arc length on the RMS of the geocenter series 2009–2011

<table>
<thead>
<tr>
<th>Component</th>
<th>GPS (1-day)</th>
<th>GLO (1-day)</th>
<th>GPS (3-day)</th>
<th>GLO (3-day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>13 mm</td>
<td>8 mm</td>
<td>9 mm</td>
<td>6 mm</td>
</tr>
<tr>
<td>Y</td>
<td>10 mm</td>
<td>11 mm</td>
<td>8 mm</td>
<td>7 mm</td>
</tr>
<tr>
<td>Z</td>
<td>103 mm</td>
<td>12 mm</td>
<td>95 mm</td>
<td>9 mm</td>
</tr>
</tbody>
</table>
Consequences on GCCs

From Lutz et al.: *Impact of the arc length on GNSS analysis results*

Table 2: Effect of the arc length on the RMS of the geocenter series 2009–2011

<table>
<thead>
<tr>
<th>Component</th>
<th>GPS (1-day)</th>
<th>GLO (1-day)</th>
<th>GPS (3-day)</th>
<th>GLO (3-day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>13 mm</td>
<td>8 mm</td>
<td>9 mm</td>
<td>6 mm</td>
</tr>
<tr>
<td>Y</td>
<td>10 mm</td>
<td>11 mm</td>
<td>8 mm</td>
<td>7 mm</td>
</tr>
<tr>
<td>Z</td>
<td>103 mm</td>
<td>12 mm</td>
<td>95 mm</td>
<td>9 mm</td>
</tr>
</tbody>
</table>

Longer arcs are beneficial for GCC estimates as well.
Benefits from long-arc solutions

- ERP can be estimated because of the oblatness of the Earth.
- Longer arcs are beneficial to improve the decorrelation.
- Only with longer arcs rates can be estimated (the longer the better).
Benefits from long-arc solutions

- ERP can be estimated because of the oblatness of the Earth.
- Longer arcs are beneficial to improve the decorrelation.
- Only with longer arcs rates can be estimated (the longer the better).

- For GNSS satellites flying higher than GPS there are less than two revolutions per day.
Benefits from long-arc solutions

- ERP can be estimated because of the oblatness of the Earth.
- Longer arcs are beneficial to improve the decorrelation.
- Only with longer arcs rates can be estimated (the longer the better).

- For GNSS satellites flying higher than GPS there are less than two revolutions per day.

How to realize long-arc solutions?
Strategies for long-arc solutions

Approach to generate three-day solutions at CODE:

<table>
<thead>
<tr>
<th></th>
<th>NEQ from day -1</th>
<th>NEQ from day ± 0</th>
<th>NEQ from day $+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
Strategies for long–arc solutions

Approach to generate three–day solutions at CODE:

NEQ for long–arc solution, day ±0

- ORB
- ERP
- CRD
- TRP

...
Strategies for long–arc solutions

Approach to generate three–day solutions at CODE:

NEQ for long–arc solution, day ±0

[Diagram showing ORB, ERP, CRD, TRP, and other elements]
Strategies for long–arc solutions

Approach to generate three–day solutions at CODE:

NEQ for long–arc solution, day ±0

<table>
<thead>
<tr>
<th>ORB</th>
<th>Compatibility?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP</td>
<td>ATM-loading?</td>
</tr>
<tr>
<td>CRD</td>
<td></td>
</tr>
<tr>
<td>TRP</td>
<td></td>
</tr>
</tbody>
</table>
Strategies for long–arc solutions

Approach to generate three–day solutions at CODE:

NEQ for long–arc solution, day ±0

<table>
<thead>
<tr>
<th>ORB</th>
<th>ERP</th>
<th>CRD</th>
<th>ERP</th>
<th>CRD</th>
<th>ERP</th>
<th>CRD</th>
<th>ERP</th>
<th>CRD</th>
</tr>
</thead>
</table>

Compatibility?

ATM-loading?

:\::
Strategies for long–arc solutions

Approach to generate three–day solutions at CODE:

NEQ for long–arc solution, day ±0

Compatibility?

ATM-loading?

Astronomical Institute, University of Bern
Strategies for long–arc solutions

Approach to generate three–day solutions at CODE:

NEQ for long–arc solution, day ±0

Compatiblity?

ATM-loading?

What about 30 hour solutions?
Clean one-day or long-arc solutions

Clean one-day solution:

Long-arc solution:
Clean one-day or long-arc solutions

Clean one-day solution:

- Allows the interpretation of results because each daily solution is completely independent.
- Discontinuities can be used as quality measure.

Long-arc solution:
Clean one-day solution:

- Allows the interpretation of results because each daily solution is completely independent.
- Discontinuities can be used as quality measure.

Long-arc solution:

- More flexible usage of the products (also outside from the daily processing scheme).
Clean one-day solution:

- Allows the interpretation of results because each daily solution is completely independent.
- Discontinuities can be used as quality measure.
- Primary for scientific usage.

Long-arc solution:

- More flexible usage of the products (also outside from the daily processing scheme).
- Better suited for the general usage.
Clean one-day solution:

- Allows the interpretation of results because each daily solution is completely independent.
- Discontinuities can be used as quality measure.
- Primary for scientific usage.
- No exception for none of the contributions can be allowed.

Long-arc solution:

- More flexible usage of the products (also outside from the daily processing scheme).
- Better suited for the general usage.
- Each AC contributes with the optimal arc-length according to its capabilities.