GLONASS Satellite Orbit Modelling

R. Dach1, A. Sušnik1, A. Grahsl1, A. Villiger1, D. Arnold1, L. Prange1, S. Schaer1,2, A. Jäggi1

1 Astronomical Institute, University of Bern, Switzerland
2 Swiss Federal Office of Topographie, swisstopo

Summary from IGS Workshop
Session #08: Orbit Modelling
03–07. July 2017, Paris, France
Overview

Data problem in GLONASS satellites

Re-estimating GLONASS SAOs

Applying the estimated satellite antenna offsets

Discussion and summary
Data problem in GLONASS satellites from preprocessing in CODE rapid solution.
Data problem in GLONASS satellites

Influence of station distribution on GNSS satellite orbits

IGSWS2016
International GNSS Service
Workshop 2016
8 - 12 February 2016, Sydney, Australia

SNW 1 coverage – GLONASS tracking stations

Fig. 4: SNW 1 coverage plot. The number of stations covering a particular GLONASS satellite - epoch wise - is given by the color from the scale bar.
Data problem in GLONASS satellites

Influence of station distribution on GNSS satellite orbits

Fig. 5: SNW 2 coverage plot. The number of stations covering a particular GLONASS satellite - epoch wise - is given by the color from the scale bar.
Data problem in GLONASS satellites

Influence of station distribution on GNSS satellite orbits

Fig. 10: Ground track residual from orbit solutions SNW1(CODE) and SNW2(CODE) - radial & epoch wise plots for satellite R09. The color scale bar [12cm, -12cm] indicates the residual values.
Data problem in GLONASS satellites

Influence of station distribution on GNSS satellite orbits

IGSWS2016
International GNSS Service
Workshop 2016
8 - 12 February 2016, Sydney, Australia

Fig. 11: Ground track residual from orbit solutions SNW1(ESOC) and SNW2(ESOC) - residual & epoch wise-plots for satellite R09. The color scale bar [12cm,-12cm] indicates the residual values.
Estimated satellite antenna offsets (SAO) for satellite SVN 734 (R05) in m

Orbits are based on a three-day long-arc solutions.
Re-estimating GLONASS SAOs

Estimated satellite antenna offsets (SAO) for satellite SVN 735 (R24) in m

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna offsets

Estimated SRP parameters for satellite SVN 736 (R09/R16) in nm/s²

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna antenna offsets

Using estimated original SAOs

B1C
B1S
D2C
D2S

R. Dach et al.: GLONASS Satellite Orbit Modelling
Summary from IGS Workshop, 03–07. July 2017, Paris, France

Astronomical Institute, University of Bern
Applying the estimated satellite antenna offsets

Estimated SRP parameters for satellite SVN 737 (R12) in nm/s²

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna offsets

Using estimated original SAOs
Applying the estimated satellite antenna offsets

SLR residuals for satellite SVN 736 (R09/R16)

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna offsets

SLR residuals for satellite SVN 736 (R09/R16)

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna offsets

SLR residuals for satellite SVN 737 (R12)

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna offsets

SLR residuals for satellite SVN 737 (R12)

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna offsets

SLR residuals for satellite SVN 735 (R05)

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna offsets

SLR residuals for satellite SVN 735 (R05)

Orbits are based on a three-day long-arc solutions.
Applying the estimated satellite antenna offsets

Quantile 25%, 50%, and 75% of SLR residuals per year in mm

- Using original estimated SAOs
- Satellites: 715, 716, 717, 719, 721, 723

Year: 2009 to 2017

Astronomical Institute, University of Bern
Applying the estimated satellite antenna offsets

Quantile 25%, 50%, and 75% of SLR residuals per year in mm

Using original estimated SAOs

- Sat. 725
- Sat. 728
- Sat. 730
- Sat. 732
- Sat. 734
- Sat. 735
Applying the estimated satellite antenna offsets

Quantile 25%, 50%, and 75% of SLR residuals per year in mm

![Graphs showing SLR residuals for different satellites (736, 737, 738, 744) with years from 2009 to 2017.]

Orbits are based on a three-day long-arc solutions.
List of estimated satellite antenna offsets

<table>
<thead>
<tr>
<th>Satellite</th>
<th>from</th>
<th>to</th>
<th>∆X</th>
<th>∆Y</th>
<th>SAO-X</th>
<th>SAO-Y</th>
<th>Satellite type</th>
</tr>
</thead>
<tbody>
<tr>
<td>701</td>
<td>R06 2008</td>
<td>2009 09</td>
<td>-0.1240</td>
<td>0.0037</td>
<td>-0.6691</td>
<td>0.0037</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>713</td>
<td>R24 2005</td>
<td>2010 02</td>
<td>-0.0507</td>
<td>-0.0412</td>
<td>-0.5957</td>
<td>-0.0412</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>714</td>
<td>R23 2006</td>
<td>2010 09</td>
<td>0.1507</td>
<td>-0.0586</td>
<td>-0.3943</td>
<td>-0.0586</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>714</td>
<td>R17 2010</td>
<td>2011 02</td>
<td>0.1507</td>
<td>-0.0586</td>
<td>-0.3943</td>
<td>-0.0586</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>715</td>
<td>R14 2011</td>
<td>2013 03</td>
<td>0.0016</td>
<td>-0.0772</td>
<td>-0.5434</td>
<td>-0.0772</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>715</td>
<td>R14 2013</td>
<td>2010 03</td>
<td>0.0319</td>
<td>-0.1560</td>
<td>-0.5131</td>
<td>-0.1560</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>716</td>
<td>R15 2006</td>
<td>0.0387</td>
<td>0.0479</td>
<td>-0.5063</td>
<td>0.0479</td>
<td></td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>717</td>
<td>R10 2006</td>
<td>2010 12</td>
<td>0.0488</td>
<td>-0.0127</td>
<td>-0.4962</td>
<td>-0.0127</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>718</td>
<td>R17 2007</td>
<td>2010 10</td>
<td>0.0454</td>
<td>-0.0505</td>
<td>-0.4996</td>
<td>-0.0505</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>719</td>
<td>R20 2007</td>
<td>2011 03</td>
<td>-0.0660</td>
<td>0.0504</td>
<td>-0.6110</td>
<td>0.0504</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>719</td>
<td>R20 2011</td>
<td>2011 03</td>
<td>-0.0128</td>
<td>0.1329</td>
<td>-0.5578</td>
<td>0.1329</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>721</td>
<td>R13 2013</td>
<td>2015 01</td>
<td>-0.0533</td>
<td>0.0712</td>
<td>-0.5983</td>
<td>0.0712</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>722</td>
<td>R09 2007</td>
<td>2010 09</td>
<td>-0.0354</td>
<td>-0.0144</td>
<td>-0.5804</td>
<td>-0.0144</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>723</td>
<td>R11 2007</td>
<td>2010 07</td>
<td>-0.0550</td>
<td>0.0049</td>
<td>-0.6000</td>
<td>0.0049</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>723</td>
<td>R11 2010</td>
<td>2016 03</td>
<td>-0.1222</td>
<td>0.0457</td>
<td>-0.6672</td>
<td>0.0457</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>725</td>
<td>R21 2011</td>
<td>2014 07</td>
<td>-0.1002</td>
<td>0.0144</td>
<td>-0.6452</td>
<td>0.0144</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>726</td>
<td>R22 2008</td>
<td>2010 02</td>
<td>-0.0343</td>
<td>-0.0050</td>
<td>-0.5793</td>
<td>-0.0050</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>728</td>
<td>R02 2012</td>
<td>2013 06</td>
<td>-0.0523</td>
<td>-0.0077</td>
<td>-0.5973</td>
<td>-0.0077</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>730</td>
<td>R01 2009</td>
<td>2010 12</td>
<td>0.0396</td>
<td>0.0073</td>
<td>-0.5054</td>
<td>0.0073</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>730</td>
<td>R01 2010</td>
<td>2012 07</td>
<td>0.0688</td>
<td>0.0121</td>
<td>-0.4762</td>
<td>0.0121</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>Satellite</td>
<td>from</td>
<td>to</td>
<td>∆X</td>
<td>∆Y</td>
<td>SAO-X</td>
<td>SAO-Y</td>
<td>Satellite type</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>730</td>
<td>R01</td>
<td>2012 07 15 00 00 00</td>
<td>-0.0694</td>
<td>0.0184</td>
<td>-0.6144</td>
<td>0.0184</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>732</td>
<td>R23</td>
<td>2015 02 01 00 00 00</td>
<td>0.0753</td>
<td>-0.0130</td>
<td>-0.4697</td>
<td>-0.0131</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>734</td>
<td>R05</td>
<td>2015 02 01 00 00 00</td>
<td>-0.0009</td>
<td>-0.1437</td>
<td>-0.5459</td>
<td>-0.1437</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>735</td>
<td>R24</td>
<td>2015 04 12 00 00 00</td>
<td>0.0329</td>
<td>0.1116</td>
<td>-0.5121</td>
<td>0.1116</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>736</td>
<td>R09</td>
<td>2013 12 08 00 00 00</td>
<td>2015 03 07 23 59 59</td>
<td>0.1589</td>
<td>-0.0166</td>
<td>-0.3861</td>
<td>-0.0166</td>
</tr>
<tr>
<td>736</td>
<td>R09</td>
<td>2015 03 08 00 00 00</td>
<td>2016 02 12 23 59 59</td>
<td>0.0554</td>
<td>-0.1265</td>
<td>-0.4896</td>
<td>-0.1265</td>
</tr>
<tr>
<td>736</td>
<td>R16</td>
<td>2016 03 07 00 00 00</td>
<td>0.0192</td>
<td>-0.1335</td>
<td>-0.5258</td>
<td>-0.1335</td>
<td>GLONASS-M</td>
</tr>
<tr>
<td>737</td>
<td>R12</td>
<td>2013 12 08 00 00 00</td>
<td>2015 12 26 23 59 59</td>
<td>-0.1254</td>
<td>-0.0149</td>
<td>-0.6704</td>
<td>-0.0149</td>
</tr>
<tr>
<td>737</td>
<td>R12</td>
<td>2015 12 27 00 00 00</td>
<td>2016 11 20 23 59 59</td>
<td>-0.0814</td>
<td>0.0252</td>
<td>-0.6264</td>
<td>0.0252</td>
</tr>
<tr>
<td>738</td>
<td>R16</td>
<td>2012 12 16 00 00 00</td>
<td>2016 02 13 23 59 59</td>
<td>0.0434</td>
<td>-0.0545</td>
<td>-0.5016</td>
<td>-0.0545</td>
</tr>
<tr>
<td>744</td>
<td>R03</td>
<td>2011 12 01 00 00 00</td>
<td>2015 11 07 23 59 59</td>
<td>0.0285</td>
<td>-0.0440</td>
<td>-0.5165</td>
<td>-0.0440</td>
</tr>
<tr>
<td>779</td>
<td>R01</td>
<td>1999 01 01 00 00 00</td>
<td>2002 07 08 23 59 59</td>
<td>0.0936</td>
<td>-0.0116</td>
<td>0.0936</td>
<td>0.0116</td>
</tr>
<tr>
<td>783</td>
<td>R18</td>
<td>2000 10 13 00 00 00</td>
<td>2004 06 26 23 59 59</td>
<td>-0.0600</td>
<td>0.0330</td>
<td>-0.0600</td>
<td>0.0330</td>
</tr>
<tr>
<td>783</td>
<td>R18</td>
<td>2004 06 27 00 00 00</td>
<td>2007 05 24 23 59 59</td>
<td>-0.0914</td>
<td>0.1064</td>
<td>-0.0914</td>
<td>0.1064</td>
</tr>
<tr>
<td>788</td>
<td>R24</td>
<td>2003 09 07 00 00 00</td>
<td>2005 12 24 23 59 59</td>
<td>-0.0345</td>
<td>0.0698</td>
<td>-0.0345</td>
<td>0.0698</td>
</tr>
<tr>
<td>789</td>
<td>R03</td>
<td>2001 12 01 00 00 00</td>
<td>2008 12 24 23 59 59</td>
<td>-0.0149</td>
<td>0.0308</td>
<td>-0.0149</td>
<td>0.0308</td>
</tr>
<tr>
<td>791</td>
<td>R22</td>
<td>2002 12 25 00 00 00</td>
<td>2007 10 25 23 59 59</td>
<td>-0.0247</td>
<td>-0.0482</td>
<td>-0.0247</td>
<td>-0.0482</td>
</tr>
<tr>
<td>792</td>
<td>R21</td>
<td>2006 05 21 00 00 00</td>
<td>2008 09 24 23 59 59</td>
<td>-0.0626</td>
<td>0.0083</td>
<td>-0.0626</td>
<td>0.0083</td>
</tr>
<tr>
<td>796</td>
<td>R01</td>
<td>2004 12 26 00 00 00</td>
<td>2009 12 13 23 59 59</td>
<td>-0.0352</td>
<td>-0.0035</td>
<td>-0.0352</td>
<td>-0.0035</td>
</tr>
<tr>
<td>798</td>
<td>R19</td>
<td>2005 12 25 00 00 00</td>
<td>2007 10 25 23 59 59</td>
<td>-0.0675</td>
<td>0.0018</td>
<td>-0.0675</td>
<td>0.0018</td>
</tr>
</tbody>
</table>
Available as paper
What could be the reason at the spacecraft?

Shift of the center of mass:
If the satellite has roughly a mass of 1500 kg, 150 kg need to be shifted by 1 m in order to generate a COM shift of 10 cm.

http://spaceflight101.com/spacecraft/glonass-m/
Discussion and summary

What could be the reason at the spacecraft?

Issue with satellite antenna:
Not likely because SAO-Z is not affected in most cases and the SAO-X/Y estimates do not show a pattern

![Graph showing SAO-X and SAO-Y estimates for GLONASS and GLONASS-M](http://spaceflight101.com/spacecraft/glonass-m/)
Discussion and summary

What could be the reason at the spacecraft?

Satellite attitude misorientation:
The satellite plane with the navigation antenna and the SLR reflector is about 2 m away from the center of mass.
A shift of 10 to 15 cm results in a tilt of the 3 to 4 degree of the satellite body.

http://spaceflight101.com/spacecraft/glonass-m/
Discussion and summary

What could be the reason at the spacecraft?

- **Shift of the center of mass:**
 If the satellite has roughly a mass of 1500 kg, 150 kg need to be shifted by 1 m in order to generate a COM shift of 10 cm.

- **Issue with satellite antenna:**
 Not likely because SAO-Z is not affected in most cases and the SAO-X/Y estimates do not show a pattern.

- **Satellite attitude misorientation:**
 The satellite plane with the navigation antenna and the SLR reflector is about 2 m away from the center of mass.
 A shift of 10 to 15 cm results in a tilt of the 3 to 4 degree of the satellite body.
Discussion and summary

What could be the reason at the spacecraft?

- **Shift of the center of mass:**
 If the satellite has roughly a mass of 1500 kg, 150 kg need to be shifted by 1 m in order to generate a COM shift of 10 cm.

- **Issue with satellite antenna:**
 Not likely because SAO-Z is not affected in most cases and the SAO-X/Y estimates do not show a pattern

- **Satellite attitude misorientation:**
 The satellite plane with the navigation antenna and the SLR reflector is about 2 m away from the center of mass.
 A shift of 10 to 15 cm results in a tilt of the 3 to 4 degree of the satellite body.

The usage of the estimated SAOs obviously helps to reduce the SLR residuals and should be considered for repro3 after verification.
THANK YOU
for your attention

Publications of the satellite geodesy research group:
http://www.bernese.unibe.ch/publist