Notes about trigonometry for UEENEEH114A Resonance Circuits - Greg Moore

Here are some notes about Pythagorean theorem and later some trigonometry leading towards Cartesian to Polar conversions. You need to know this for the phasors involved with $A C$ complex angles in this unit.

Write the answers to the following hypotenuse dimension to one decimal place. Calculate the hypotenuse.

1) $\mathbf{a}=$

2)

3) $\mathrm{c}=$ \qquad

4) $d=$

From Pythagoras, $\quad b^{2}+c^{2}=a^{2}$

Substitute for a and c,

$$
\begin{aligned}
b^{2}+4^{2} & =5^{2} \\
b^{2}+16 & =25 \\
b^{2} & =25-16 \\
b^{2} & =9 \\
b & =\sqrt{9}
\end{aligned}
$$

Write the answers to the following triangle side dimension.

Calculate the missing side in these right-angled triangles.
1)

2) $b=$

3) $\mathrm{c}=$

4) $d=$

Notes about trigonometry for UEENEEH114A Resonance Circuits - Greg Moore

Calculate the missing sides.

Solve the missing side to one decimal place.

1) $\mathbf{a}=$

2)

3)

4)
$\mathrm{d}=$

Answer the questions.

1) The bottom of a ladder rests 1.8 m from the base of a wall. The top of the ladder rests against the wall at a height of 4.1 m . What is the length of the ladder to the nearest 10 cm ?
m

2) A is 55 km South of $B . C$ is East of B and 128 km from A. How far is it from B to C, to the nearest kilometre?

km

A little bit more thought needed here!
1)

2)

3)
$c=$

4) $\mathrm{d}=$

Notes about trigonometry for UEENEEH114A Resonance Circuits - Greg Moore

Answer the questions.

1) A square has a perimeter of 36 cm . What is the length of its diagonal?

cm

2) Noni walks 390 m North, then 280 m East. How far is she from the starting point?
m
3) The diagonal of a square is 16 cm long. What is its perimeter?
cm
4) A square has an area of $144 \mathrm{~cm}^{2}$. What is the length of its diagonal?

cm

Area

The area is half of the base times height.

- " b " is the distance along the base
- " h " is the height (measured at right angles to the base)

$$
\text { Area }=1 / 2 \times b \times h
$$

The formula works for all triangles.

Note: another way of writing the formula is bh/2

Example, Half the base dimension X the height.

$$
A=\left(\frac{5.47}{2} \cdot 4.07\right)=A=11.1
$$

Notes about trigonometry for UEENEEH114A Resonance Circuits - Greg Moore

Calculate the area of the Isosceles triangles.
1)

2)

3)

4)
Area $=\quad \mathbf{c m}^{2}$

Calculate the area of the shapes.
1)

2)

3) Area $=\quad \mathrm{cm}^{2}$

4)

What is the length of the diagonal of a cube with side length of 5 cm ?

From triangle EFG, find EG. Then from triangle AEG, find AG.

Study the explanation here and then attempt the questions over page.

In $\triangle \mathrm{EFG}$,

$$
E G^{2}=5^{2}+5^{2}
$$

$$
E G^{2}=25+25
$$

$$
\mathrm{EG}^{2}=50
$$

In $\triangle A E G$,

$$
\begin{aligned}
& \mathrm{AG}^{2}=\mathrm{EG}^{2}+5^{2} \\
& \mathrm{AG}^{2}=50+25 \\
& \mathrm{AG}^{2}=75 \\
& \mathrm{AG}=\sqrt{75} \\
& \mathrm{AG}=8.7 \mathrm{~cm}(\text { to } 1 \mathrm{dp})
\end{aligned}
$$

Find the length of the diagonal $A-G$.

Side length $=6 \mathrm{~cm}$

Find the length of the diagonal $S-Y$.

Side length is 8 cm

Calculate the diagonal of each cuboid.

Cuboid dimensions: 5×10×16
Find diagonal A-G

Cuboid dimensions: 6X7X8
find diagonal S - Y

Notes about trigonometry for UEENEEH114A Resonance Circuits - Greg Moore
In trigonometry we use names Hypotenuse, Adjacent and Opposite to name and identify sides on a right angled triangle.

To calculate an angle using sin...

$$
\text { From SOHCAHTOA, } \quad \sin x=\frac{\text { opp }}{h y p}
$$

Greg's trusty $\mathrm{fx}-82$
In electronics study of AC circuits we commonly use the Sin function for calculations.

Calculate the required angle using sin.

Notes about trigonometry for UEENEEH114A Resonance Circuits - Greg Moore

 To calculate an angle using cos...$$
\text { From SOHCAHTOA, } \quad \cos x=\frac{a d j}{h y p}
$$

Calculate the required angle using cos.
Try to do these COS problems. When doing cartesian to polar calculations you will need to use COS. And there is the Cosine rule you will learn.
1)

2)

In fact a good working knowledge of all the three trigonometry functions is important.
3)
$c=\quad 0$

4)

To calculate an angle using tan...

Calculate the required angle using tan.

1) $\mathrm{a}=$

2)

3)

4)

Some calculations using TAN Write the answers for each of the angles.

Notes about trigonometry for UEENEEH114A Resonance Circuits - Greg Moore

To calculate a side using sin...

$$
\text { From SOHCAHTOA, } \quad \sin x=\frac{\text { opp }}{\text { hyp }}
$$

To find an unknown side length, either of SIN or COS or TAN will be used depending on which sides and angles you know.

Use sin to calculate the required side.

Calculate the side as identified using SIN

1) $\mathbf{a}=$

2)

3)

4)

For Non-Right angled triangles, you can use the Sin rule or the Cosine Rule.
The cosine rule allows you to calculate sides and angles in non right-angled triangles.

To calculate a side, we need the other 2 sides and the angle between them.

To calculate an angle, we need all 3 sides.

To calculate a side we start with this form...

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

To calculate an angle we start with this form...

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

If you look carefully at the law of cosines, you should see a resemblance to the Pythagorean theorem. In fact, for right triangles, the law of cosines simplifies to the Pythagorean theorem. Try it yourself. The last term drops out (since $\cos 90=0$) and you're left with the familiar formula of $\mathrm{c} 2=\mathrm{a} 2+\mathrm{b} 2$.

If you're curious, the $2 a b \cos (C)$ term compensates for the lack of a right angle.
The law of cosines allows you to solve any triangle for which you know any three of the four unknowns in the formula.

Notes about trigonometry for UEENEEH114A Resonance Circuits - Greg Moore

To calculate a side using the cosine rule...

$$
\text { From the cosine rule, } a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

A pretty solid rule and able to solve many problems.

Calculate the required sides.

1) $a=$

2) $\mathrm{b}=$

Substitute into above formula,
$a^{2}=8^{2}+7^{2}-2 \times 8 \times 7 \times \cos 74$
$a^{2}=64+49-112 \times \cos 74$
$a^{2}=82.12861615$
Square root both sides, $a=9.1$ (to 1 dp)
3)
$\mathrm{c}=$

4)

Use the cosine rule to solve the missing side.

To calculate an angle using the cosine rule...

Substitute into above formula,

$$
\begin{aligned}
\cos A & =\frac{9^{2}+11^{2}-6^{2}}{2 \times 9 \times 11} \\
\cos A & =\frac{166}{198} \\
\cos A & =\frac{83}{99} \\
A & =\cos ^{-1}\left(\frac{83}{99}\right)
\end{aligned}
$$

$$
\left.A=33.0^{\circ} \text { (to } 1 \mathrm{dp}\right)
$$

Calculate the required angles.

3) $\mathrm{c}=$

2)

4) $D=$

Try to solve the angles A, B, C, D by using the cosine rule.

I have covered most of what you need to know in basic trigonometry here and I have a second handout about Cartesian to Polar conversion.

GM

