Townsville Port Expansion Channel Upgrade Project
Offset Management Strategy for Rock Wall & Reclamation Activities
February 2020
Document Control Sheet

Revision History

<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Date</th>
<th>Changed by</th>
<th>Nature of amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26/2/2020</td>
<td>T Smith</td>
<td>Submitted version</td>
</tr>
</tbody>
</table>

Review History

<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Date</th>
<th>Reviewed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26/02/2020</td>
<td>M Louden, M Wise prior to submission</td>
</tr>
</tbody>
</table>

Document approval

Approval of the final OMS was granted by a delegate of the Minister for the Environment on 26 February 2020

The OMS was published on the CU Project’s website on 11 March 2020.

This document has been prepared to meet the Commonwealth Government’s EPBC Approval No. 2011/5979 Conditions and the Queensland’s Coordinator General’s Conditions for the Port of Townsville Limited’s Port Expansion Project.
DECLARATION OF ACCURACY

EPBC Number 2011/5979
Project Name Port of Townsville Port Expansion Project
Approval Holder Port of Townsville Limited
ACN / ABN 130 077 673 / 44 411 774 236
Approved Action To expand the Port of Townsville, in Townsville Queensland. The action is for dredging, land reclamation and construction of infrastructure.
Location of the Action Townsville, Queensland

In making this declaration, I am aware that section 491 of the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) makes it an offence in certain circumstances to knowingly provide false or misleading information or documents to specified persons who are known to be performing a duty or carrying out a function under the EPBC Act or the Environment Protection and Biodiversity Conservation Regulations 2000 (Cth). The offence is punishable on conviction by imprisonment or a fine, or both. I am authorised to bind the approval holder to this declaration and that I have no knowledge of that authorisation being revoked at the time of making this declaration.

Signed

__
Full name (please print)

Marissa Wise

Organisation (please print)

Port of Townsville Limited

Date 26/02/2020
GLOSSARY

AEIS Townsville Port Expansion Project: Additional Information to the Environmental Impact Statement - Final (June 2017).

Berth Any dock, pier, jetty, quay, wharf, marine terminal or similar structure, (whether floating or not) connected to the shore, at which a ship may tie up, not including floating plant, jack-up barge, or other similar structure not connected to the shore.

Capital Dredge Material Material (clays, silts and sands) derived from capital dredging

Capital Dredging As defined in the NAGD, being 'dredging for navigation, to enlarge or deepen existing channels and port areas or to create new ones'

CU Project Townsville Port Expansion Channel Upgrade Project

Commencement / Commence Any works that are required to be undertaken for construction (includes works associated with the construction of the reclamation area, pile driving activities, dredging activities, and any infrastructure associated with the action). Excludes preliminary works.

DAF Queensland Department of Agriculture and Fisheries

Department / DAWE The Australian Government Department of Agriculture, Water and the Environment, or any other agency administering the Environment Protection and Biodiversity Conservation Act 1999 (Cth) from time to time

EIS PEP Environmental Impact Statement

EPBC Act Environment Protection and Biodiversity Conservation Act 1999

Fine Sediment <15.6µm fine silt and clay

IDMP Inshore Dolphin Monitoring Plan

ITAC Independent Technical Advisory Committee

Listed Dolphin Species Australian snubfin dolphin (Orcaella heinsohn) and Indo-Pacific humpback dolphin (Sousa chinensis)

Mechanical Dredge A dredger that removes sediments via mechanical methods. Can include grab dredges (clamshells and buckets) or backhoe dredges.

Minister The Minister administering the Environment Protection and Biodiversity Conservation Act 1999 (Cth) and includes a delegate of the Minister

MNES Matters of National Environmental Significance: In the context of this approval: Great Barrier Reef World Heritage Area, Great Barrier Reef National Heritage place, listed turtle species, listed dolphin species and all other Cetaceans, Dugong (Dugong dugon) and Commonwealth marine area.

PEP Port Expansion Project

Port The Port of Townsville

POTL Port of Townsville Limited
Reef Trust

The account established through the Public Governance, Performance and Accountability Act (Reef Trust Special Account 2014) Determination 01 by the Minister for Finance under section 78 of the PGPA Act or any other special account established by the Minister for Finance under section 78 of the PGPA Act for the purpose of protecting, repairing or mitigating damage to the Great Barrier Reef World Heritage Area or a fund approved by the Minister for an equivalent purpose.

Residual impact

The level of impact to a protected matter that remains following all actions to avoid and mitigate this impact (from the DAWE Offset Policy 2012).

Significant

An event that is important, notable or of consequence, having regard to its context or intensity (broadly from DAWE Significant Impact Guidelines 1.1 (2013)).

Significant residual impact

An adverse impact, whether direct or indirect, of an activity that:

(a) remains, or will or is likely to remain, (whether temporarily or permanently) despite on-site mitigation measures for the prescribed activity; and

(b) is, or will or is likely to be, significant.

(generally taken from Qld Environmental Offsets Act 2014).

Site

The new reclamation area (Lot 794 on SP308904) and the northern extent of the East Port Area at the Port of Townsville (Lot 791 on EP2348).

Stage/s

As identified at Section 2.4.1 of the Townsville Port Expansion Project - Additional Information to the Environmental Impact Statement (October 2016).

TSHD

Trailer Suction Hopper Dredge – a self-propelled ship with a hold (hopper), and a dredging mechanism comprised of suction pipes connected to draghead(s), by which it can fill the hopper with dredge material.
TABLE OF CONTENTS

1 Introduction .. 8
 1.1 Background ... 8
 1.2 Environmental Assessment & Approvals ... 8

2 Offset Management Framework .. 10
 2.1 PEP Project Staging ... 10
 2.1.1 Stage 1 .. 10
 2.1.2 Stage 2 .. 10
 2.1.3 Stage 3 .. 11
 2.2 Delivery Approach to Offset Management Strategy ... 12
 2.3 Steps in the Development of the OMS .. 12

3 CU Project Description & Offset Approach ... 14
 3.1 Scope and Objectives .. 17
 3.2 Development & Consultation of the OMS ... 18
 3.3 Independent Peer Review of the OMS .. 18
 3.4 Finalisation & Submission of the OMS ... 19
 3.5 Implementation of the OMS ... 19
 3.5.1 Funding & Timing Arrangements ... 19
 3.6 Review & Revision of the OMS .. 20
 3.7 Records ... 21
 3.8 Uncertainty associated with OMS success ... 21

4 Rock wall construction Offsets .. 24
 4.1 Fine Sediment Offsets ... 24
 4.1.1 Residual Risks .. 24
 4.1.2 Offset Commitments .. 24
 4.2 Seagrass Offsets .. 27
 4.2.1 Residual Risks .. 27
 4.2.2 Offset Commitments .. 27
 4.3 Listed Dolphins Offsets ... 28
 4.3.1 Residual Risks .. 28
 4.3.2 Offsets Commitments .. 30
 4.3.3 Limitation – Ability to detect impact ... 31

5 Dredging Offsets .. 32

6 Berth 12 development Offsets .. 32
7 References ... 33
Appendix A ... 34

EPBC Approval Conditions Reference Table ... 34

TABLES
Table 1: Indicative PEP staging program .. 11
Table 2: Key uncertainties associated with implementation of this OMS ... 22
Table 3: Residual Risks Associated with Seagrasses ... 27
Table 4: Residual Risks Associated with Listed Dolphins .. 28

FIGURES
Figure 1: Locality Plan of the Port of Townsville & CU Project .. 9
Figure 2: Site Plan for CU Project Rock Wall Construction & Reclamation Activities 15
Figure 3: Site Plan for CU Project Capital Dredging Activities .. 16
Figure 4: Review Process ... 21
1 INTRODUCTION

1.1 Background

Port of Townsville Limited (POTL) is a Government Owned Corporation established under the Government Owned Corporations Act 1993, which manages the Port of Townsville (the Port). The Port is located on Cleveland Bay, approximately three kilometres east of the Townsville city centre in North Queensland (Figure 1). It is a multi-purpose port that handles predominantly bulk and general cargo with a land and sea jurisdiction in excess of 450 km². The Port is situated in the Great Barrier Reef World Heritage Area, outside of the Great Barrier Reef Marine Park. Surrounding the Port of Townsville is Cleveland Bay and the community of Townsville. Townsville is a long-established township with a history of urbanisation and industrial activities in the Ross River and Ross Creek drainage system.

The Townsville Port Expansion Channel Upgrade Project (CU Project) is Stage 1 of POTL’s long-term Port Expansion Project (PEP). The PEP aims to create a series of strategic assets that will address current capacity constraints and accommodate future growth in trade over a planning horizon to 2040. It includes development of port infrastructure, namely work to “top of wharf” facilities, capital dredging; reclamation; breakwaters and revetments; berths; access roads; rail loop; and trunk services and utilities. It does not include the development of “above wharf” infrastructure such as terminal pavements; ship-loaders and unloaders; product conveyors; storage buildings for products; rail loaders and unloaders; stacking and reclaiming equipment; storage tanks; and pipelines, which will be subject to separate statutory assessment and approval requirements prior to the start of their construction and operations.

1.2 Environmental Assessment & Approvals

Environmental assessment for the proposed PEP was undertaken in accordance with the requirements of the Queensland State Development and Public Works Organisation Act 1971 and the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) as it was considered likely to have impacts on the following Matters of National Environmental Significance (MNES):

1. World Heritage properties (EPBC Act sections 12 and 15A);
2. National Heritage places (EPBC Act sections 15B and 15C);
3. Wetlands of international importance (EPBC Act sections 16 and 17B);
4. Listed threatened species and communities (EPBC Act sections 18 and 18A);
5. Listed migratory species (EPBC Act sections 20 and 20A);
6. Commonwealth marine areas (EPBC Act sections 23 and 24A); and

The PEP Environmental Impact Statement (EIS) and the PEP Additional Information to the Environmental Impact Statement (AEIS) were prepared to describe the results of ecology surveys and environmental impact assessments for the Project. After considering submissions made in response to the PEP EIS/AEIS, the Queensland Coordinator-General issued an Evaluation Report on the Environmental Impact Statement for the Townsville Port Expansion Project in September 2017. The Commonwealth Minister for the Environment and Energy issued EPBC Approval No. 2011/5979 on 5 February 2018. Conditions of the EPBC approval include that the person undertaking the Project must submit an Offset Management Strategy (OMS) for approval to the Minister. Appendix A lists the conditions relevant to this OMS.

Under POTL’s Environmental Policy, “POTL is committed to sustainable development and operation through responsible environmental management”.

© Port of Townsville Limited
A.C.N. 130 077 673

Document Type
Strategy
Document No.
POT 2094
Revision
0
Date
26/02/2020
Page
Page 8 of 39

Only electronic copy on server is controlled. To ensure paper copy is current, check revision number against entry in Qudos - Master Document List
Figure 1: Locality Plan of the Port of Townsville & CU Project
2 OFFSET MANAGEMENT FRAMEWORK

POTL recognises that there may be environmental impacts from port development and is committed to providing offsets as described in the EPBC approval conditions. These would compensate for any residual impacts to MNES resulting from all stages of the PEP, including the CU Project, i.e. Stage 1 of PEP.

Potential for residual impacts to affect MNES as a result of the CU Project have been assessed through the PEP environmental impact assessment process and are described by the PEP AEIS. The AEIS took into account design and other strategies that demonstrated the principals of avoiding risk of impact and mitigating risks where avoidance was not fully feasible. Based on that assessment, the CU Project is not expected to have a significant residual impact on any MNES following the application of identified mitigation measures. Regardless, POTL is required under the EPBC Act conditions of approval to prepare this OMS to satisfy the CU Project’s MNES offset requirements, as stipulated in the EPBC Approval No. 2011/5979.

POTL’s overall approach is to deliver environmental offsets in a coordinated and strategic manner, through securing offsets to provide conservation outcomes in an efficient and timely manner.

2.1 PEP Project Staging

As detailed in the EIS and AEIS, the PEP is proposed to be developed progressively to match the demand for additional port facilities. The staging comprises 3 primary stages of development as follows:

- Stage 1 – Initial outer harbour reclamation, channel widening and Berth 12;
- Stage 2 – Ultimate outer harbour reclamation, Berths 14, 15 and 16; and
- Stage 3 – Channel deepening, Berths 17 and 18.

Further details of each stage are provided in the following sections and summarised in Table 1.

2.1.1 Stage 1

As detailed in Section 3, stage 1 of the PEP will involve:

- construction of perimeter revetment structures (rock wall) for the initial reclamation area;
- widening of the Platypus and Sea Channels; and
- development of Berth 12 (including dredging of the berth/basin area) and associated landside infrastructure.

Development of Berth 12, while part of PEP stage 1, will not be undertaken as part of the CU Project. As wharf infrastructure construction will be demand driven, this aspect of stage 1 will only proceed as required.

In meeting the statutory requirements, a separate / amended OMS will be developed for approval by the Minister or delegate prior to commencement of construction.

2.1.2 Stage 2

Stage 2 of the PEP will involve:

- construction of the remainder of the perimeter revetments for the ultimate outer harbour reclamation area as well as construction of the North Eastern Breakwater; and
• development of Berths 14, 15 and 16 in the outer harbour, including dredging of basin areas and associated landside infrastructure.

In meeting the statutory requirements, a separate / amended OMS will be developed for approval by the Minister or delegate prior to commencement of construction.

The main construction activities at this stage are intended to be similar to the construction undertaken in the CU Project (Stage 1). Development of Berths 14, 15 and 16 could be undertaken in one or more construction phases according to demand for facilities.

2.1.3 Stage 3
Prior to Stage 3 commencement, the outer harbour perimeter revetments and North Eastern Breakwater will be constructed. As such, Stage 3 development will only involve:

• deepening of the Platypus and Sea Channels; and
• development of Berth 17 and Berth 18 (including dredging of berth pockets) and associated landside infrastructure.

The Platypus and Sea Channels will be dredged to deepen the navigational channels, resulting in a likely extension of the length of the Sea Channel. Development of Berth 17 and Berth 18 could be undertaken in one or two construction phases according to demand for facilities. The berths will be located in a harbour basin with breakwater protection from waves which will enable them to be developed to suit a variety of port operations.

In meeting the statutory requirements, a separate / amended OMS will be developed for approval by the Minister or delegate prior to commencement of construction.

The indicative construction timing for each stage of the PEP is detailed in Table 1. This indicative program is dependent upon construction methodology and assessment and approval timeframes.

Table 1: Indicative PEP staging program

<table>
<thead>
<tr>
<th>Stage</th>
<th>Total duration</th>
<th>Indicative duration of main construction activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>4.5 years</td>
<td></td>
</tr>
<tr>
<td>Reclamation perimeter structures (Initial)*1</td>
<td>12 months</td>
<td>Construction of revetment structure to create a 62 ha reclamation.</td>
</tr>
<tr>
<td>Channel widening*</td>
<td>2 – 3 years</td>
<td>Dredging to widen Sea and Platypus Channels.</td>
</tr>
<tr>
<td>Berth 12**</td>
<td>TBC</td>
<td>Deepening of the existing outer harbour basin and dredging of basin area and pocket for Berth 12. Concurrent construction of wharf and landside infrastructure.</td>
</tr>
<tr>
<td>Stage 2**</td>
<td>4.5 years</td>
<td>Construction of remaining revetment structure to create a total 152 ha reclamation area for depositing of dredged material.</td>
</tr>
</tbody>
</table>

1 The scope of operations for this OMS
2.2 Delivery Approach to Offset Management Strategy

This OMS has been prepared to meet the relevant Conditions of EPBC Approval No. 2011/5979, as detailed in Appendix A.

POTL is proposing to stage the delivery of environmental offsets under the EPBC Act for the PEP based on the stages of development. Consistent with Condition 29, the OMS will be developed to be aligned with each stage and construction phase as the project progresses.

For future stages of the PEP, the planned works and environmental risks and impacts will be developed and incorporated into the OMS relevant to that stage for approval by the Minister. As the PEP is planned to be completed over a 30 year time frame, the development of specific and relevant offsets associated with each stage of works at that time will provide a more relevant and beneficial approach.

In meeting the statutory requirements, the residual significant impacts from the construction activities will be offset in accordance with the Offset Management Strategy prepared and approved for that development stage.

2.3 Steps in the Development of the OMS

The OMS has been developed, and will be revised further, in accordance with the following steps:

1. Development of a draft OMS for the relevant stage/phase of construction activities, utilising the services and input of specialised consultants where relevant.
2. Revision of the draft OMS through consultation with key stakeholders, incorporating their comments prior to lodgement with the Department of Agriculture, Water and the Environment (DAWE);
3. Independent peer review (per Condition 31) and input from the ITAC;
4. Consultation with DAWE and finalisation of OMS for approval by the Commonwealth Minister for the Environment (or delegate);
5. Implementation of OMS for the relevant stage of the PEP (per Condition 30);
6. Refinement of the OMS during implementation, where new data or information is received that will inform the most appropriate approach to offsetting any residual significant impact; and
7. Review and finalisation of the OMS for the relevant stage/phase of the project, including the identification of any improvements to be incorporated into future OMS approaches.

For all stages, the determination of residual significant impact caused by the activity and the offset to be applied will be established through formal monitoring and evaluation methods. As demonstrated in this OMS for the CU Project, detailed and rigorous monitoring programs will be implemented to inform the impact assessment process, to be implemented by suitably trained and experienced personnel.

Once impacts are determined, POTL will make use of contemporary offset approaches and methodologies to maximise the benefit to MNES. POTL will engage suitably qualified and experienced experts to ensure all offset determinations are accurate and to ensure that a net benefit to the outstanding universal value of the Great Barrier Reef is obtained. All offset methodologies will be discussed with the Department prior to finalisation of the relevant OMS for that stage.

No stage of development will commence until the OMS (for that stage) has been approved by the Minister or delegate (as per Condition 27).
3 CU PROJECT DESCRIPTION & OFFSET APPROACH

The CU Project construction activities in the marine environment primarily involves:

- Creation of a 62 hectare reclamation area (Figure 2) via the construction of rock walls and revetments forming receival ponds for beneficial re-use of all capital dredge material from the channel widening works (Phase 1). This OMS applies to the rock wall construction activities that comprise this project phase;

- Capital dredging works of approximately 3.9 million cubic metres from the channels using predominately a mechanical dredge (Phase 2), involving:
 - On its western side to widen the Platypus Channel (Figure 3) from 92 metres width to 180 metres (at the harbour entrance) tapering to 135 metres (at the seaward end);
 - On its eastern side to widen the Sea Channel (Figure 3) from 92 metres to 120 metres along its length; and

- Installation of navigation aids in alignment with the new channel configuration (Phase 2).

The capital dredging, construction activities and infrastructure development for the CU Project will occur inside the existing port limits, the designated water areas in which navigation falls under the control of the Regional Harbour Master.

The capital dredge campaign will last approximately 2 - 3 years and dredge approximately 3.9 million cubic metres from the channels predominantly using a mechanical dredge, with support from a trailer suction hopper dredge (TSHD). All the capital dredge material will be placed within the new reclamation area as part of land reclamation activities. Dewatering and ground improvement of emplaced sediments within this area will be undertaken.

Land-based construction activities will occur on the new reclamation area, namely Lot 794 on SP308904 adjacent to the northern extent of the East Port area, namely Lot 791 on EP2348 (the site) which is Strategic Port Land (Figure 2).
Figure 2: Site Plan for CU Project Rock Wall Construction & Reclamation Activities
Figure 3: Site Plan for CU Project Capital Dredging Activities
3.1 Scope and Objectives

This OMS is focussed on the potential residual significant impacts and environmental offsets associated with the CU Project’s first phase of the Stage 1 development – rock wall construction. This OMS addresses the monitoring and offset commitments relevant to rock wall construction impacts on seagrasses and listed dolphins.

Consistent with Condition 29, this OMS will be revised to incorporate the residual significant impacts and risks from the CU Project’s capital dredging activities (i.e. Phase 2) prior to commencement of the CU Project dredging campaign. Future iterations of this OMS will address in detail fine sediment release from dredging activities along with seagrass and inshore dolphin risks and impacts.

Similarly, the development of Berth 12 is also included in this OMS structure, however as it does not form part of CU Project, it contains no details on the approach for determining residual significant impact or any proposed offset arrangements. As no detailed design of the berth has been developed, the extent of construction activities and risks posed are not able to be determined.

The objective of this OMS is to compensate for the residual significant impacts of the action to achieve a net benefit to the outstanding universal value of the Great Barrier Reef World Heritage Area. This will be achieved by establishing a framework for:

- achieving a reduction in sediment entering the marine environment from the Burdekin, Ross and Black river basins, based on the amount of fine sediment determined in Dredging Completion Reports;
- compensating for residual impacts to listed dolphin species, and
- compensating for the loss of seagrass within the dredge and reclamation footprint; and
- ensuring offset actions align with the strategies and programs in the Reef 2050 Long-term Sustainability Plan.

POTL recognises the preference for both direct offsets as highly localised solutions that would be of maximum local benefit to Cleveland Bay. As part of the development of the OMS, POTL has examined and reviewed what other major marine infrastructure projects had proposed in terms of offsets, including the offset packages and requirements approved for similar infrastructure projects both within the region and across Australia.

In order to minimise residual impacts, POTL will actively manage risk and reduce the potential for negative impacts on the environment during the CU Project’s construction activities. This will be achieved by identifying and detailing appropriate and preferred environmental management controls for key activities to avoid or mitigate impacts. Environmental management plans have been developed to include measures that POTL believes are necessary and appropriate for protection of sensitive environmental receptors and to incorporate additional actions/controls as required by approvals/permits/licences that relate to the CU Project.

This OMS outlines:

- The offset funding and programs to address the requirements of Conditions 27 and 28;
- The alignment with strategies and programs for the Great Barrier Reef as outlined in Condition 27(e);
• A process for annual reviews, updates and reporting of delivery throughout the life of the approval as required by Conditions 27(f); and

• A proposed offset delivery approach as required by Condition 29.

The Reef 2050 Long-term Sustainability Plan and Commonwealth plans for listed dolphins are referenced (where relevant) to demonstrate how the CU Project’s offsets commitments are aligned with objectives and actions set out in these Commonwealth documents (as outlined in Condition 27(e)).

As noted previously, future stages of CU project and PEP will update this OMS to reflect the potential residual significant impacts associated with each relevant stage, consistent with Condition 29.

3.2 Development & Consultation of the OMS

This OMS has been developed in consultation with key stakeholders including:

• Representatives of the Traditional Owners, the Gurambilbarra Wulgurukaba people who are identified as the Native Title claimants covering the Project area;

• POTL’s Community Liaison Group (CLG), which comprises a number of community representatives;

• NQ Dry Tropics, the natural resource management organisation operating in the Burdekin Dry Tropics region;

• Environmental, engineering and modelling consultants (where applicable); and

• The CU Project Steering Committee, which comprises members of the POTL executive management team;

Traditional Owners were consulted in accordance with Condition 25 of EPBC Approval No. 2011/5979 during the development of this Strategy. This consultation involved the following:

• An initial presentation to Traditional Owners on the CU Project on 20 February 2018;

• A subsequent presentation of the draft OMS to the nominated Traditional Owners representatives on 30 May 2019. Comments raised about the Strategy were noted during the meeting, with the Traditional Owners Working Group asked to provide any further comments on the Strategy within a nominated timeframe. All comments received from Traditional Owners were compiled, with the only offset related comment related to how a seagrass offset is applied should it be required;

• An update regarding the consultation with the Traditional Owners Working Group was then presented to the CU Project Steering Committee, which formally noted that the Traditional Owners Working Group had been consulted in relation to the OMS.

Individual offset approaches (for rock wall and dredging activities) to be delivered under this OMS are described in Sections 4 and 5.

3.3 Independent Peer Review of the OMS

In accordance with Condition 31 of EPBC Approval No. 2011/5979, the draft OMS was independently peer reviewed by the GHD Pty Ltd, before submission to the Minister for approval. This review included an analysis of the effectiveness of the outcomes, targets or management measures identified in the Strategy (per Condition 32). Additionally, this OMS was provided to the CU Project’s Independent Technical Advisory
Committee (ITAC) for input and advice where their expertise was applicable. A copy of all advice and recommendations made by the independent peer reviewers was provided to the Minister on 14 January 2020 (per Condition 33).

3.4 Finalisation & Submission of the OMS

The draft OMS was submitted on 06/08/2019 to the Commonwealth Minister for the Environment to meet the submission timing requirements of EPBC Approval No. 2011/5979 Conditions 27 and 29.

3.5 Implementation of the OMS

Offset programs will be implemented in a staged process (as detailed in other sections of this Strategy). This OMS will not be implemented or amended in any way that contravenes any conditions of the EPBC approval or any other legislative requirements.

Where this Strategy sets out that a third party will undertake an offset program, POTL will advise that third party of the requirements and POTL will implement the appropriate reasonable steps to facilitate that party conducting the offset program (i.e., formal contractual arrangements).

3.5.1 Funding & Timing Arrangements

POTL has committed funding in the CU Project’s budget to achieve full implementation of all offset programs in this OMS. A provisional budget has also been set aside for forward budget planning for administration of the OMS Reporting and Responsibility.

Identification of offsets and delivery of the OMS will be completed in accordance with the requirements of the EPBC Act approval conditions.

As required in legislative conditions, an annual compliance report will be produced within three months of every 12 month anniversary of commencement of the action. The report will include, but not be limited to:

i) Compliance with the conditions of the EPBC Approval 2011/5979;

ii) Information on any impacts detected through relevant monitoring programs (e.g., IDMP, seagrass survey etc.)

iii) Outcomes of the annual review of the OMS; and

iv) A description of any offset actions and detail relating to how they align with broader strategies and programs for the Great Barrier Reef (e.g., Reef 2050 long term sustainability plan) environmental impacts identified through project monitoring and the offset actions implemented to address.

Copies of annual report(s) will be kept on-site, will be published on the CU Project website in accordance with Condition 36 of EPBC Approval No. 2011/5979 and will be available for regulatory inspection upon request.

POTL will also make any relevant amendments to the environmental management plans (MEMP/DMP) and any monitoring programs as required as a result of the implementation of this OMS.
3.6 Review & Revision of the OMS

This OMS will be subject to annual review.

POTL will conduct activities in an environmentally responsible manner and to this end will conduct annual reviews of the performance of the OMS as part of its continuous improvement process. This review will address matters such as the overall effectiveness of the Strategy, environmental results from the marine water, seagrass, coral and inshore dolphin monitoring programs including performance of offset programs. The review process is outlined in Figure 4.

During delivery, review and amendment will also be completed to ensure the Strategy remains relevant and achieves the required objectives, inclusive of identification and implementation of any new or changing environmental risks and mitigation actions. Recommendations on improvements or amendments will be reported as part of the annual reporting process.

Changes to the OMS may be developed and implemented in consultation with relevant regulators and other stakeholders over time. Material revisions to the OMS and amendments to offset programs will only be made with the approval of the Minister (or delegate).

Editorial or other improvements to the OMS that do not affect the intent of the OMS will be made as required throughout delivery and noted for the Minister during annual compliance reporting. If the revised OMS meets Condition 38 of EPBC Approval No. 2011/5979, DAWE will be notified in accordance with the requirements of Condition 38 of the EPBC Approval. The outcomes of the offset programs will be made publicly available on the CU Project’s website as part of the review of the performance of the OMS.
3.7 Records

During the CU Project, records will be maintained as evidence of compliance with environmental requirements, including measures taken to implement the OMS. All records will be maintained according to POTL’s Record Keeping Procedures and be kept for a minimum of five (5) years after the completion of the project or as required by the legislative conditions. Records will allow internal and external auditing and encourage the use of preventative action, as well as corrective action following any non-conformances. Records will be made available to the regulators as requested.

3.8 Uncertainty associated with OMS success

The CU Project will not be without uncertainties that could influence the ability of POTL to fully implement the OMS. These uncertainties are varied, with the key risks to the achievement of the plan detailed in Table 2. Control measures and risk ratings are also presented. All relevant steps will be taken to minimise the uncertainty associated with the success of this strategy, however given the dynamic environment in which the project is being undertaken, some uncertainty will remain.
<table>
<thead>
<tr>
<th>Element</th>
<th>Impacting Process/ Potential Impact</th>
<th>Risk Receptor</th>
<th>Raw Likelihood / Consequence</th>
<th>Mitigation Measures</th>
<th>Residual Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data uncertainty / Inaccuracy</td>
<td>Failure to determine residual significant impacts due to data or information inaccuracies
Environmental impacts occur due to incomplete understanding/ misunderstanding of impact.
Establishing Project contribution to impact if residual significant impact detected (versus non-project causes).</td>
<td>Sensitive receptors of Cleveland Bay</td>
<td>High (Likely / Major)</td>
<td>POTL will use experienced contractors to design and implement monitoring programs to ensure accuracy and rigorousness.
Extensive data collection occurred prior to commencement and externally reviewed through EIS/AEIS.
Baseline data collected from key monitoring programs prior to commencement for comparison
Expert input into ongoing monitoring programs to ensure robustness of data, particularly through ITAC review and involvement and through peer review of monitoring plans.
Hydrodynamic modelling validation to be completed to validate the predictions made for potential impacts from the CU Project.</td>
<td>Substantial (Likely / Serious)</td>
</tr>
<tr>
<td>Failure to deliver offsets detailed in the Strategy</td>
<td>Offsets applied are not successful in achieving outcomes
No net benefit achieved.
Breach of approval condition</td>
<td>Sensitive Receptors of Cleveland Bay</td>
<td>Substantial (Possible / Major)</td>
<td>POTL will implement a comprehensive monitoring and auditing program to review and confirm compliance with implementation of the controls in the plan.
Delivery of offset program to utilise qualified personnel and organisations to ensure professional and comprehensive delivery (via formal contractual arrangements).
Annual compliance review against approval conditions and OMS will be undertaken to demonstrate compliance. Reporting to regulators.</td>
<td>Medium (unlikely / Serious)</td>
</tr>
<tr>
<td>Element</td>
<td>Impacting Process/ Potential Impact</td>
<td>Risk Receptor</td>
<td>Raw Likelihood / Consequence</td>
<td>Mitigation Measures</td>
<td>Residual Risk</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>Project monitoring not delivered</td>
<td>Monitoring programs not implemented due to lack of commitment, funding and resourcing</td>
<td>Sensitive receptors of Cleveland Bay</td>
<td>Medium (Possible / Serious)</td>
<td>POTL will use experienced contractors to design and implement monitoring programs to ensure accuracy and rigorousness.</td>
<td>Medium (unlikely / Serious)</td>
</tr>
<tr>
<td></td>
<td>Monitoring program not conducted due to failure to engage contractors or contractor poor performance</td>
<td>Consultant responsibilities</td>
<td></td>
<td>Baseline data collected from key monitoring programs prior to commencement for comparison.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failure to detect residual significant impact occur due to incomplete understanding of impact</td>
<td>Compliance & complaints record</td>
<td></td>
<td>Expert input into ongoing monitoring programs to ensure robustness of data, particularly through ITAC review and involvement and through peer review of monitoring plans.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detailed contract management process for key monitoring programs to ensure delivery of the program and identification of any limitations early.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CU Environmental staff (Manager and Advisors) remain across all monitoring programs to ensure continuation of programs in the absence of a staff member.</td>
<td></td>
</tr>
<tr>
<td>Loss of funding commitment to deliver project</td>
<td>Project ceases part way through delivery, or delivery reduced due to loss of funding.</td>
<td>Workforce</td>
<td>Medium (Unlikely / Major)</td>
<td>Funding arrangements established prior to project commencement, including significant Government funding commitments (both Qld and Commonwealth)</td>
<td>Low (Unlikely / Minor)</td>
</tr>
<tr>
<td></td>
<td>Insufficient funding to deliver monitoring for residual significant impact or to fund offset programs.</td>
<td>Sensitive receptors of Cleveland Bay</td>
<td></td>
<td>Regular reporting to Government to justify funding and demonstrating delivery of the project.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breach of approval condition</td>
<td>Compliance record / Public reputation</td>
<td></td>
<td>POTL commitment to deliver project and will be responsible for any funding shortfall.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Annual compliance review against approval conditions and OMS will be undertaken to demonstrate compliance</td>
<td></td>
</tr>
</tbody>
</table>
4 ROCK WALL CONSTRUCTION OFFSETS

The PEP EIS/AEIS identified project related risks and potential impacts to both seagrass and listed dolphin species associated with the construction of the reclamation area rock wall. The following sections (4.1, 4.3 and 4.3) discuss the residual risks, method of offset (or offset approach), determination of residual risk and offset need associated with fine sediment, seagrass, and listed dolphin species, as well as POTL’s offset commitments.

4.1 Fine Sediment Offsets

4.1.1 Residual Risks
The PEP EIS/AEIS did not predict a residual risk for fine sediments for the construction of the rock wall.

4.1.2 Offset Commitments

<table>
<thead>
<tr>
<th>Fine Sediment</th>
<th>Reclamation Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Requirement</td>
<td></td>
</tr>
<tr>
<td>Condition 27d</td>
<td>details of how the person taking the action will achieve a reduction of sediment entering the marine environment from the Burdekin, Ross and Black river basins, based on the amount of fine sediment determined in Dredging Completion Reports required under Condition 26(b)(i);</td>
</tr>
<tr>
<td>Condition 27b</td>
<td>details on how the person taking the action will achieve a reduction of sediment entering the marine environment from the Burdekin, Ross and Black river basins, if monitoring undertaken in accordance with condition 50) identifies actual lethal or sub‐lethal impacts on sensitive habitat sites, including seagrasses or corals. The sediment offset must be based on the amount of fine sediment that was available for resuspension before commencement of the relevant stage of the action, as determined in Dredging Completion Reports required under Condition 26(b)(ii);</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset Calculation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As required by the conditions of the EPBC approval, a method for defining, delineating and quantifying the volume of fine sediment returned to the marine environment during capital dredging is being developed.</td>
<td></td>
</tr>
</tbody>
</table>

POTL has engaged the services of consultants with expertise in hydrodynamic/numerical modelling, geotechnical assessment and practical knowledge of dredging practices to support the development of the methodology for fine sediment calculation. The methodology proposed includes the delineation between seabed material that has, and has not, been available for re-suspension and understanding of behaviour of materials dredged utilising different dredging techniques.

The intention of this assessment will be to calculate the potential volume of fine sediment:
- determined in Dredging Completion Reports required under Condition 26(b)(i); and
- that was available for resuspension before commencement of the relevant stage of the action, as determined in Dredging Completion Reports required under Condition 26(b)(ii);
- which will form the basis of the offset amount required for the release of fine sediment to the marine environment.
This methodology is currently being developed and will be independently peer reviewed before being provided to DAWE for review. This is expected to occur by the end of 2020.

Further to the approach detailed above, baseline assessments of the condition of seagrass and coral communities are currently underway and will be conducted through the CU Project Seagrass and Coral Monitoring Programs. Both of these programs involve multi-year monitoring programs across a number of impact and reference sites in order to identify whether actual lethal or sub-lethal impacts on sensitive habitat sites, including seagrasses or corals, have occurred as a result of the Project.

Where such impacts are determined, as per condition 27b of EPBC Approval No. 2011/5979, the fine sediment methodology will be used to determine the volume of fine sediment to be offset via reduction of sediment entering the marine environment for the Burdekin, Ross and Black River systems.

Offset Method

Offsets are able to be provided for via reef trust or through directly supporting a reduction of sediment entering the marine environment from the Burdekin, Ross and Black river basins.

POTL will offset fine sediment through achieving a reduction of sediment entering the marine environment from the Burdekin, Ross and Black river basins as this is within our local region particularly as the Burdekin catchment is the largest contributor of anthropogenic fine sediment loads of the 35 catchments that drain to the GBR.

We have commenced discussions with local natural resource management groups, however, are unable to progress formalising arrangements until the fine sediment methodology is defined and we are able to provide an indication of the amounts of fine sediment that would need to be offset.

Offsets would be aligned to the existing prioritisation matrix that has been developed to ensure efficient and cost-effective delivery of sediment outcomes. Work in this catchment would contribute significantly to implementing the Burdekin Water Quality Improvement Plan.

Currently there are a range of project delivery options that are known to provide a measurable sediment reduction outcome that will achieve POTL’s sediment reduction needs. These options are large scale gully remediation; improved grazing land management; and stream bank erosion. Once an indication of the amounts of fine sediment that need to be offset is known a final proposal will be developed and detail will be provided.

The Paddock to Reef (P2R) Integrated Monitoring, Modelling and Reporting Program (Paddock to Reef program) will be utilised to monitor, model and evaluate the delivery of sediment outcomes.

Reef 2050 long term sustainability plan

As outlined above it is proposed to utilise Paddock to Reef which is a centralised point for measuring and reporting on progress towards the goal and targets in the Australian Government’s Great Barrier Reef 2050 Long-term Sustainability Plan. As Paddock to Reef is funded jointly by the Australian and Queensland governments to collect and integrate data and information on agricultural management practices, catchment indicators, catchment loads and the health of the GBR this strongly aligns with the Reef 2050 long term sustainability plan.
Work in this will contribute to the following Reef 2050 actions

- **MTR WQA1** Implement the Reef 2050 Water Quality Improvement Plan 2010-2022 (Note this Action encompasses the following updated action: -
 - **WQA7** Finalise and implement plans (e.g. Water Quality Improvement Plans and Healthy Waters Management Plans) for Reef catchments and key coastal areas, identifying implementation priorities for protection of the Reef.
 - **WQA8** Increase industry participation in regional water quality improvement initiatives and partnerships aimed at managing, monitoring and reporting of water quality.
 - **WQA2** Continue improvement in water quality from broadscale land use through implementation of Reef Water Quality Protection Plan 2013 actions.
- **EHA6** (MTR GA4) Further develop regionally relevant standards for ecosystem health (desired state, critical thresholds and health indicators) that inform and support the Integrated Monitoring and Reporting Program.
- **EHA7** Prioritise functional ecosystems critical to Reef health in each region for their protection, restoration and management.
- **EHA20** Strengthen the Queensland Government’s vegetation management legislation to protect remnant and high value regrowth native vegetation, including in riparian zones.

Determination of Offset need

A Dredging Completion Report is to be developed at the completion of capital dredging for each stage of the Action (Condition 26).

This dredging completion report will quantify the total amount of material dredged and will inform the total fine sediment released calculation, based on the quantification methodology developed.

No dredging is to be undertaken for the reclamation area.

Offset outcome

Not relevant as no dredging undertaken for reclamation area

Delivery

Not relevant as no dredging and therefore no offset required for reclamation area

Verification of offset

Not relevant as no dredging and therefore no offset required for reclamation area

Reporting

Will be captured in annual reviews of the performance of the OMS and submitted to the Department and published on the website (in line with condition 27 (f))
4.2 Seagrass Offsets

4.2.1 Residual Risks
The PEP EIS/AEIS predicted the residual risks listed in Table 3 relating to the loss of seagrasses associated with the CU Project’s construction and reclamation activities.

Table 3: Residual Risks Associated with Seagrasses

<table>
<thead>
<tr>
<th>Activity</th>
<th>Risk(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reclamation (direct impact – loss of habitat)</td>
<td>A permanent, irreversible impact will occur as a result of the construction of the CU reclamation structure if seagrasses are present in the footprint of this area. No seagrass communities have been observed within the footprint as part of current monitoring or historically.</td>
</tr>
</tbody>
</table>

Overall, the residual risk rating for seagrass is classified as negligible, given the historical surveying of the CU Project reclamation area has identified a lack of seagrass in the area.

4.2.2 Offset Commitments

<table>
<thead>
<tr>
<th>Loss of seagrass within the reclamation footprint</th>
<th>Reclamation Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Requirement</td>
<td>Condition 27d. If seagrasses are identified in the dredge footprint or reclamation area from surveys undertaken in accordance with Conditions 3 and 9, details of how the person taking the action will compensate for the loss of seagrasses within the dredge and reclamation footprints, taking account of the density of seagrass coverage</td>
</tr>
<tr>
<td>Offset Calculation</td>
<td>Calculation of the required offsets would be via the established Queensland Government offsets calculator https://apps.des.qld.gov.au/offsets-calculator/. This calculator is based on the total cover to be disturbed and will be informed by the seagrass survey of the footprint area.</td>
</tr>
<tr>
<td>Offset Method</td>
<td>Offsets are able to be provided for by way of Financial settlement, or proponent driven offset (on-ground works) or a combination of both. Method of delivery would need to be resolved with Queensland Government and would be informed by the quantum. Strong preference would be that any offsets would be implemented within the GBRWHA where possible. Offsets are verified by Queensland Government prior to the offset being discharged.</td>
</tr>
<tr>
<td>Reef 2050 long term sustainability plan</td>
<td>Work in this will contribute to the following Reef 2050 actions - EHA23 Implement coastal planning laws based on the best available science, which take into account expected sea level rise, protect ecologically significant areas such as wetlands, prohibit new development in high-hazard greenfield areas and protect the Great Barrier Reef World Heritage Area. - EHA29 (MTR GA4) Establish condition and resilience indicators for coral reefs, seagrass, islands, estuaries, shoals and inter-reefal shelf habitats.</td>
</tr>
<tr>
<td>Determination of Offset need</td>
<td>A seagrass survey of the reclamation footprint (Rock wall and reclamation area - approx. 62Ha) was undertaken in October 2018 (to meet Condition 9 of EPBC...</td>
</tr>
</tbody>
</table>
Approval No. 2011/5979). No seagrasses were identified in the reclamation footprint during this survey.

This survey was undertaken by James Cook University TropWATER, one of the leading Australian consultants for seagrass monitoring hence high confidence in the results. Report provided to DAWE (30/9/2019).

<table>
<thead>
<tr>
<th>Offset outcome</th>
<th>No offset required for seagrass in the 62Ha reclamation area as no seagrasses are present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>Not relevant as no offset required for reclamation area</td>
</tr>
<tr>
<td>Verification of offset</td>
<td>Not relevant as no offset required for reclamation area</td>
</tr>
<tr>
<td>Reporting</td>
<td>Copy of survey report provided to DAWE (30/9/2019). Will be captured in annual reviews of the performance of the OMS and submitted to the Department and published on the website (in line with condition 27 (f))</td>
</tr>
</tbody>
</table>

4.3 Listed Dolphins Offsets

4.3.1 Residual Risks

The PEP EIS/AEIS predicted the residual risks listed in Table 4 relating to listed dolphins, namely the Australian snubfin dolphin (*Orcaella heinsohni*) and the Indo-Pacific humpback dolphin (*Sousa chinensis*), associated with the CU Project’s construction and reclamation activities.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Risk(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine construction activities (direct impact – loss of food resources and habitat)</td>
<td>The construction of the CU reclamation structure will result in the permanent localised loss of approximately 62 hectares of unvegetated soft benthic substrate, including covering existing rock walls with capital dredge material and constructing new longer walls. The general habitats in the footprint of the seabed being reclaimed are characterised as having low to moderate biodiversity values but are contained within the core habitat area of the Australian snubfin and other coastal dolphin species. They represent locally important foraging areas for both listed species, particularly around the rock walls where fish and other aquatic life dwell. The habitat types (sediment types, hydrodynamics, depths, water quality) and benthic communities present in the area are similar throughout the nearshore environments of the wider port area and are not known or likely to contain unique feeding resources or functional values. Construction and reclamation activities will result in potential interest from dolphins due to their inquisitive nature and because the construction works will attract smaller fish in turn attracting dolphins. During the CU Project, these species are assumed to continue to use the existing habitats throughout Cleveland Bay; their known core use area west of Cape Pallarenda; and elsewhere in the broader home range (i.e. outside the Townsville region). It is also expected that they will frequent the areas near construction (as experienced in previous marine construction projects in Cleveland Bay). As discussed in the EIS, both species are opportunistic foragers and have wide home ranges. Following completion of the CU Project, it is expected they will continue to visit the new reclamation structure, based on current usage patterns in the Port.</td>
</tr>
<tr>
<td>Noise and vibration</td>
<td>The increase in noise during the rock wall construction phase may lead to listed dolphins temporarily avoiding affected areas. Both dolphin species use sound for</td>
</tr>
<tr>
<td>Activity</td>
<td>Risk(s)</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>navigation, feeding and avoiding predators (through echo location) and also for communication. Construction works are expected to generate noise that may impact the ability of dolphins to communicate, navigate and echo locate by sound. During the construction period, nearshore dolphins may avoid the CU reclamation footprint at times when noisy, or otherwise disturbing, activities are underway (e.g. limited pile driving). This will lead to the displacement of these species in waters directly adjacent to the site during this phase of the Project. However it is expected these species will move to one of their other habitats within their broader home range during potentially noisy activities associated with rock wall construction. Noise disturbance will be temporary and intermittent throughout the CU Project.</td>
</tr>
<tr>
<td>Leaks and spills</td>
<td>There will be the potential for hydrocarbon or other contaminant spill from vessels, plant or on-site facilities, potentially leading to direct effects to listed dolphins or their prey during the rock wall construction phase.</td>
</tr>
<tr>
<td>Waste management</td>
<td>A potential increase in rubbish production during the rock wall construction phase may increase the risk of entanglement and/or ingestion of marine debris by listed dolphins.</td>
</tr>
<tr>
<td>Physical presence of marine infrastructure</td>
<td>During the rock wall construction phase, the listed dolphins may be temporarily and intermittently displaced from the area adjacent to the CU reclamation structure. However, the intensity, scale, magnitude and duration of this impact are not expected to preclude their use and transiting of the area during the construction phase and will not preclude future use of the habitat (direct reclamation footprint excluded) once works are completed. Based on observations of dolphins within and adjacent to existing berth and breakwater areas (GHD, 2011 & 2012), it is expected that the dolphins will use waters in the vicinity of the new CU reclamation structure in the same manner as the existing POTL breakwaters and return to forage once construction has been completed. Dolphins will need to swim a slightly greater distance around the CU reclamation area to move between the feeding areas at the Ross River and Ross Creek mouths. No significant impacts to broad-scale movements are expected (i.e. to and from the wider Cleveland Bay, seagrass meadows, or core area west of Cape Pallarenda). The rock wall construction phase will not fragment the local populations of these species, nor pose ecologically significant impediments. Based on the monitoring data and observations undertaken by GHD and the Port (GHD 2011, 2012), the species appear to be able to successfully co-exist with the existing port (activities and infrastructure) and to accommodate the impacts of major expansion projects including the Eastern Reclamation, TPIX and Marine Precinct. To this end, there is anecdotal information that the dolphins will also preferentially use the artificial rock wall habitat from time to time to augment their feeding habitat and will also seek respite/resting opportunities in the more confined waters within the breakwaters or dredged channels.</td>
</tr>
</tbody>
</table>
In summary, the loss of food resources and habitat, the noise-related activities and potential hydrocarbon/contaminant spills were predicted to pose a medium residual risk to the Australian Snubfin dolphin and the Indo-Pacific Humpback dolphin following the implementation of mitigation measures as detailed in the Marine Environment Management Plan (POT 2135).

4.3.2 Offsets Commitments

<table>
<thead>
<tr>
<th>Impacts to listed dolphin species</th>
<th>Reclamation area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Requirement</td>
<td>Condition 27c. If residual impacts to listed dolphin species in Cleveland Bay from the proposed action are identified through monitoring undertaken in accordance with Condition 24, details of how the person taking the action will compensate for the residual impacts to listed dolphin species;</td>
</tr>
<tr>
<td>Offset Calculation</td>
<td>A key limitation in relation to the Inshore Dolphin Monitoring Program and offsets is having statistical power in the population and behavioural data collected to detect any impact, other than catastrophic impact. Given the mobility of marine mammals and the small populations within the survey area, there is the real possibility that the dolphin monitoring will be limited in its ability to detect impact with any statistical robustness. Further to this limitation, given the complexity of ecological and environmental variability in marine ecosystems, separating the effects of human activities on coastal inshore dolphins from natural ecological and environmental variability, or project impacts from non-project impacts, will be difficult.</td>
</tr>
<tr>
<td></td>
<td>This limitation in the ability to detect impact has been highlighted by the contractor undertaking the dolphin monitoring and confirmed by the CU Project ITAC megafauna specialist. The ITAC also noted that given the limited knowledge and understanding of the species in Cleveland Bay, the monitoring program will provide a significant science benefit in terms of building on the scientific knowledge of the species in Cleveland Bay.</td>
</tr>
<tr>
<td></td>
<td>Residual impact to listed dolphin species will be determined through the Inshore Dolphin Monitoring Plan (IDMP) in close consultation with the ITAC and DAWE.</td>
</tr>
<tr>
<td></td>
<td>The Inshore Dolphin Monitoring Plan was developed with an awareness of the above limitations and includes the following to address these limitations:</td>
</tr>
<tr>
<td></td>
<td>• A design that addresses mobility of populations by the inclusion of the primary site (Cleveland Bay) and adjacent bays to the north and south (where able to be accessed). This will assist in distinguishing movements between sites and temporary emigration between primary samples, from demographic changes in Cleveland Bay that otherwise might be attributed to other factors (i.e., decrease in survival);</td>
</tr>
<tr>
<td></td>
<td>• Alignment of the surveys to be conducted at the same time every year. This will remove the confounding effect of ecological and environmental/seasonal variability;</td>
</tr>
<tr>
<td></td>
<td>• A design that has been developed with the intention of assessing abundance estimates with a high level of precision (CV ~0.1); and</td>
</tr>
<tr>
<td></td>
<td>• Selection of highly experienced contractors, with a highly qualified, multidisciplinary team that includes two of the three leading experts in Australia.</td>
</tr>
</tbody>
</table>
Offset Method

Marine offsets are not as mature as terrestrial offsets with little available literature on primary offsets applied for addressing residual impacts on dolphin species, or any standardised calculation approach for determining a suitable offset.

As such the methodologies for calculating and implementing marine offsets is less certain. Particularly for actions that are a direct benefit to the species/habitat of inshore dolphins. Direct offsets are more preferable to indirect offsets however where there are known gaps in dolphin habitat protection, an indirect offset may be viable if it has direct linkage from pathway to impact.

If an impact is detected through implementing the IDMP, POTL will undertake the following:
- Notify ITAC and regulators
- Undertake consultation to identify suitable options for offsetting (consultation will be with relevant experts, ITAC and Regulators). Including defining clear objectives to ensure the process is suitably targeted, noting a direct linkage to impact;
- With 3 months of notification formally provide options to the Department for approval for offset projects that align with the above objectives;
- Following option approval prepare a project plan for dolphin offset delivery and submit for approval (note this may be a standalone plan or incorporated within the OMS)
- POTL to implement the approved project plan

Reef 2050 long term sustainability plan

Offsets (if required) will contribute to one or more of the following Reef 2050 actions: BA12, BA15 and EBA6 (c), with priority to further;
- improving the management of key habitat for inshore dolphins;
- reducing cumulative impacts on coastal dolphin populations and their supporting habitats especially Australian humpback and snubfin dolphins;
- research, and implementing improved measures, to reduce cumulative impacts to listed dolphins from shipping.

Determination of Offset need

Offset will be required if an impact is determined as a result of implementing the approved Inshore Dolphin Monitoring Plan.

Offset outcome

To be determined on the basis of impacts detected implementing the approved Inshore Dolphin Monitoring Plan.

Delivery

To be developed as part of a dolphin offset project plan, if needed.

Verification of offset

To be developed as part of a dolphin offset project plan, if needed.

Reporting

Will be captured in annual reviews of the performance of the OMS and submitted to the Department and published on the website (in line with condition 27 (f))

Reported to the Department if the Inshore Dolphin Monitoring Plan identifies an residual significant impact.

4.3.3 Limitation – Ability to detect impact

This limitation in the ability to detect impact has been highlighted by the contractor undertaking the dolphin monitoring and confirmed by the CU Project ITAC megafauna specialist. The ITAC also noted that given the limited knowledge and understanding of the species in Cleveland Bay, the monitoring program will provide a significant science benefit in terms of building on the scientific knowledge of the species in Cleveland Bay.
5 DREDGING OFFSETS

As noted earlier, this version of the OMS is focused on the rock wall construction activity only and will be revised to provide details of the CU Project dredging related impacts and offsets prior to commencement of the dredging activity.

6 BERTH 12 DEVELOPMENT OFFSETS

As noted earlier, this version of the OMS is focused on the rock wall construction activity only and will be revised to provide details of relevant environmental risks and offset requirements with the different phases of construction associated with PEP Stage 1.
7 REFERENCES

Department of Environment, 2013. *Coordinated research framework to assess the national conservation status of Australian snubfin dolphins (Orcaella heinsohni) and other tropical inshore dolphins*. Commonwealth of Australia, Canberra.

APPENDIX A

EPBC Approval Conditions Reference Table
OMS relevant EPBC Approval Conditions

<table>
<thead>
<tr>
<th>Ref</th>
<th>Condition No.</th>
<th>Condition Requirement</th>
<th>OMS Reference</th>
<th>Demonstration of how the plan addresses the condition requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>The person taking the action must provide an opportunity for Indigenous people to comment on the management plans and strategies specified in this approval during their preparation. The person taking the action must provide to the Minister a copy of the outcomes of consultation with Indigenous people, and an explanation of how any comments have been addressed in the management plans and strategies.</td>
<td>3.2</td>
<td>Section 4.2 detail the consultation with indigenous stakeholders undertaken in the development of the OMS.</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>To compensate for residual significant impacts of the action and to achieve a net benefit to the outstanding universal value of the Great Barrier Reef World Heritage Area, the person taking the action must submit an Offset Management Strategy (OMS) for the Minister’s approval before commencement of the action. The person taking the action must not commence the action unless the Minister has approved the OMS. The OMS must include the following:</td>
<td>3.4</td>
<td>Section 3.4 and the document approval page details the submitting and approval of the OMS to the Department. The action will not commence until the OMS is approved.</td>
</tr>
<tr>
<td>3</td>
<td>27a</td>
<td>Details of how the person taking the action will achieve a reduction of sediment entering the marine environment from the Burdekin, Ross and Black river basins, based on the amount of fine sediment determined in Dredging Completion Reports required under Condition 26(b)(i);</td>
<td>5.1.2</td>
<td>Section 5.1.2 provides details of the fine sediment offset to be implemented as part of the CU Project (to be revised with detail in the next draft).</td>
</tr>
<tr>
<td>4</td>
<td>27b</td>
<td>Details on how the person taking the action will achieve a reduction of sediment entering the marine environment from the Burdekin, Ross and Black river basins, if monitoring undertaken in accordance with condition 5(j) identifies actual lethal or sub-lethal impacts on sensitive habitat sites, including seagrasses or corals. The sediment offset must be based on the amount of fine sediment that was available for resuspension before commencement of the relevant stage</td>
<td>5.1.2</td>
<td>Section 5.1.2 provides details of the fine sediment offset to be implemented as part of the CU Project (to be revised with detail in the next draft).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 5 | 27c | if residual impacts to listed dolphin species in Cleveland Bay from the proposed action are identified through monitoring undertaken in accordance with Condition 24, details of how the person taking the action will compensate for the residual impacts to listed dolphin species; | 4.2.2 | Section 4.2.2 provides details of the intended offsets to be applied should there be a residual significant impact on listed dolphin species from rock wall construction activities.
5.3.2 | Section 5.3.2 provides details of the intended offsets to be applied should there be a residual significant impact on listed dolphin species from dredging activities. |
| 6 | 27d | if seagrasses are identified in the dredge footprint or reclamation area from surveys undertaken in accordance with Conditions 3 and 9, details of how the person taking the action will compensate for the loss of seagrasses within the dredge and reclamation footprints, taking account of the density of seagrass coverage; | 4.1.2 | Section 4.1.2 provides details of no seagrass being found in the footprint of the reclamation area and therefore no offset for seagrass loss is required.
5.2.2 | Section 5.2.2 provides details of the intended offsets to be applied should there be a seagrass found in the footprint of the dredging activities. |
| 7 | 27e | details of how the proposed offset actions or contributions to programs align with the broader strategies and programs for the Great Barrier Reef, including but not limited to the Reef 2050 Long-term Sustainability Plan; and | 4 | Section 4 and 5 detail the offset assessment and program associated with Rock wall construction activities and dredging respectively.
5 | The proposed offsets detail where they align with specific strategies and programs for the GBR, including the Reef 2050 Long term Sustainability Plan. |
| 8 | 27f | a process for annual reviews of the performance of the OMS for the life of the approval including timeframes for conducting the reviews and for publishing the findings of each review on the website of the person taking the action. | 3.6 | Section 3.6 and 3.7 provides details of the annual review of the OMS and other potential reasons for review. This includes publishing of the compliance and other review outcomes on the POTL Website.
3.7 |
<p>| 9 | 28 | The person taking the action may provide a contribution to the Reef Trust or equivalent to meet the requirements of Condition 27 in whole or part. The OMS must detail how the proposed contributions to Reef Trust will meet the requirements of Condition 27 before submission of the OMS to the Minister for approval. | N/A | At this point, a contribution to Reef Trust is not included as part of the OMS. |
| 10 | 29 | The OMS may be submitted to the Minister in stages, but the OMS must be submitted before the commencement of each stage, and the respective stages must not commence until the Minister has approved the respective version of the OMS. | 2.2 | Section 2.2 and 2.3 detail the staging of the PEP and the delivery of the OMS to the Department in line with the specific stage, or phase of construction. Section 2.4 details the review of the OMS for each stage and that no works for each stage will commence until the OMS for that stage is approved. |
| 11 | 30 | The approved OMS must be implemented. | 3.5 | Section 3.5 establishes that the OMS will be implemented as per the documented actions. |
| 12 | 31 | Unless otherwise agreed in writing by the Minister, each plan or strategy specified in the conditions must be independently peer reviewed before submission to the Minister for approval. | 3.3 | Section 3.3 details the peer review undertaken for the OMS. |
| 13 | 32 | The reviews undertaken for Condition 31 must include an analysis of the effectiveness of the avoidance and mitigation measures in meeting the outcomes, targets or management measures identified in the plan/s or strategies being reviewed. | 3.3 | Section 3.3 details the peer review undertaken for the OMS. |
| 14 | 33 | Unless otherwise specified in these conditions or notified in writing by the Minister, the person taking the action must provide to the Minister a copy of all advice and recommendations made by the independent peer reviewer(s) with the plan or strategy, and an explanation of how the advice and recommendations will be implemented, or an explanation of why the person taking the action does not propose to implement certain recommendations. | 3.3 | Section 3.3 details the peer review undertaken for the OMS. The peer review comments and POTL advice and response against each comment was supplied to the Department on 14 January 2020. |
| 15 | 35 | The person taking the action must maintain accurate records substantiating all activities associated with, or relevant to, the conditions of approval, including measures taken to implement the management plans and strategy required by this approval, and make them available upon request to the Department. Such records may be subject to audit by the Department or an independent auditor in accordance with section 458 of the EPBC Act, or used to verify compliance with the conditions of approval. | 3.8 | Section 3.8 outlines the records management system in operation for the CU Project in line with the POTL Quality Management System. |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>36</td>
<td>Within three months of every 12 month anniversary of the commencement of the action, the person taking the action must publish a report on their website addressing compliance with each of the conditions of this approval, including implementation of any management plans as specified in the conditions. Documentary evidence providing proof of the date of publication and non-compliance with any of the conditions of this approval must be provided to the Department at the same time as the compliance report is published.</td>
</tr>
<tr>
<td>18</td>
<td>3.6</td>
<td>Section 3.6 details the annual reporting for the project, covering a compliance review against the Approval conditions, outcomes of environmental monitoring and OMS periodic review results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Section 3.6 details the annual reporting for the project, covering a compliance review against the Approval conditions, outcomes of environmental monitoring and OMS periodic review results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Document Control Sheet</th>
<th>The document approval page details the date of posting of the OPMS onto the POTL website.</th>
</tr>
</thead>
</table>

© Port of Townsville Limited
A.C.N. 130 077 673

Only electronic copy on server is controlled. To ensure paper copy is current, check revision number against entry in Qudos - Master Document List

<table>
<thead>
<tr>
<th>Document Type</th>
<th>Strategy</th>
<th>Document No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>POT 2094</td>
</tr>
</tbody>
</table>

Revision | Date | Page |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26/02/2020</td>
<td>Page 38 of 39</td>
</tr>
</tbody>
</table>