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Supporting online materials 
Developing next generation matrices from existing data 
The estimates of transmission rates in each sector (i.e., home, school, work and other locations) and 

the overall reproduction number are derived from baseline estimates of the daily, age-specific 

contact rates between individuals of different age groups. These contact rates are provided by the 

analysis in Prem et al.(1) where data from population-based contact diaries in eight European 

countries were projected to generate contact intensities for 144 other countries using Bayesian 

modelling techniques. The inferred values 𝑐𝑎𝑎′ give the number of (pre-COVID-19) typical daily 

contacts an individual of age 𝑎′ makes with an individual of age 𝑎. In the dataset, age bands are 

separated into 5 year age groups and contacts are further divided into four locations: work, home, 

school and other. 

To estimate the transmission capacity associated with these contacts we convert the contact 

intensity matrices to next-generation matrices, 𝐾, whose elements, 𝑘𝑎𝑎′, give the number of new 

infections of age 𝑎 generated by individuals of age 𝑎′. As a first step, we compute an unscaled next-

generation matrix 𝐾̅ by weighting the elements of the contact matrix 𝑐𝑎𝑎′ by the age-dependent 

relative susceptibility (𝜎𝑎) and infectivity (𝛽𝑎) of individuals in the population and the distribution of 

susceptible (𝑠𝑎) and total (𝑛𝑎) individuals in each age group. In particular, the elements, 𝑘̅𝑎𝑎′, of the 

unscaled next-generation matrix (NGM), 𝐾̅, are given by 

𝑘̅𝑎𝑎′ =
𝜎𝑎𝑠𝑎𝑐𝑎𝑎′𝛽𝑎′

𝑛𝑎′
. 

Here 𝜎𝑎 is the relative susceptibility to infection for an individual in age group 𝑎 and 𝛽𝑎 is their 

corresponding transmissibility once infected. Since the population is entirely susceptible upon first 

introduction of the infection such that 𝑠𝑎 = 𝑛𝑎. 

For symmetry, we assume that the age-dependent susceptibility and transmissibility profiles are 

equal equivalent, i.e., 𝜎𝑎 = 𝛽𝑎, and are given by the following parametric equation: 

𝜎𝑎 =
1 − 𝜎rel

2
tanh(𝑏(𝑎 − 𝑐)) +

1 + 𝜎rel

2
 

where 𝜎rel is approximately equal to the relative susceptibility between individuals in the youngest 

(<5) and those in the oldest (>80) age groups. In the following analysis we assume baseline values of 

𝜎min = 0.1, 𝑏 = 0.3 and 𝑐 = 27.  

We choose values to match the proportion of each age group infected in China (the country used to 

calibrate the model) and then applied the calibrated values to Australian mixing matrices. 

Figure 1 shows the calibrated normalized eigenvector fo the NGM, reflecting the model-estimated 

age distribution of infected people (compared with observed values in China(2)). This assumes that 

the age-case distribution reflects the age-infection distribution; that is that the clinical fraction is 

unchanged by age (this assumption is explored further in work by Davies et al. (3)). We relax this 

assumption in the sensitivity and uncertainty analyses. 
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Figure 1. Fitted relative infectiousness profile (top panel) and values for age distribution, modelled 

and observed for China (2) (bottom panel).  

The unscaled next-generation matrix 𝐾̅ is converted into the true next-generation matrix 𝐾 through 

the scaling factor 𝜂: 

𝐾 = 𝜂𝐾̅ 

where 𝜂 can be thought of as the average lifetime transmission rate per contact of each infectious 

individual. Note that any normalization factors generated by setting 𝜎𝑎 = 𝛽𝑎 (rather than 𝜎𝑎 ∝ 𝛽𝑎) 

can in principle be absorbed into the scaling factor 𝜂. 

The basic reproduction number is the maximal eigenvalue of the NGM: 

𝑅0 = 𝜌(𝐾) = 𝜂𝜌(𝐾̅) 

where 𝜌(⋅) denotes the spectral radius. We can arrange this equation to obtain an expression for the 

scaling factor 𝜂: 

𝜂 =
𝑅0

𝜌(𝐾̅)
. 

Substituting the estimated basic reproduction number in China 𝑅0 = 2.68 (95% crI: 2.47 – 2.86) yields 

𝜂 = 0.27. 

 

The scaling factor 𝜂 could be written as  

𝜂 = ∫ 𝛾(𝜏)𝑓(𝜏)
∞

0
𝑑𝜏, 

where 𝛾(𝜏) is the probability of transmission per contact per unit time for an individual who has 

been infected for 𝜏 units of time and 𝑓(𝜏) is the corresponding probability that they remain infected. 
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Figure 2. A comparison between the contact matrix and the next generation matrix for China. Left 

panel is the contact matrix for China taken from Prem et al.(1) Middle column is the matrix 

following changes made to relative infectiousness and relative susceptibility by age. Right panel is 

the final calibrated next generation matrix for China of 2.68(4). 

We then applied these calibration values to a new contact matrix for Australia based on Prem et 

al.(1) to arrive at Australian R0, by using the calibrated values for 𝜂, σ, b, c. This results in a derived R0 

of 2.49.  

We then used google results for reduction in position of people at the various locations (cite google) 

and results from Victorian Education Department (cite this), to derive a table of relative macro 

changes in locations during the lockdown of 0.66 for other, 1.18 for home, 0.6 for workplaces and 

0.03 for school. 

Including all of these macro-distancing measures leads to an Reff = 1.76. To adjust all activities 

outside the home by allowing for micro-distancing at locations: other, school and workplace, leads 

to a micro-distancing factor of 0.26. That is, the rules and change in behavior regarding physical 

distancing at locations is estimated to reduce the probability of infectious contact to 26% of that 

priror to these steps being taken, while the decision to remain at home, not attend other locations is 

estimated to reduce infectious contacts to 1.76/2.49, or 71% of previous levels. 

The matrices provided by Prem et al.(1) are synthetic and estimated based on a number of features 

in Australia including school attendance, workplace size and so one. While this is a potential 

weakness, we believe these are the most complete contact matrices available in Australia.  
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Table 1. Parameters in the model. 

Parameter Value Explanation 

Baseline and Macro-distancing measures 

Reproduction number Reff Typical number of secondary infections 
per infected person 

China: early pandemic 2.68  

Business as usual 
Australia 

2.49 Reproduction number in the absence of 
interventions, using value for China 
calibrated to Australian mixing patterns  

Mixing distribution Taken from study applied to 
Australian population 

Prem et al.(1) 
 

Change in mixing during 
school closure 
School-based mixing 
multiplier 

0.03 Schools not open to students, except for 
very few (~3%) who then undertake 
physical distancing and online learning, 
with no sport or face-to-face lessons(5) 

Work-based mixing 
multiplier 

0.66 Google Mobility Report(6) 

Other 0.6 Google Mobility Report (6)  

Home  1.18 Google Mobility Report (6) 

Scenario: Current Lockdown, micro-distancing and public health response 

Change in mixing during 
school closure 
School-based mixing 
multiplier 

0.03 (5)  

Work-based mixing 
multiplier 

0.66 (6) 

Other 0.6 (6) 

Home 1.18 (6) 

Micro-distancing and 
public health response 

0.26 The above measures bring lockdown Reff 
to 1.78. Multiplying contacts at school, 
home and other by 0.26 brings the 
lockdown Reff to 0.80 

Scenario: Current Lockdown & Open Schools 

Change in mixing during 
school closure 
School-based mixing 
multiplier 

1 Schools reopen with increased distancing 
measures put into place in the staffroom. 

Work-based mixing 
multiplier 

0.66 (6) 

Other 0.6 (6) 

Home 1.18 (6) 

Remove home lockdown, return to school educate community on physical distancing 

Change in mixing during 
school closure 
School-based mixing 
multiplier 

1 Schools open to students and staff 
undertake physical distancing  
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Work-based mixing 
multiplier 

0.66 (6) 

Other 1  No home lockdown, but reduced social 
congregation and limited gatherings 

Home 1.09 Many adults continue to work from home 
but children are now at school so the 
effect of increased home intensity of 
contacts is assumed to be halved. 

Remove home lockdown, return to school and work educate community on physical distancing and 
continue vigorous testing and quarantine 

Change in mixing during 
school closure 
School-based mixing 
multiplier 

1 All macro-distancing returns to normal 

Work-based mixing 
multiplier 

1 All macro-distancing returns to normal 

Other 1 All macro-distancing returns to normal 

Home  1 All macro-distancing returns to normal 

Micro-distancing and 
public health response 

0.26 As above 
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Sensitivity analysis: children account for 10% of infectiousness not 2% 
Because it is one of the strongest assumptions in this work and potentially highly influential, we 

examine the sensitivity of our results to the assumption that the clinical fraction of cases found in 

those under 20 years of age is reflected in the infectiousness of this age group. That is, our baseline 

assumption is that the 2% of cases identified as under 20 reflects 2% infectious cases in this age 

group. If however, asymptomatic cases are more frequent in this age group and are also infectious, 

this assumption may be incorrect and influential in the results. We therefore explore the possibility 

that children may account for up to 10% of infections and be infectious despite not being included as 

cases, in our sensitivity analysis. Figure 3 shows the resulting distribution of proportion of the 

infections and relative infectiousness and susceptibility. Calibrating to allow 10% of infections to be 

in children <20 years, leads to a value of 0.5 relative susceptibility and infectiousness. This is 

equivalent to suggesting that children are 5 times more likely to be undiagnosed - asymptomatic -

than adults and overall two times less infectious/susceptible. 

 

Figure 3. Calibrating the infectiousness and susceptibility of children to fit the assumption that 

children under 20 years make up 10 percent of infections rather than 2%. This is equivalent to 

assuming for every case in children there are four additional cases that are asymptomatic, and 

these cases are just as infectious as symptomatic people in the same age group. 

The sensitivity analysis requires recalibration of values for 𝜂, σ, b, c, to fit the data, with values of 𝜂 

=1/4.072, 𝜎 = 0.5, 𝑏 = 0.3 and 𝑐 = 27. This means that the calibrated value to allow for 10% of 

infections to be children is 0.5 -that is children are half as infectious and susceptible as adults. Then 

new next generation matrices for Australia are determined and the micro-distancing factor is reset 

to 0.21 to achieve Reff = 0.8.  

Finally, the impact of school closure/opening and other activities is reassessed, as shown in Figure 4 

below. These results show that our broad conclusions are robust to assumptions about child 

infectiousness. Reduction in Reff is driven principally by micro-distancing at locations where 

transmission may occur rather than avoidance of these places.  
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Figure 4. Top row contact matrices, second row, next generation matrices by location and third 

row next generation matrices according to exit strategy in Australia and associated effective 

reproduction number (bottom row) under the assumption that 10% of infections are in children 

under 20 years and that these children have 50% infectiousness and susceptibility compared with 

adults. 
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Sensitivity Matrices 
Caswell(7) shows that the change in the total reproduction number, for each element of the next 

generation matrix 
𝜕𝑅0

𝜕𝑎𝑖𝑗
, is given by the outer product of the right and left Eigenvalues (row vectors w 

and v), normalized by their dot product 
w’v

v’w
.  

Figure 5 shows the resulting sensitivity matrix for the base case next generation matrix for Australia. 

In the baseline case, contacts between adults aged 30 to 50 are the most important contributers to 

the overall population reproduction number. Relaxing assumptions about the susceptibility and 

infectiousness of the under 20s reduces the importance of the 30-50 age group and increasing the 

importance of all age groups as infectors. 

Figure 5. Sensitivity matrices of Reff to the next generation matrix under four different 

susceptibility and infectiousness assumptions. Baseline is infectiousness and susceptibility of 

children under 20 years being 10%, top right shows the assumption that children are equally 

susceptible but 10% as infectious, bottom left is the assumption that under 20s are 50% as 

infectious and 50% susceptible and account for 20% of all infections. Bottom right assumes under 

20s are 50% as infectious and 100% as susceptible as over 20s. 
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Full sensitivity and uncertainty analysis 
We examined the impact of changing the main estimated parameters of the model across a range of 

values shown in Table 2. The impact on the model outcome was determined by Monte Carlo Markov 

Chain (MCMC) sampling from a prior (uniform) distribution in that range. Seven outcomes were 

assessed. The major outcomes of R0 and Reff under lockdown were highly sensitive to most model 

parameters, as shown in Figures 6 and 7. 

Table 3. Parameter values in the model, baseline and range of parameter exploration in the 

sensitivity and uncertainty analysis. 

Parameter Baseline Lower Upper 

Overall calibration 

factor (allows R0 to 

be increased and 

decreased) 

0.27 0.2 

Parameters are 

drawn from prior 

distribution uniform 

[2,5] and then the 

reciprocal is taken 

0.5 

Child infectiousness 0.1 0.05 1 

Child susceptibility 0.1 0.05 1 

Micro-distancing 

factor: school 

0.21 0.05 1 

Micro-distancing 

factor: work 

0.21 0.05 1 

Micro-distancing 

factor: other 

0.21 0.05 1 
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Figure 6. MCMC results using prior distributions for parameters given in Table 3 above. The values 

for which the Reff is <1 for the full lockdown are shown in red. The partial correlation is provided 

for each parameter/outcome pair. 
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Figure 7. Sensitivity analysis plots of sensitivity of important model outcomes to the parameters 

used in the model. 

Results of figure 7 show that the model outputs are highly sensitivity to the model inputs and 

therefore conclusions must be made with caution. However, it is notable that the model parameter 

to which outcomes are least sensitive is the value of school distancing.
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Uncertainty analysis 
From the MCMC we used a variation of the Approximate Bayesian computation method to choosing 

only elements in the chain in which the current lockdown Reff is less than one. 

The resulting posterior values for the parameters and the other outcomes are shown in figure 8. This 

suggests that knowing that Australia achieved an effective reproduction number below one during 

the lockdown provides some information for estimating the uncertain parameters. In particular, 

micro-distancing at work and other locations is estimated to be much more effective in the posterior 

distribution (this is a multiplying factor so the smaller the number the higher the impact). The 

posterior values for child infectiousness and susceptibility of approximately 0.1 that of adults in line 

with expectations (precise maximum a posteriori values are 0.15 for susceptibility and 0.08 for 

infectiousness). The posterior values are also helpful for estimating the impact of school and 

workplace opening. The 95% credible interval is used to provide error bars for Figure 1 of the main 

text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Posterior (brown) and prior (blue) probability density functions from the uncertainty 

analysis, using an Approximate Bayesian Computation rejection method, selecting only results 

with Rcurrent lockdown<1. 
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