
Abstract

The aim of this research is to develop a mathematical framework for the derivation of

the transition matrix between symmetric group bases. This problem arises in the study

of quantum mechanics. To do this, we follow the current methods of abstract algebra,

specifically group theory and group representation theory.

We assume a knowledge of basic group theory and of group representation theory, in-

cluding matrix representation theory, modular representation theory and group character

theory. We introduce the basic concepts of the representation theory of the symmetric

group. This includes tableaux, Young tableaux, Young subgroups, tabloids and poly-

tabloids.

We then discuss combinatorial algorithms on tableaux. We describe symmetric func-

tions and their relation to the representation theory of the symmetric group. We introduce

the Young-Yamanouchi representation and its adaptation to the representation of partial

skew tableaux. A survey of current research into the transition matrix between symmetric

group bases is then given.

We develop the research by Hamel et al. [7] and McAven et al. [8]. In this work the

decomposition of a tableau into component tableaux is examined. The justication of the

component tableaux into normal tableaux is given. The approach is to apply set-theoretic

and combinatorial concepts to the decomposition of a tableau. This establishes a formal

and rigorous mathematical frame-work in which further research may be undertaken.

In this work we have considered the decomposition of a partial skew tableau into a

tuple of partial skew tableaux. We have also considered the decomposition of a partial



skew tableau into partial normal tableaux. The decomposition of a Young tableau may be

considered to be special cases of these decompositions. Thus the decomposition given by

Hamel et al. [7] and McAven et al. [8] is a special case of our more general mathemat-

ical framework. We have developed the set-theoretic and combinatorial aspects of these

decompositions, in order to facilitate further research in this area.



Preface

In this thesis, we attempt to find the transition matrix between symmetric group bases.

We begin with a survey of background material in this area.

We assume a knowledge of group representation theory, including group theory, ma-

trix representation theory, modular representation theory, group character theory and the

group algebra.

We then discuss tableaux, Young tableaux, Young subgroups, tabloids and polytabloids.

We give an introduction to combinatorial algorithms in group representation theory. We

introduce symmetric functions and the Young-Yamanouchi representation of the sym-

metric group. We outline the skew representation, which is an adaptation of the Young-

Yamanouchi representation for partial skew tableaux. We give a summary of two papers

by Hamel et al. [7] and McAven et al. [8], which investigate the transition matrix. Then

the author begins his own research into the transition matrix.

In the thesis, we present a number of theorems from the literature. These theorems are

presented without proof for two reasons. First, we wish to limit the length of the thesis

by omitting proofs. Second, we wish to avoid cluttering the thesis with unimportant

theorems which serve only to aid in proving the main theorems. The proofs of most of the

theorems given here invoke many other theorems, which in turn invoke other theorems in

their proofs, and so on. These other theorems are not important in themselves, but serve

only to prove the main results. By omitting proofs, we can omit unimportant theorems

and concentrate on stating important results.
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Chapter 1

Introduction

Group theory arises in the study of physical systems, such as quantum physics and crys-

tallography. Group theory provides a mathematical tool for the study of symmetry.

We begin with an example of a physical structure, as shown in Figure 1.1, known as the

trigonal bipyramid. The vertices are numbered from 1 to 5. We can move this solid such

that the geometric appearance is retained, but the vertices are interchanged. Let r denote

the rotation through 120◦ about a vertical axis through vertices 1 and 5. Vertices 1 and 5

remain unchanged. Vertex 2 goes to the position formerly occupied by vertex 3, 3 to that

of 4 and 4 goes to the former position of 2.

This rotation applied twice is written as r2 and this rotates the solid through 240◦ The

rotation applied three times (r3) is a rotation through 360◦, which is indistinguishable
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Figure 1.1: Trigonal Pyramid

from no rotation at all. This acts as an identity operation, so we may write

r3 = e

where e is the identity operation.

We may write the rotation r as

r = (2 3 4)

which means that vertex 2 goes to vertex 3, 3 to 4, and 4 to 2. We omit vertices 1 and 5 as

they are left unchanged. Similarly we may write

r2 = (2 4 3)

and we call such a motion a cycle.

There is also a motion which interchanges vertices 1 and 5. Consider a rotation through

180◦ about an axis through vertex 4 and the midpoint of the edge joining vertices 2 and

2



3. The geometrical appearance of the solid is retained. As vertices 2 and 3 are also

interchanged, this rotation is written as

c = (1 5)(2 3).

We note that c2 is a rotation through 360◦, so that

c2 = e.

We say that c is the product of two cycles (1 5) and (2 3).

Two more rotation are possible: one about an axis through vertex 2 and one about an axis

through vertex 3. We note that

rc = (1 5)(3 4)

so that rc is a rotation through 180◦ about an axis through vertex 2. Similarly

r2c = (1 5)(2 4)

so that r2c is a 180◦ rotation about an axis through vertex 3.

This leads to the following group table

We say that the set e,c,rc,r2,r,r2c together with the operation of successive motions

forms a group. This group has the order 6.

This simple example provides an illustration of how group theory provides a mathematical

3



Table 1.1:

e c rc r2 r r2c
e e c rc r2 r r2c
c c e r2 rc r2 c r
rc rc r e r2 c c r2

r2 r2 r2 c c r e rc
r r rc r2 c e r2 c

r2 c r2 c r2 r c rc e

tool for the study of the symmetry of solids in crystallography. Symmetry also plays a

part in the structure of molecules.

We may use permutation groups to describe symmetries of molecular structures. We may

label elements of a molecular structure by the integers 1,2, . . . .n. Then we may describe

the symmetries of the molecular structure by a permutation of the labels in cycle notation,

for example

(2 3 . . .n 1)

would translate element 2 to 3, 3 to 4 and so on. In quantum physics, we would like to

use this permutation notation to describe symmetries among angular momentum states.

The symmetric group, Sn, on n elements, arises in the study of the quantum physics of

the many-electron atom. In pursuit of this study, group representations play an important

role.

The number of irreducible representations of a symmetric group is equal to the number

of conjugacy classes of the symmetric group. This is the number of partitions of n. A

4



partition is a sequence of integers

λ = (λ1,λ2, · · · ,λ`) such that ∑
i

λi = n and λi ≥ λ j for i < j.

The subgroup Sλ of Sn is isomorphic to the direct product

Sλ1×Sλ2×·· ·×Sλ`
.

A set of representations can be produced by inducing the trivial representation on each Sλ

up to Sn. The symmetric group, Sn, is used in quantum mechanics to compare systems

differing in the arrangement of the occupants of the n states. For this reason, basis vectors

of representations of Sn are studied. A system may have symmetries with respect to the

first a particles and the last b particles. Hence it becomes necessary to consider basis

function of the direct product subgroup Sa× Sb, a + b = n. When b = 1, we have the

Young-Yamanouchi basis which is standard. When b 6= 1, the basis is non-standard.

The representation matrices for such a basis can be written as a matrix product of the

representation matrices in the standard basis and a transformation matrix, or transition

matrix, which transforms elements of the standard basis to elements of the Sa×Sb basis.

Since the symmetric group is generated by adjacent transpositions, it suffices to consider

the transformation coefficients for these transpositions.

The Young-Yamanouchi basis is standard and exists in the literature [12]. Its derivation

works recursively by assuming the irreducible representations are known for the subgroup
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Sn−1. Thus it corresponds to the subgroup chain

Sn−1×S1 ⊃ Sn−2×S1×S1 ⊃ ·· · ⊃ S1×S1×·· ·S1,

obtained by successive removal of the S1 subgroups.

We consider the Young subgroup and the induced representation. Let π1,π2, · · · ,πk be a

transversal for the Young subgroup Sλ. The vector space

V λ = C[π1Sλ,π2Sλ, · · · ,πkSλ]

where πi and Sλ are considered as vectors, is a module for this induced representation.

Thus the Young subgroup, Sλ, leads to a representation of the symmetric group corre-

sponding to the partition λ. Thus tableaux give a visual depiction of symmetric group

bases corresponding to various partitions. The irreducible representations of Sn can be

labelled by partitions of n. The number of Young tableaux for a given irreducible repre-

sentation is equal to the dimension of the irreducible representation. Hence, each basis

vector is associated with a unique tableau.

In this way, bases of irreducible representations of the direct product subgroup Sa× Sb

are associated with products of tableaux, the first tableau on a symbols, and the second

tableau on b symbols.

A more general problem considers irreducible representations of products of more than

two tableaux and products of more that two subgroups. Thus we would consider the direct

6



product subgroup

Sn1×Sn2×·· ·×Snk ,

where n1 +n2 + · · ·+nk = n. The basis vectors are associated with the product of tableaux,

t1× t2×·· ·× tk,

where ti is a tableau on ni symbols.

In this way, we come to the most general form of the transition matrix. This matrix

transforms between a subgroup

Sn1×Sn2×·· ·×Snk ,

and a subgroup

Sm1×Sm2×·· ·×Smk ,

where ∑i ni = ∑ j m j = n. Associated with the basis vectors are the tableau products

t1× t2×·· ·× tk and s1× s2×·· ·× sk.

Much work has already been done in this area by Hamel et al. [7], McAven et al. [8][9].

In the first paper [7] they consider the matrix which transforms between the Young-

7



Yamanouchi basis and its dual. The dual basis corresponds to the subgroup chain

S1×Sn−1 ⊃ S1×S1×Sn−2 ⊃ ·· · ⊃ S1×S1×·· ·S1.

This corresponds to removing the lowest nodes successively from the tableau, or the low-

est S1 factor. The resulting products of skew tableaux are justified using jeu de taquin to

give products of normal tableaux. They derive the matrix which transforms between the

Young-Yamanouchi basis and the dual basis.

In further papers McAven et al. [8, 9] proceed to the more general problem we have

introduced. This begins with the symmetric group Sn from which a subgroup Sn1 is re-

moved. The elements of Sn1 may be chosen arbitrarily. This corresponds to the arbitrary

removal of n1 symbols from the Young tableau corresponding to the partition λ. Next,

the subgroup Sn2 is removed, corresponding to the arbitrary removal of n2 symbols from

the tableau. This process is continued until a product of tableaux, corresponding to the

product subgroup is obtained. The authors refer to the resulting bases as split bases. They

derive the transformation matrix for the product subgroup Sa× Sb where b = 3. This

corresponds to the arbitrary removal of three symbols from the tableau.

In this thesis, the author endevors to continue this research in order to find a general form

of the transition matrix between different split bases. To do this, we consider several

different approaches to the problem.

One approach entails decompositions of partitions restricted to direct product subgroups

as given by Robinson [5]. These decompositions are based on group character theory. For

8



example, consider irreducible representation of S6 corresponding to the partition (3,2,1).

First, restrict this representation to the direct product subgroup S3× S1× S1× S1. Using

group character theory, Robinson [5] derives the decomposition of this representation as

[3,2,1] ↓ S3×S1×S1×S1 = [3]× [2]× [1]⊕ [3]× [12]× [1]⊕3[2,1]× [2,1−1]× [1]

⊕[13]× [2]× [1]⊕ [13]× [12]× [1],

with associated skew shapes. Robinson [5] derives similar decompositions for the restric-

tion to other direct product subgroups, for example,

[3,2,1] ↓ S3×S3.

Robinson [5] demonstrates that such a restricted representation gives rise to a resulting

representation which is a sum of direct products, with associated direct products of skew

shapes. Since the result is a direct product, the use of inner products of characters is

appropriate here.

The research conducted by Hamel et al. [7], and McAven et al. [8] emphasizes matrix

representations of the symmetric group. Another approach is based on modular represen-

tations of the symmetric group. There are several modular representations of the sym-

metric group. There are the permutation representation, the regular representation (also

known as the group algebra), the coset representation and the defining representation.

Another approach to the representation theory of the symmetric group is to use symmetric

9



functions.

A tensor product of representations can be decomposed into irreducible representations by

looking at the corresponding product of Schur functions. In this way, the Young subgroup

Sλ1×Sλ2×·· ·×Sλ`
,

and its corresponding product of representations can be decomposed into irreducibles.

We have already stated that standard tableaux enable us to construct basis vectors for the

irreducible representations of the symmetric group. Thus the problem can be approached

combinatorially. In fact, the same graphical method used to find the dimensions of the

irreducible representations can be applied to find the characters. Thus there is a link

between combinatorial techniques and the decomposition given by Robinson [5] which

was based on group theory. An investigation of combinatorial methods and the associated

group characters can be used to further the research of Hamel et al. [7], and McAven et

al. [8].

The Rachah-Wigner algebra categorises Wigner operators in algebraic terms. The Wigner

operator associated with an angular momentum generator is is normalised so that it is

bounded. The elements of the Racah-Wigner (R-W) algebra are unit tensor operators

known as Wigner operators. The Wigner operators inherit from the Hilbert space structure

of quantum physics the properties of normal algebra. The R-W algebra fits into the general

framework.

The Racah-Wigner algebra can express the direct product of a number of irreducible rep-
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resentations. As such, it is capable of dealing mathematically with the direct product of

irreducible representations. associated with teh direct product of subgroups of the form

Sn1×Sn2×·· ·×Snk .

The Racah-Wigner algebra has the following properties:-

1. it is a ring

2. it is a linear vector space with multiplication by the complex numbers

3. a norm is defined on the R-W algebra

4. the ring is complete.

The R-W algebra is a graded algebra. As such, it may be possible to bring ring theory to

bear on the problem of representation theory investigated in this thesis.

So it is possible to bring a variety of approaches to bear on furthering the research of

Hamel et al. [7], and McAven et al. [8]. Since their research is based on matrix represen-

tations, it is appropriate to continue with this method until the need for the more powerful

technique of modular representation arises. Hamel et al. [7], and McAven et al. [8] also

make extensive use of combinatorial tools such as tableaux and associated algorithms.

The focus of much of the research in this thesis is to continue to develop and apply these

tools.

We have highlighted the link between combinatorial tools and the character theoretic de-
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composition of Robinson [5]. To explore this link, a formal mathematical approach to the

decomposition of tableau is undertaken. The combination of combinatorial and character

theoretic techniques is seen as vital to this research, and is the main thrust of this research.

The use of symmetric functions provides a powerful way of researching the representation

theory of the symmetric group. Software exists in the public domain to assist in this. This

approach is seen as a useful adjunct to the combinatorial approach.

We assume knowledge of group theory, particularly the symmetric group, and of group

representations theory. We begin in Chapter 2 with a survey of the representation theory

of the symmetric group. We also assume prior knowledge of the following concepts:-

1. Elementary group theory, including group axioms, symmetric groups, subgroups,

cosets, group generators, the direct product, normal subgroups, and conjugacy classes

([6], [10]).

2. Linear representation theory, that is, representation of a group by a set of matrices

([4], [12]).

3. Modular representation theory, that is, representation of a group by a module ([4]).

4. Reducible and irreducible representations ([4], [5], [12]).

5. Restricted and induced representations ([4], [5]).

6. Group character theory, including inner products of characters and orthogonality of

characters ([4], [5], [19], [20]).

7. Tensor products of representations of subgroups ([4], [5], [19]).

12



8. The group algebra ([4]).

9. Maschke’s Theorem ([4]).

In Chapter 2, we introduce Young subgroups and tableaux. The tabloid expression of

subgroups is defined. Standard tableaux are discussed.

Chapter 3 introduces combinatorial techniques for the representation theory of the sym-

metric group. The all important jeu de taquin is defined. Other results, including the

Robinson-Schensted algorithm, are included here.

In Chapter 4, we give a survey of the theory of symmetric functions. The Littlewood-

Richardson rule is given here.

In Chapter 5, we give an introduction to the theory of the matrix which transforms between

symmetric group bases.

In Chapter 6 the Young theorem for skew tableaux of the general linear group is discussed.

Most importantly, we give Robinson’s decomposition of tableaux into skew tableaux.

Associated with Robinson’s decomposition is the theory of lattice permutations. In this

chapter, we cover further results on skew diagrams and skew representations.

In Chapter 7 we give a review of the research undertaken by Hamel et al. [7], and McAven

et al. [8]. This begins with the transformation between the Young-Yamanouchi basis and

its dual. Then a linear equation method for determining multiplicity separation in sym-

metric group transformation coefficients is discussed. Finally the problem of transforming

between split-bases is introduced.
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In Chapter 8 we begin our research into transforming between split-bases for the sym-

metric group. We consider the decomposition of a tableau into a direct product of skew

tableau. We develop a formal mathematical treatment of such decomposition. In chapter

9 we then develop an equivalent mathematical treatment of the decomposition of a tableau

into a cartesian product of normal tableau.

In Chapter 10 we give a concluding survey of the research performed thus far.
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Chapter 2

Representations of the Symmetric

Group

The research by Hamel et al.[7], and McAven et al.[8] in Chapter 7 invokes the Littlewood-

Richardson rule. In Chapter 4 we introduce symmetric functions in sufficient detail to

state the Littewood-Richardson rule. In this chapter we develop the machinery needed in

Chapter 4.

Significantly, we state Young’s rule, which is used in the development of the Littlewood-

Richardson rule. This requires that we first define tableaux, Young tableaux, and standard

tableaux. We then define tabloids in terms of tableaux. This leads to the definition of

polytabloids.

The Specht module is defined in terms of polytabloids. We then define generalised

tableaux and semi-standard tableaux. This leads to the definition of Kosta numbers. We
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define the permutation module. Finally we use the definitions of the permutation mod-

ule, the Specht module, and Kostka numbers to state Young’s rule. This limited coverage

closely follows Sagan’s[4] text.

In this chapter we deliberately keep theorems to the minimum. Instead, we focus primarily

on providing the definitions needed to state Young’s rule. Importantly this chapter also

serves the purpose of introducing definitions which are used in later chapters and in the

author’s research, for example, tableaux, Young tableaux and standard tableaux.

We wish to construct all of the irreducible representations of the symmetric group. The

number of irreducible representations is equal to the number of conjugacy classes. In the

case of the symmetric group Sn, this is the number of partitions of n. For each partition

λ = (λ1,λ2, · · · ,λl), there is a corresponding subgroup Sλ which is an isomorphic copy of

Sλ1×Sλ2×·· ·×Sλl inside Sn.

2.1 Young Subgroups, Tableaux, and Tabloids

A partition λ = (λ1,λ2, · · · ,λl) of n is denoted by λ ` n. It is clear that | λ |= ∑i λi, so that

a partition of n satisfies | λ |= n.

We begin our definition of tableaux by defining a Ferrers diagram.

Definition 2.1: Suppose that λ = (λ1,λ2, · · · ,λl) is a partition of n. The Ferrers diagram,

or shape, of λ is an array of n dots or cells in left-justified rows with row i containing λi

dots for 1≤ i≤ l. The dot in row i and column j has coordinates (i,j).
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Example 2.1 The partition λ = (3,3,2,1) of 9 has Ferrers diagram as shown below

Figure 2.1: Ferrers diagram

where the box in the (2,3) position has an X in it. The cell marked X has coordinates

(2,3).

Definition 2.2: Suppose that λ = (λ1,λ2, · · · ,λl) is a partition of n. The corresponding

Young subgroup of Sn is

Sλ = S{1,2,··· ,λ1}×S{λ1+1,λ1+2,··· ,λ1+λ2}×·· ·×S{n−λl+1,n−λl+2,··· ,n}.

Example 2.2

S(3,3,2,1) = S{1,2,3}×S{4,5,6}×S{7,8}×S{9}

∼= S3×S3×S2×S1.

In general, S(λ1,λ2,··· ,λl) and Sλ1×Sλ2×·· ·×Sλl are isomorphic as groups.

The definition of a Ferrers diagram leads to the definition of a Young tableau.

Definition 2.3 A Young tableau of shape λ, t, is an array obtained by replacing the dots

of the Ferrers diagram of λ with the numbers 1,2, · · · ,n bijectively. A Young tableau of

shape λ is also called a λ-tableau and denoted by tλ. We may also write that the shape of

the tableau, sh t = λ.
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We denote Young tableaux with lowercase letters.

Example 2.3 For the shape λ = (2,1), the list of all possible Young tableaux of shape λ

is

t :
1 2

3
,

2 1

3
,

1 3

2
,

3 1

2
,

2 3

1
,

3 2

1
.

In the following discussion the term ”tableau” will refer to a Young tableau unless other-

wise stated. Two λ-tableaux t1 and t2 are row equivalent, t1 ∼ t2, if corresponding rows of

the two tableaux contain the same elements.

The statement of row-equivalent tableaux leads to the definition of a tabloid.

Definition 2.4: A tabloid of shape λ, or a λ-tabloid, is

{t}= {t1 | t1 ∼ t} where sh t = λ.

Example 2.4 For the tableaux

t =
1 2

3
,

the corresponding tabloid is

{t} =


1 2 2 1

3 , 3

 =
1 2

3
.

For λ =(λ1,λ2, · · · ,λl)` n, the number of tableaux in any equivalence class is λ1!λ2! · · ·λl!
def=
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λ!. The number of λ-tabloids is then n!/λ!

A permutation π ∈ Sn acts on a tableau t = (ti, j) of shape λ ` n in the following manner:

πt = (π(ti, j)).

Example 2.5

(1,2,3)
1 2

3
=

3 1

2
.

This action on tabloids is described by

π{t}= {πt}.

That is, a permutation acts on a tableau by permuting the elements of the tableau. As this

action is independent of the choice of t, it is well defined. This action is associated with

an Sn-module.

The permutation module is defined in terms of tabloids.

Definition 2.5: Suppose that λ ` n. We define the M-module to be

Mλ = C{{t1},{t2}, · · · ,{tk}},

where {t1},{t2}, · · · ,{tk} is a complete list of λ-tabloids. The module Mλ is called the

permutation module corresponding to λ. That is, Mλ is the module spanned by the λ-

tabloids. The permutation module is a special case of an Sn-module, obtained from a
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linear combination of the list of λ-tabloids.

Example 2.6 If λ = (n), then

M(n) = C{12 · · ·n},

with the trivial action.

Example 2.7 Suppose that λ = (1n). Each equivalence class consists of a single tableau.

Each tableau is associated with a permutation in one-line notation. The action of Sn is

preserved, giving rise to the module

M(1n)∼= C[Sn].

This is the regular representation.

Example 2.8 Consider these modules for the case n = 3. The full set of partitions is

λ = (3),(2,1), and (13). The associated modules correspond to the trivial, defining and

regular representations respectively. Let the character of Mλ be φλ, and the conjugacy

class of S3 corresponding to µ be Kµ. This gives rise to the following character table:

K(1) K(2,1) K(3)

φ(3) 1 1 1

φ(2,1) 3 1 0

φ(13) 6 0 0
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Any G-module is cyclic if there is a v ∈M such that

M = CGv and Gv = {gv | g ∈ G}.

Such a module M is generated by v. Mλ is cyclic because any λ-tabloid can be trans-

formed to any other tabloid of the same shape by some permutation. If λ ` n, then Mλ

is cyclic, generated by any given λ-tabloid. The dimension is given by dimMλ = n!/λ!,

where dimMλ is the number of λ-tabloids.

The symmetric group

Sλ = S{1,2,··· ,λ1}×S{λ1+1,λ1+2,··· ,λ1+λ2}×·· ·×S{n−λl+1,n−λl+2,··· ,n},

is modelled by the tabloid

{tλ}=

1 2 · · · λ1

λ1 +1 λ1 +2 · · · λ1 +λ2

·

·

·

n−λl +1 · · · · n

.

The order of these integers is immaterial in tλ, as they all occur in the same row. The

coset πSλ corresponds to the tabloid {πtλ}.
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A standard tableau is a special case of a Young tableau, as in the following definition.

Definition 2.6: A tableau t is standard if the rows and columns of t are increasing se-

quences.

Example 2.9 The tableau

t =

1 2 3

4 6

5

is standard, but

t =

1 2 3

6 4

5

is not.

Definition 2.7: A composition of n is an ordered sequence of non-negative integers µ =

(µ1,µ2, · · · ,µl) such that ∑i µi = n. The integers µi are called the parts of the composition.

2.2 Specht Modules

The Specht modules are all of the irreducible modules. To define the Specht module, we

must first define the row-stabilizer and column stabilizer.

Definition 2.8: Suppose that a tableau t has rows R1,R2, · · · ,Rl and columns C1,C2, · · · ,Ck.
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Then

Rt = SR1×SR2×·· ·×SRl ,

is the row-stabilizer of t, and

Ct = SC1×SC2×·· ·×SCk ,

is the column-stabilizer of t.

In this formulation, SRi and SCi represent symmetric subgroups on the integers contained

in row i and column j respectively.

Example 2.10 Consider the tableau

t =
4 1 2

3 5
.

Then Rt = S{1,2,4}×S{3,5} and Ct = S{3,4}×S{1,5}×S{2}.

The equivalence classes can be expressed as {t}= Rtt. These groups are associated with

the elements of C[Sn] where C[Sn] is the G-module associated with Sn. For any subset

H ⊆ Sn, the group algebra sums are

H+ = ∑
π∈H

π,
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and

H− = ∑
π∈H

sgn(π)π.

The value of κt is

κt
def= C−t = ∑

π∈Ct

sgn(π)π.

If t has columns C1,C2, · · · ,Ck, then κt can be expressed as

κt = κC1κC2 · · ·κCk .

That is, κt is the product of the group algebra sums of the columns of the tableaux.

Having defined κt in terms of the column stabilizer, we can now define the polytabloid in

terms of κt and the tabloid.

Definition 2.9: If t is a tableau, then the associated polytabloid is

et = κt{t}.

Example 2.11 For

t =
4 1 2

3 5
,

we have that Ct = S{3,4}×S{1,5}×S{2}.

Hence κt =Ct = ∑π∈Ct sgn(π)π = ∑π∈{3,4} sgn(π)π×∑π∈{1,5} sgn(π)π×∑π∈{2} sgn(π)π.
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This gives

κt = (e− (3,4))(e− (1,5)),

= e− (3,4)e− (1,5)e+(3,4)(1,5),

giving

et =
4 1 2

3 5

−
3 1 2

4 5

−
4 5 2

3 1

+
3 5 2

4 1

.

Theorem 2.1 From Sagan[4] (page 61) let t be a tableau and π be a permutation. We

have that eπt = πet .

This theorem states that the action of a permutation on a tableau is to permute the elements

of the associated polytabloid.

Having defined a polytabloid, we can now define the Specht module.

Definition 2.10: For any partition λ, the corresponding Specht module, Sλ, is the sub-

module of Mλ spanned by the polytabloids et , where t is of shape λ. The Sλ are cyclic

modules generated by any given polytabloid.

Example 2.12 If λ = (n), then e12···n = 12 · · ·n is the only polytabloid and S(n) carries

the trivial representation. S(n) is a submodule of M(n) where Sn acts trivially.

Example 2.13 Let λ = (1n) and

t =

1

2

...

n

.
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The column stabilizer is S{1,2,··· ,n}, the symmetric group on n elements. This gives that

κt = ∑
σ∈Sn

(sgnσ)σ. Then et is the signed sum of all n! permutations regarded as tabloids.

For any permutation π, we have that

eπt = πet = ∑
σ∈Sn

(sgnσ)πσ{t}.

Replacing πσ by τ gives

eπt = ∑
τ∈Sn

(sgnπ
−1

τ)τ{t}= (sgnπ
−1) ∑

τ∈Sn

(sgnτ)τ{t}= (sgnπ)et ,

as sgnπ−1 = sgnπ. This means that every polytabloid is a scalar multiple of et . This gives

that

S(1n) = C{et},

with the action that πet = (sgnπ)et . This is the sign representation.

Example 2.14 For the partition λ = (n−1,1) ` n, the corresponding tabloids are

{t}=
i · · · j

k

def= k
,

where 1≤ k ≤ n. In this example, the tabloids are completely determined by the element
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in the second row. We have that

et = κt{t}

= ∑π∈Ct (sgnπ)π{t}

= ∑π∈Si,k
(sgnπ)π{t}

= (e− (i,k)){t}

For this tabloid, et = k− i, giving

S(n−1,1) = {c11+ c22+ · · ·+ cnn | c1 + c2 + · · ·+ cn = 0}.

The dimension of this representation is dimS(n−1,1) = n−1.

2.3 Inner and Outer Corners

We wish to consider the restriction and induction of an irreducible representation for Sλ.

We begin by defining an inner corner of a Ferrers diagram.

Definition 2.11: If λ is a Ferrers diagram, then an inner corner of λ is a node (i, j) ∈ λ

whose removal leaves a Ferrers diagram. The set of partitions obtained by the removal of

the node is denoted by λ−.

Also, we must define an outer corner of a Ferrers diagram.

Definition 2.12: An outer corner of λ is a node (i, j) /∈ λ whose addition fixes a Ferrers

diagram. The set of partitions thus obtained is denoted by λ+.
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The inner corners of λ are those nodes at the end of a row and column of λ. For example,

if λ = (5,4,4,2), then the inner corners are enlarged and the outer corners are marked

with open circles in the diagram below:

So after removal, we could have that

λ
− :

• • • •

• • • •

• • • •

• •

,

• • • • •

• • • •

• • •

• •

,

• • • • •

• • • •

• • • •

•

,

whereas after addition, the possibilities are

λ
+ :

• • • • • •

• • • •

• • • •

• •

,

• • • • •

• • • • •

• • •

• •

,

• • • • •

• • • •

• • • •

• • •

,

• • • • •

• • • •

• • • •

• •

•

.

These are the partitions which occur in restriction and induction. We have that

S(5,4,4,2) ↓S14
∼= S(4,4,4,2)⊕S(5,4,3,2)⊕S(5,4,4,1),
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and

S(5,4,4,2) ↑S16∼= S(6,4,4,2)⊕S(5,5,4,2)⊕S(5,4,4,3)⊕S(5,4,4,2,1).

2.4 Kostka Numbers and Young’s Rule

We wish to state Young’s rule which is used later to formulate the Littlewood-Richardson

rule. This requires some definitions.

Definition 2.13: A generalized Young tableau of shape λ, T , is obtained by putting pos-

itive integers in the nodes of λ, with repetitions allowed. The type or content of T is the

composition

µ = (µ1,µ2, · · · ,µm),

where µi equals the number of i’s in T . We write

Tλµ = {T | T has the shape λ and content µ}.

Capital letters are used to denote generalized tableaux.

Example 2.15 The generalized tableau

T =
4 1 4

1 3
,

has shape λ = (3,2) and content µ = (2,0,1,2).
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A semi-standard tableau is a special case of a generalized tableau, as in the following

definition.

Definition 2.14: A generalized tableau is semi-standard if its rows are weakly increasing

and its columns are strictly increasing. The set of semi-standard λ-tableau of type µ is

denoted by τ0
λµ.

Example 2.16 The tableau

S =
1 1 2

2 3
,

is semi-standard, but the tableau

T =
2 1 1

3 2
,

is not.

The Kostka numbers are

Kλµ =| τ0
λµ | .

That is, the Kosta numbers are the number of semi-standard tableaux having shape λ and

content µ.

Theorem 2.2 Young’s Rule, Sagan [4], page 85

The multiplicity of Sλ in Mµ is equal to the number of semi-standard tableaux of shape λ
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and content µ, that is,

Mµ ∼=
M

λ

KλµSλ.

Example 2.17 Suppose that µ = (2,2,1). Then

M(2,2,1) ∼= S(2,2,1)⊕S(3,3,1)⊕2S(2,2)⊕2S(4,1)⊕S(5).

This theorem shows that the Kosta numbers relate the Specht module to the permutation

module.

Example 2.18 For any µ, Kµµ = 1, because the only µ-tableau of content µ is the one with

all the 1’s in row 1, all the 2’s in row 2, etc.

Example 2.19 For any µ, K(n)µ = 1, because there is only one way to arrange the num-

bers in weakly increasing order.

Example 2.20 For any λ, Kλ(1n) = f λ, the number of standard tableaux of shape λ. This

means that

M(1n) ∼=
M

λ

f λSλ.

M(1n) is the regular representation, and f λ = dimSλ.
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Chapter 3

Combinatorial Algorithms

In Chapter 7 we survey the research of Hamel et al.[7], and McAven et al.[8]. They apply

combinatorial operations on tableaux to the representation theory of the symmetric group.

In particular, they apply the technique of jeu de taquin. We define this technique in this

chapter.

In furthering the research on Hamel et al. [7], and McAven et al. [8], undertaken in

Chapters 8 and 9, we make use of the Robinson-Schensted algorithm. We also make use

of the concept of Knuth-equivalence of tableaux. In this chapter we define and discuss

these concepts.

This limited coverage closely follows the book by Sagan[4]. For a more comprehensive

coverage, the interested reader is referred to the books by Stanley[15],[16] and Stanton

and White[18].

Representations of the symmetric group can be developed using combinational tech-
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niques. This is because the number of standard Young tableaux of a given shape is the

degree of the corresponding representation.

3.1 The Hook Formula

There exists a simple formula for the number of standard tableaux of shape λ. This

involves the concept of the hook.

Definition 3.1: If v = (i, j) is a node in the diagram of λ, then it has a hook,

Hv = Hi, j = {(i, j′) | j′ ≥ j}∪{(i′, j) | i′ ≥ i},

with corresponding hooklength

hv = hi, j =| Hi, j | .

Example 3.1 Given λ = (42,33,1), then the node (2,2) has a hook with hooklength h2,2 =

6 as shown in the diagram.

It turns out that the number of standard λ-tableaux can be expressed in terms of the hook-
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lengths of each cell in the λ-tableau.

Theorem 3.1 Hook Formula, Sagan[4] (page 124)

If λ ` n, then

f λ =
n!

∏(i, j)∈λ hi, j
.

This theorem is important as it establishes the number of standard tableaux of shape λ.

Example 3.2 Given λ = (2,2,1) ` 5, the hooklengths are given in the array

4 2

3 1

1

where hi, j is placed in cell (i, j). Therefore

f (2,2,1) =
5!

4.3.2.12 = 5.

This result is illustrated by listing the tableaux:

1 2

3 4

5

,

1 2

3 5

4

,

1 3

2 4

5

,

1 3

2 5

4

,

1 4

2 5

3

.
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3.2 The Robinson-Schensted Algorithm

In studying the degree of a representation, we will make use of the Robinson-Schensted

algorithm. We have the following identity.

Theorem 3.2 (Sagan [4], page 91)

∑
λ`n

( f λ)2 = n!.

This is a corollary of Maschke’s Theorem. This theorem says that the number of elements

in Sn is equal to the number of pairs of standard tableaux of the same shape λ as λ varies

over all partitions of n. This bijection is denoted by π
R−S↔ (s, t) where π ∈ Sn, and s, t are

standard λ-tableaux as produced by the Robinson-Schensted algorithm.

The Robinson-Schenested algorithm may be applied to partial tableaux defined as follows.

Definition 3.2: A tableau is a partial tableau if its rows and columns increase. Hence a

partial tableau will be a standard tableau if its elements are the set {1,2, · · · ,n}.

Example 3.3 The tableau

t =
1 3 5
2 6
7

.

is a partial tableau.
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Given a permutation π in two-line notation

π =
1 2 · · · n

x1 x2 · · · xn

,

we construct a sequence of tableaux

(s0, t0) = (φ,φ),(s1, t1),(s2, t2), · · · ,(sn, tn) = (s, t),

where x1,x2, · · · ,xn are inserted into the s tableau and 1,2, · · · ,n are placed in the t tableau,

so that sh sk = sh tk for all k.

The operations of insertion and placement are described by the Robinson-Schensted al-

gorithm.

Suppose s is a partial tableau. Then row insertion of x into s is as follows:

Algorithm R-S. Let s be a partial tableau. Also, let x be an element not in s. To row insert

x into s, we proceed as follows (where := means replacement).

RS1: Set R := the first row of s.

RS2: While x is less than some element of row R, do

(RSa) Let y be the smallest element of R greater than x and replace y by x in R

(denoted by R← x).

(RSb) Set x := y and R := the next row down.

RS3: Now x is greater than every element of R, so place x at the end of row R and stop.
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This process is illustrated below.

Example 3.4 To illustrate, suppose x = 3 and

s =

1 2 5 8

4 7

6

9

.

To follow the path of the insertion of x into s, we put elements that are displaced (or

bumped) during the insertion in boldface type:

1 2 5 8 ← 3

4 7

6

9

1 2 3 8

4 7 ← 5

6

9

1 2 3 8

4 5

6 ← 7

9

1 2 3 8

4 5

6 7

9

.

Since the result of row inserting x into tableau s yields the tableau s′, we write

rx(s) = s′.

The insertion rules ensure that the tableau s′ has increasing rows and columns.

For the placement of an element in a tableau, suppose that t is a partial tableau of shape

µ, and that (i, j) an outer corner of µ. If k is greater than every element of t then to place k

in t at position (i, j), set ti, j := k. That is, we place k at the selected outer corner of t. As
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k is greater than every element of t, t ′ is still a partial tableau.

Example 3.5 Let

t =

1 2 5

4 7

6

8

,

then placing k = 9 in cell (i, j) = (2,3) yields

1 2 5

4 7 9

6

8

.

To build the sequence of tableau pairs from the permutation π, we first start with a tableau

pair (s0, t0) of empty tableaux. Assuming that (sk−1, tk−1) has been built, we then define

the tableau pair (sk, tk) by

sk = rxk(sk−1), and

tk = place k into tk−1 at the position (i, j)

where the insertion terminated.

The operation of placement into tk ensures that sh sk = sh tk for all k. We denote the

tableau s = sn by the s-tableau, or insertion tableau, of π and write s = s(π). Similarly,
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the tableau t = tn is called the t-tableau, or recording tableau, denoted by t = t(π).

Example 3.6 Now we consider an example of the complete algorithm. Boldface numbers

are used for the elements of the lower line of π and hence also for the elements of the sk.

Let

π =
1 2 3 4 5 6 7

4 2 3 6 5 1 7

.

Then the tableaux constructed by the algorithm are

sk :
φ, 4, 2,

4

2 3

4
,

2 3 6

4
,

2 3 5

4 6
,

1 3 5

2 6

4

,
1 3 5 7

2 6

4

= s,

tk :
φ, 1, 1,

2

1 3

2
,

1 3 4

2
,

1 3 4

2 5
,

1 3 4

2 5

6

,
1 3 4 7

2 5

6

= t,

so

1 2 3 4 5 6 7

4 2 3 6 5 1 7

R−S−→


1 3 5 7

2 6

4

,

1 3 4 7

2 5

6

 .

In studying the Robinson-Schensted algorithm we require the definition of a row word.

Definition 3.3: If t is a tableau, then we define the row word of t to be the permutation

πt = RlRl−1 · · ·R1,

where R1, · · · ,Rl are the rows of t.
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Example 3.7 Let

t =

1 3 5 7

2 6

4

.

Then

πt = 4261357.

Lemma 3.1 (Sagan [4], page 101) If s is a standard tableau, then

πs
R−S→ (s, ·).

That is, if s is a standard tableau, then the insertion tableau for the row word of s is the

tableau s itself. This result is not significant in itself, but it helps to clarify the statement

of Theorem 3.6.

3.3 The Knuth Relations

We are interested in equivalence classes of Robinson-Schensted insertion tableaux of per-

mutations. Here we make the following definitions.

Definition 3.4: If µ ⊆ λ as Ferrers diagrams, then the corresponding skew diagram, or

skew shape, or skew tableau, is the set of cells

λ/µ = {c | c ∈ λ and c /∈ µ}.
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A skew diagram is normal if µ = 0.

Example 3.8 If λ = (3,3,2,1) and µ = (2,1,1), then we have the skew diagram as shown

in Figure 3.1.

λ/µ = .

Figure 3.1: Example 3.8

Normal shapes are the left-justified tableaux consider so far.

The definitions of skew tableaux, standard skew tableaux and so on, all follow the same

conventions as developed so far.

We define an equivalence relation on the group Sn.

Definition 3.5: Two permutations π,σ ∈ Sn are said to be s-equivalent, written π
s∼= σ, if

s(π) = s(σ). Note that S(π) = S(σ) implies that the insertion tableaux corresponding to π

and σ are equal. This relation partitions Sn into equivalence classes.

Example 3.9 The equivalence classes in S3 are

{123}, {213, 231}, {132, 312}, {321}
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corresponding to the insertion tableau

1 2 3 , 1 3 ,

2

1 2 ,

3

1 ,

2

3

respectively.

In order to provide an alternative description of s-equivalence, we define the Knuth rela-

tions.

Definition 3.6: Suppose that x < y < z. Then π,σ ∈ Sn differ by a Knuth relation of the

first kind, written π
1∼= σ, if

π = x1 · · ·yxz · · ·xn, and

σ = x1 · · ·yzx · · ·xn, or vice versa.

Definition 3.7: The two permutations differ by a Knuth relation of the second kind, writ-

ten π
2∼= σ, if

π = x1 · · ·xzy · · ·xn, and

σ = x1 · · ·zxy · · ·xn, or vice versa.
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Definition 3.8: The two permutations are Knuth equivalent, written π
K∼= σ, if there exists

a sequence of permutations such that

π = π1
i∼= π2

j∼= · · ·
l∼= πk = σ,

where i, j, · · · , l ∈ {1, 2}.

Example 3.10 In the previous example, we see that the only non-trivial Knuth relations

are

213
1∼= 231 and 132

2∼= 312.

It can be seen that the Knuth equivalence classes and the s-equivalence classes coincide.

This always happens, as seen in the following important theorem.

Theorem 3.3 (Sagan [4], page 100) If π,σ ∈ Sn, then

π
K∼= σ ⇔ π

s∼= σ.

The preceding definitions and theorems involving standard tableaux and permutations are

equally valid when applied to partial tableaux and permutations. This is because we may

set up a bijection

1→ k1, 2→ k2, · · · , n→ kn,

between the elements {1, 2, · · · , n} of a standard tableaux and the elements

{k1, k2, · · · , kn} of a partial tableau.
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3.4 Schutzenberger’s Jeu De Taquin

The jeu de taquin of Schutzenberger can be used to justify skew tableaux to normal

tableaux.

The definition of jeu de taquin requires the definition of forward and backward slides. The

forward slide is defined by Algorithm F. Given a partial tableau t of shape λ/µ, a forward

slide on t into a cell c is as follows:

ALGORITHM F

F1: Pick c to be an inner corner of µ.

F2: While c is not an inner corner of λ do

(Fa) If c = (i, j), then let c′ be the cell of min{ti+1, j, ti, j+1}.

(Fb) Slide tc′ into cell c and let c := c′.

If only one of ti−1, j, ti, j−1 exists in step Fa, then the minimum is taken to be that single

value. The resulting tableau is denoted by jc(t).

Example 3.11 A forward slide is illustrated below:

By way of illustration, let

t =

6 8

2 4 5 9

1 3 7

.
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We let a dot indicate the position of the empty cell as we perform a forward slide from

c = (1,3).

• 6 8

2 4 5 9

1 3 7

,

4 6 8

2 • 5 9

1 3 7

,

4 6 8

2 5 • 9

1 3 7

,

4 6 8

2 5 9 •

1 3 7

.

Thus

jc(t) =

4 6 8

2 5 9

1 3 7

.

Similarly, a backward slide on t into a cell c is defined as

ALGORITHM B

B1: Pick c to be an outer corner of λ.

B2: While c is not an outer corner of µ do

(Ba) If c = (i, j), then let c′ be the cell of max{ti−1, j, ti, j−1}.

(Bb) Slide tc′ into cell and let c := c′.

This produces a tableau jc(t).

Example 3.12 A backward slide is illustrated below:
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A backward slide from c = (3,4) looks like the following

6 8

2 4 5 9

1 3 7 •

,

6 8

2 4 5 9

1 3 • 7

,

6 8

2 • 5 9

1 3 4 7

,

6 8

• 2 5 9

1 3 4 7

,

so

jc(t) =

6 8

2 5 9

1 3 4 7

.

A slide is an invertible operation. If c is a cell for a forward slide on t and the cell vacated

is d, then a backward slide into d restores t. This is expressed by the following theorem:

Theorem 3.4 (Sagan [4], page 114)

jd jc(t) = t, and jc jd(t) = t.

Of course, we may want to make several slides in succession. This process is defined as

follows.

Definition 3.9: A sequence of cells (c1,c2, · · · ,cl) is a slide sequence for a tableau t if we

can form t = t0, t1, · · · , tl , where tck is obtained from ti−1 by performing a slide into cell ci.

Two partial tableaux s and t are equivalent, written s ∼= t, if t can be obtained from s by

some sequence of slides.

The operation of jeu de taquin is a slide sequence which brings a tableau to normal shape,
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as in the following definition.

Definition 3.10: We perform jeu de taquin on a partial skew tableau, t, by performing

an arbitrary slide sequence that brings the tableau to normal shape. The resultant normal

tableau is denoted by j(t).

Example 3.13 Consider the skew tableau

t =
7

6
5

.

We demonstrate the application of jeu de taquin to the tableau t by indicating with a dot

the inner corner into which we perform a forward slide at each stage of the normalization

process.

7
• 6
5 ,

• 7
5 6 ,

• 6 7
5 , 5 6 7 .

.

The tableau which results from performing jeu de taquin, j(t), is well defined, that is

independent of the choice of slide sequence.

Theorem 3.5 (Sagan [4], page 116.) Suppose that t is a partial skew tableau which is

brought to a normal tableau t ′ by slides. Then t ′ is unique. Moreover, t ′ is the insertion

tableau for πt , the row word of t(π).
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Equivalence of tableaux and Knuth equivalence are equivalent, as demonstrated by the

following important theorem.

Theorem 3.6 (Sagan [4], page 116) Let s and t be partial skew tableaux. Then

s∼= t⇔ s
K∼= t.

This is captured in the following important corollary.

Corollary 3.1. It follows from Lemma 3.1, Theorem 3.5 and Theorem 3.6, that two partial

skew tableau, s and t, are Knuth equivalent, written as s
K∼= t, if their row words are Knuth

equivalent as permutations. i.e. if πs
K∼= πt . These two conditions are equivalent.
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Chapter 4

Symmetric Functions

The research by Hamel et al. [7], and McAven et al. [8] invokes the Littlewood-Richardson

rule. In this chapter, we develop the theory of symmetric functions in sufficient detail to

expound the Littlewood-Richardson rule.

This requires that we first define the ring of symmetric functions. We then introduce Schur

functions. Next we define the characteristic map. Finally, we are in a position to state the

Littlewood-Richardson rule.

In giving this coverage, we also introduce symmetric functions as a viable tool to conduct

further research in this area. This limited coverage closely follows the book by Sagan

[4]. For a more comprehensive coverage, the interested reader is referred to the book by

MacDonald [17].
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4.1 The Ring of Symmetric Functions.

The ring of symmetric functions is a set of power series invariant under the action of all

the symmetric groups. Let x = {x1,x2,x3, · · ·} be an infinite set of variables. Consider

the formal power series ring C[[x]]. The monomial xλ1
i1 xλ2

i2 · · ·x
λl
il has degree n if n = ∑i λi.

The power series f (x) ∈ C[[x]] is homogenous of degree n if every monomial in f (x)

has degree n.

For every n, there is a natural action of π ∈ Sn on f (x) ∈ C[[x]], defined as

π f (x1,x2,x3, · · ·) = f (xπ1,xπ2,xπ3, · · ·),

where πi = i for i > n.

Definition 4.1: Let λ = (λ1,λ2, · · · ,λl) be a partition of n. The monomial symmetric

function corresponding to λ is

mλ = mλ(x) = ∑xλ1
i1 xλ2

i2 · · ·x
λl
il ,

where the sum is over all distinct monomials having exponents λ1,λ2, · · · ,λl .

Example 4.1

m(2,1) = x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 + x2
2x3 + x2x2

3 + · · · .

If λ ` n, then mλ(x) is homogeneous of degree n.
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In the theory of symmetric functions, the number of variables is irrelevant, provided that

there are sufficiently many variables to encode the representation that we are dealing with.

Definition 4.2: The ring of symmetric functions is

∧= ∧(x) = Cmλ,

that is, the vector space spanned by all the mλ.

As ∧ is closed under the product, it is really a ring, not just a vector space. There are some

elements of C[[x]] which are invariant under π ∈ Sn, but which are not in ∧. For example,

∏i≥1(1+ xi) cannot be written as a finite linear combination of mλ, so it is not in ∧.

The decomposition of the ring of symmetric functions is

∧ =⊕n≥0∧n,

where ∧n is the space spanned by all mλ of degree n. This is a grading of ∧ since f ∈ ∧n

and g ∈ ∧m implies f g ∈ ∧n+m.

As the mλ are independent, the space ∧n has basis

{mλ | λ ` n},

and therefore is of dimension p(n), the number of partitions of n.

To construct other bases for ∧n, we introduce families of symmetric functions.
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Definition 4.3: The nth power sum symmetric function is

pn = m(n) = ∑
i≥1

xn
i .

Definition 4.4: The nth elementary symmetric function is

en = m(1n) = ∑
ii<···<in

xi1 · · ·xin.

Definition 4.5: The nth complete homogeneous symmetric function is

hn = ∑
λ`n

mλ = ∑
ii≤···≤in

xi1 · · ·xin .

Example 4.2 For n = 3, we have

p3 = x3
1 + x3

2 + x3
3 + · · · ,

e3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + · · · ,

h3 = x3
1 + x3

2 + · · ·+ x2
1x2 + · · ·+ x1x2x3 + x1x2x4 + · · · .

The elementary function en is just the sum of all square-free monomials of degree n. The

complete homogeneous symmetric function is the sum of all monomials of degree n.

These functions are multiplicative. That is, for λ = (λ1,λ2, · · · ,λl),

fλ = fλ1 fλ2 · · · fλl ,
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where each f = p,e or h.

Example 4.3 For λ = (2,1) we have

p(2,1) = (x2
1 + x2

2 + x2
3 + · · ·)(x1 + x2 + x3 + · · ·).

It turns out that the power symmetric function, the elementary symmetric function and

the homogeneous symmetric function all form bases for ∧n, as given by the following

theorem.

Theorem 4.1 (Sagan [4], page 154) The following are bases for ∧n.

(1) {pλ | λ ` n}.

(2) {eλ | λ ` n}.

(3) {hλ | λ ` n}.

Part (2) of this theorem says that every symmetric function is a polynomial in the elemen-

tary functions en.

4.2 Schur Functions

Another basis for ∧n is the Schur functions. These functions are related to the irreducible

representations of Sn and tableaux.
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Definition 4.6: For any composition µ = (µ1,µ2, · · · ,µl), there is a corresponding mono-

mial weight in C[[x]]:

xµ def= xµ1
1 xµ2

2 · · ·x
µl
l .

Definition 4.7: The weight of any generalized tableau T of shape λ is given by

xT def= ∏
(i, j)∈λ

xTi, j = xµ,

where µ is the content of T .

Example 4.4 Given the tableau

T =
4 1 4

1 3
,

then the weight of T is the monomial

xT = x2
1x3x2

4.

Definition 4.8: Given a partition λ, the associated Schur function is

sλ(x) = ΣTx
T ,

where the sum is over all semi-standard λ-tableaux T.
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Example 4.5 For λ = (2,1), some of the possible tableaux are

1 1, 1 2, 1 1, 1 3, · · · 1 2, 1 3, 1 2, 1 4

2 2 3 3 3 2 4 2
,

so that

s(2,1)(x) = x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 + · · ·+2x1x2x3 +2x1x2x4 + · · · .

If the partition λ = (n), then a tableau with one row is a weakly increasing sequence of n

positive integers. As this is a partition with n parts, it follows that

s(n)(x) = hn(x).

If the partition λ = (1n), then a tableau with one column is a strictly increasing sequence

from top to bottom, giving

s(1n)(x) = en(x).

We next establish that the Schur functions form a basis for ∧n. To do this, we must first

define an order on partitions.

Definition 4.9: Let λ = (λ1,λ2, · · · ,λl) and µ = (µ1,µ2, · · · ,µm) be partitions of n. Then

λ dominates µ, written λ�µ, if

λ1 +λ2 + · · ·+λi ≥ µ1 +µ2 + · · ·+µi
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for all i≥ 1. If i > l (respectively, i > m), then we take λi (respectively, µi) to be zero.

Example 4.6 When n = 6, (3,3)� (2,2,1,1).

In order to show that the Schur functions form a basis for ∧n, we first establish that they

are symmetric.

Theorem 4.2 (Sagan [4], page 156) The function sλ(x) is symmetric.

It follows that the Schur functions do form a basis for ∧n, as given by the following

important theorem.

Theorem 4.3 (Sagan [4], page 157) We have

sλ = ∑
µ�x

Kλµmµ,

where the sum is over partitions µ (rather than compositions) and Kλλ = 1. In this formu-

lation, � denotes dominance ordering.

Corollary 4.1 The set {sλ | λ ` n} is a basis for ∧n.

4.3 The Characteristic Map

In order to define the characteristic map, we must first define a class function.

56



Definition 4.10: A class function on a group G is a mapping, f : G→ C, from G to

the field of complex numbers such that f (g) = f (h) whenever g and h are in the same

conjugacy class of G. The set of all class functions on G is denoted by R(G).

The sums and scalar multiples of class functions are again class functions, so R(G) is a

vector space over C.

Let Rn = R(Sn) be the space of class functions on Sn. The dimension of this space,

dimRn = dim∧n = p(n), is the number of partitions of n. Therefore, Rn and ∧n are

isomorphic as vector spaces. An inner product on Rn exists for which the irreducible

characters on Sn form an orthonormal basis.

Definition 4.11: We also define an inner product on ∧n as

< sλ,sµ >= δλµ,

and sesquilinear extension, which is linear in the first variable and conjugate linear is the

second variable.

Definition 4.12: A map exists which preserve these inner products. This is the character-

istic map chn : Rn −→∧n, which is defined as

chn(χ) = ∑
µ`n

z−1
µ χµ pµ,

where χµ is the value of χ on the class µ.

In this definition zµ is the order of the centralizer of a permutation of cycle type µ.
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The characteristic map is unique in that it is the only map which preserves inner products.

The characteristic map chn is linear. Applying it to the irreducible characters gives

chn(χλ) = sλ.

The characteristic map takes the space of class functions on Sn to ∧n, as given by the

following theorem.

Theorem 4.4 (Sagan [4], page 168) As the characteristic map chn takes one orthonormal

basis to another, the map chn is an isometry between Rn and ∧n.

The ring product of class functions R =⊕nRn is isomorphic to ∧=⊕n∧n by the charac-

teristic map ch =⊕nchn. The ring product ∧ has the structure of a graded algebra. If χ and

ψ are characters of Sn and Sm respectively, then to construct the corresponding product in

Rn, we must find the character of Sn+m. The tensor product of χ⊗ψ yields a character of

Sn×Sm.

Definition 4.13: We define a product on R by bilinear extension of

χ.ψ = (χ⊗ψ) ↑Sn+m .

Hence we have the following important theorem.

Theorem 4.5 (Sagan [4], page 169) The map ch : R→∧ is an isomorphism of algebras.

58



This theorem is important as it establishes that the ring product of class functions is iso-

morphic to the ring of symmetric functions. Thus from the preceding discussion, this

furnishes an approach to representation of Sn+m using symmetric functions and group

character theory.

4.4 The Littlewood-Richardson Rule

Young’s rule, Theorem 2.2, states that

Mµ ∼=⊕λKλµSλ,

where Kλµ is the number of semi-standard tableaux of shape λ and content µ. In this

formulation Sλ is the Specht module associated with the partition λ, and Mµ is the per-

mutation module corresponding to µ. This result can be viewed in terms of characters or

symmetric functions.

If µ ` n, then Mµ is a module for the induced character 1Sµ ↑Sn . The definitions of the

character and the tensor product give that

1Sµ = 1Sµ1
⊗1Sµ2

⊗·· ·⊗1Sµm
,

where µ = (µ1,µ2, · · · ,µm). This may be written as

1Sµ1
.1Sµ2
· · ·1Sµm

= ∑
λ

Kλµχ
λ.
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Applying the characteristic map gives

s(µ1)s(µ2) · · ·s(µm) = ∑
λ

Kλµsλ.

Example 4.7

M(3,2) = S(3,2) +S(4,1) +S(5),

with the corresponding tableaux

1 1 1

2 2
,

1 1 1 2

2
,

1 1 1 2 2
,

which may be written as

1S3.1S2 = χ
(3,2) +χ

(4,1) +χ
(5),

or

s(3)s(2) = s(3,2) + s(4,1) + s(5).

The computation of the expansion

sµsν = ∑
λ

cλ
µνsλ,
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on arbitrary partitions µ and ν is equivalent to the computation of the irreducibles in

χ
µ
χ

ν = ∑
λ

cλ
µνχ

λ,

or

(Sµ⊗Sν) ↑=⊕λcλ
µνSλ,

where | µ |+ | ν |= n, and the cλ
µν are called the Littlewood-Richardson coefficients.

The Littlewood-Richardson rule gives a combinatorial interpretation of these coefficients.

These coefficients also arise in the expansion of the skew Schur functions, which are

the Schur functions associated with skew shapes. These are the subject of the following

theorem.

Theorem 4.6 (Sagan [4], page 175) If we define sλ(x,y) = sλ(x1,x2, · · · ,y1,y2, · · ·), then

sλ(x,y) = ∑
µ⊆λ

sµ(x)sλ/µ(y).

The skew symmetric function sλ/µ(y) can be expressed as a linear combination of or-

dinary (non-skew) Schur functions. This is associated with the Littlewood-Richardson

coefficients, as given by the following theorem.

Theorem 4.7 (Sagan [4], page 175) If the cλ
µν are Littlewood-Richardson coefficients

where | µ |+ | ν |=| λ |, then

sλ/µ = ∑
ν

cλ
µνsν.
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One more definition is required to state the Littlewood-Richardson rule.

Definition 4.14: A ballot sequence or lattice permutation is a sequence of positive integers

π = i1i2 · · · in such that

πk = i1i2 · · · ik for all 1≤ k ≤ n,

and for any positive integer l, the number of l’s in πk is at least as large as the number of

(l +1)’s in that prefix.

A reverse ballot sequence or reverse lattice permutation is a permutation π for which πr

is a ballot sequence. In this definition, πr is the reversal of the permutation π in one-row

format.

Example 4.8 As an example, the sequence

π = 1 1 2 3 2 1 3,

is a lattice permutation, but

σ = 1 2 3 2 1 1 3,

is not, because the leading term 1 2 3 2 has more 2’s than 1’s.

Lattice permutations provide an encoding of standard tableaux. Given a standard tableau

t with n elements the sequence π = i1i2 · · · in is then formed where ik = i if k appears in
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row i of t. Entries less than or equal to k form a partition with weakly decreasing parts.

This ensures the ballot sequence condition on πk.

Example 4.9 The preceding lattice permutation π encodes the tableau

1 2 6

3 5

4 7

.

We are now in a position to be able to state the Littlewood-Richardson Rule.

Theorem 4.8 Littlewood-Richardson Rule (Sagan [4], page 177)

The value of each Littlewood-Richardson coefficient cλ
µν is equal to the number of semis-

tandard tableaux t such that

(1) t has shape λ/µ and content ν,

(2) the row word of t, πt , is a reverse lattice permutation.

A bijection exists between semi-standard tableaux t of shape λ/µ and semi-standard

tableaux of normal shape, that is,

t
j−→U,

where U is the set of semi-standard tableaux of normal shape. This map j is just the jeu

de taquin.
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Theorem 4.9 (Sagan [4], page 178.) If a tableau T ′ can be obtained from a tableau T

by a sequence of slides, then πT is a reverse lattice permutation if and only if πT ′ is also

a reverse lattice permutation.

Example 4.10 Given the product s(2,1)s(2,2), then the tableaux corresponding to lattice

permutations with content (2,2) and shape λ/(2,1) for some λ are:

• • 1 1

• 2 2
,

• • 1 1

• 2

2
,

• • 1

• 1 2

2
,

• • 1

• 1

2 2
,

• • 1

• 2

1

2

,

• •

• 1

1 2

2

.

This gives

s(2,1)s(2,2) = s(4,3) + s(4,2,1) + s(32,1) + s(3,22) + s(3,2,12) + s(23,1).

Example 4.11 Given the outer shape s(5,3,2,1), then we wish to find the coefficients of this

shape in s(3,2,1)s(3,2). The tableaux are

• • • 1 1

• • 1

• 2

2

,

• • • 1 1

• • 2

• 1

2

,

• • • 1 1

• • 2

• 2

1

.
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This gives that

c(5,3,2,1)
(3,2,1)(3,2) = 3.
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Chapter 5

An Introduction to the Transition

Matrix between Symmetric Group

Bases

We consider here representations of the symmetric group on n elements, written as Sn.

The number of conjugacy classes of the symmetric group is the number of inequivalent

irreducible representations of the symmetric group. Each conjugacy class is associated

with a partition of n. Thus the irreducible representations of Sn may be labeled by parti-

tions of n. Associated with each partition, λ, of n is a Young tableaux of shape λ. The

number of Young tableaux for a given partition of λ, of n, is equal to the degree of their

reducible representation of Sn associated with the partition, λ, of n.

We will be considering the representation of the symmetric group in several different
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bases.

5.1 Adaption to a Basis

The number of conjugacy classes of the symmetric group in equal to the number of in-

equivalent irreducible representations. Partitions of n can be used to label the classes of

Sn, so they can also be used to label the irreducible representations of Sn.

Having identified the irreducible representations of Sn, we consider the basis vectors

which span the irreducible representations. To do this, we consider the behavior of the

basis vectors under the chain of subgroups

Sn ⊃ Sn−1 ⊃ Sn−2...⊃ S2.

Now consider the reduction of the irreducible representations from Sn to Sn−1. The irre-

ducible representations of Sn−1 may also be labeled by partitions. The partitions of Sn and

Sn−1 differ in only one part, smaller by one in the Sn−1 partition. This is equivalent to the

Ferrers diagram on (n−1) nodes obtained by removing an outer corner from the Ferrers

diagram for the Sn irreducible representation. Recording the Sn irreducible representation

and the Sn−1 irreducible representation gives a basis for the irreducible representations in

the Sn ⊃ Sn−1 subgroup chain.

This process does not uniquely label the basis vectors, since the Sn−1 irreducible represen-

tations will usually be of dimension greater than one. So we need to extend the subgroup
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chain as in equation 5.1 to obtain a set of irreducible representations which do uniquely

label each basis vector. This is illustrated in Figure 5.1.

S5 :

S4 :

S3 :

S2 :

S1 :

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

Figure 5.1: The set of irreducible representations (partitions) associated with each of the
basis vectors of the irreducible [32].

The sequence of diagrams is an extended way of labeling the basis vectors. Since the

Ferrers diagram in the sequence differs in only one node between steps, we can associate

with each sequence a numbered Ferrers diagram. This is the Young tableau introduced

in Chapter 2. The number of Young tableaux is equal to the dimension of the irreducible

representation. At the bottom of Figure 5.1, we give the Young tableaux for the basis

vectors labelled by the sequences shown.
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It is possible to adapt the basis to other systems than the chain of subgroups. In general,

the differently adapted bases are called non-standard bases. In particular, we are interested

in split bases such as direct product adapted bases. These bases are adapted to direct

products of subgroups of the form

Sn1×Sn2× ...×Snk .

One can label the basis vectors of the split basis by tuples of tableaux obtained by re-

moving the first nk nodes from the Young tableau, then nk−1 nodes and so on. These

tableaux determine the representation matrices of the adjacent transpositions in the split

bases using the method described above for the standard basis tableaux. The first tableau

is used if the adjacent transposition is in Sn1 , the second tableau is used if the adjacent

transposition is in Sn2 , and so on. The transpositions between the factor subgroups, the

bridging transpositions cannot be calculated in this manner. This is the subject of ongoing

research.

This requires an ordering on tableaux and tuples of tableaux. This is discussed in the next

section.
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5.2 Orderings on Tableaux

First, we wish to impose an order on tableaux of the same shape. To do this, we define a

total order on tableaux known as first letter order or dictionary order, as follows.

Definition 5.1: ([5], page 36.) A list of tableaux my be placed in first letter order or

dictionary order by assuming that tableau t1 precedes t2 if the integers in the first s rows

of each tableau are the same and the the first s integers in the (r+1)th row are the same but

the (s+1)th integer in the (r +1)th row of t1 precedes the (s+1)th integer in the (r +1)th

row of t2.

Example 5.1 Let s and t be the tableaux,

s =

1 2 3 4

5 6 7

8

,

and

t =

1 2 3 4

5 6 8

7

.

Then tableau s precedes tableau t in first letter order.
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Example 5.2 Let λ = (3,2,1). There are sixteen standard tableaux of shape λ, ie.

1 2 3
4 5
6 <

1 2 3
4 6
5 <

1 2 4
3 5
6 <

1 2 4
3 6
5

ta tb tc td
1 2 5
3 4
6 <

1 2 5
3 6
4 <

1 2 6
3 4
5 <

1 2 6
3 5
4

te t f tg th
1 3 4
2 5
6 <

1 3 4
2 6
5 <

1 3 5
2 4
6 <

1 3 5
2 6
4

ti t j tk tl
1 3 6
2 4
5 <

1 3 6
2 5
4 <

1 4 5
2 6
3 <

1 4 6
2 5
3

tm tn to tp

These sixteen tableaux are shown in first letter order.

Intuitively this is the order in which the tableau elements would appear in a dictionary.

In defining matrix representations, last letter order is sometimes used. This is introduced

later in Definition 5.3. Second, we wish to impose an order on tableaux which have

different shape. To do this, we define partition order as follows.

Definition 5.2: ([8], page 3.) Let λ = (λ1,λ2, ...,λe) and µ = (µ1,µ2, ...,µm) be partitions

of n. Then partition λ precedes partition µ in partition order, written λ < µ, if, for some

order index i,

λ j = µ j f or j < i and λi = µi.
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Example 5.3 The partitions of n = 3, we have that

(3) < (2,1) < (13).

This is illustrated by the tableau shapes

< <

Intuitively tableau s precedes tableau t in partition order if tableau s is short and fat and

tableau t is long and thin.

We wish to order tuples of tableaux which have been normalised using jeu de taquin. To

do this, we apply a combination of partition order and first letter order, as follows.

Algorithm PF ([8], page 4.)

Step PF-1 To order tuples of tableaux, we first apply partition order to the first tableaux

in the tuples if the shapes of the first tableaux are different.

PF-2 Apply first letter order to the first tableaux in tuples if the shapes of the first tableaux

are identical.

PF-3 Apply partition order to the second tableaux in the tuples if the first tableaux are

identical and the shapes of the second tableaux are different.

PF-4 Apply first letter order to the second tableaux in the tuples if the first tableaux are

identical.
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PF-5 If the first and second tableaux in the tuples are identical, apply partition order

and first letter order as above to the third tableaux, and so on, until the tuples are

arranged in order.

PF-6 If multiplicities occur, order the tuples according to first letter order of the standard

tableaux which mapped to the tuple.

Example 5.4 Let λ = (3,2,1) be a partition of 6. We consider again the removal of

three nodes from the sixteen standard tableaux of shape λ, corresponding to the direct

product subgroup S3× S3. The tableau pairs are shown arranged in order according to

this algorithm.

1 2 3 ×
4 5
6 < 1 2 3 ×

4 6
5 <

1 2
3 × 4 5 6 <

1 2
3 ×

4 5
6 <

(αb,βb) (αb,βb) (αh,βh) (αe,βe)

1 2
3 ×

4 5
6 <

1 2
3 ×

4 6
5 <

1 2
3 ×

4 6
5 <

1 2
3 ×

4
5
6 <

(α f ,β f ) (αd,βd) (αg,βg) (αc,βc)

1 3
2 × 4 5 6 <

1 3
2 ×

4 5
6 <

1 3
2 ×

4 5
6 <

1 3
2 ×

4 6
5 <

(αn,βn) (αk,βk) (αl,βl) (α j,β j)

1 3
2 ×

4 6
5 <

1 3
2 ×

4
5
6 <

1
2
3 ×

4 5
6 <

1
2
3 ×

4 6
5

(αm,βm) (αi,βi) (αo,βo) (αp,βp)

We are interested in the representation matrices corresponding to direct product subgroups
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of the form

Sn1×Sn2× ...×Snk

where n1 +n2 + ...+nk = n.

In terms of tableaux, this corresponds to the k-tuple of tableaux obtained by first removing

nk nodes from the tableau for Sn, then nk−1 nodes, and so on, until there are n1 nodes left.

Each tableau in the k-tuple is normalised using jeu de taquin.

Note that this correspondence is many-to-one, so that a single k-tuple of tableaux may

have several standard tableaux which map to it.

Example 5.5 Let λ = (3,2,1) be a partition of 6. We are interested in the direct prod-

uct subgroup S3× S3. This corresponds to the removal of three nodes from the sixteen

standard tableaux of shape λ. For the sake of simplicity, we choose to remove the nodes

containing the integers 4, 5 and 6, though we could choose the integers for removal arbi-

trarily.

We show the tableaux pairs obtained by removal of the nodes.

1 2 3
4 5
6 ⇒ 1 2 3 ×

4 5
6

ta (αa,βa)

1 2 3
4 6
5 ⇒ 1 2 3 ×

4 6
5

tb (αb,βb)
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1 2 4
3 5
6 ⇒

1 2
3 ×

4
5
6

tc (αc,βc)

1 2 4
3 6
5 ⇒

1 2
3 ×

4 6
5

td (αd,βd)

1 2 5
3 4
6 ⇒

1 2
3 ×

4 5
6

te (αe,βe)

1 2 5
3 6
4 ⇒

1 2
3 ×

4 5
6

t f (α f ,β f )

1 2 6
3 4
5 ⇒

1 2
3 ×

4 6
5

tg (αg,βg)

1 2 6
3 5
4 ⇒

1 2
3 × 4 5 6

th (αh,βh)
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1 3 4
3 5
6 ⇒

1 3
2 ×

4
5
6

ti (αi,βi)

1 3 4
2 6
5 ⇒

1 3
2 ×

4 6
5

t j (α j,β j)

1 3 5
2 4
6 ⇒

1 3
2 ×

4 5
6

tk (αk,βk)

1 3 5
2 6
4 ⇒

1 3
2 ×

4 5
6

tl (αl,βl)

1 3 6
2 4
5 ⇒

1 3
2 ×

4 6
5

tm (αm,βm)

1 3 6
2 5
4 ⇒

1 3
2 × 4 5 6

tn (αn,βn)
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1 4 5
2 6
3 ⇒

1
2
3 ×

4 5
6

to (αo,βo)

1 4 6
2 5
3 ⇒

1
2
3 ×

4 6
5

tp (αp,βp)

Note that in this example, the standard tableaux are in first letter order but the derived

tableaux pairs are not. To impose an order on the tableaux pairs, we apply Algorithm PF.

In this example, we also see instances of the many-to-one correspondence between Young

tableaux of shape λ and tableaux pairs, (α,β). For example

1. Both tableaux, td and tg, map to the tableau pair (αd,βd) = (αg,βg);

2. Both tableaux, te and t f , map to the tableau pair (αe,βe) = (α f ,β f );

3. Both tableaux, t j and tm, map to the tableau pair (α j,β j) = (αm,βm);

4. Both tableaux, tk and te, map to the tableau pair (αk,βk) = (αe,βe).

These are examples of product multiplicity in the Sn−Sa,b basis. Product multiplicity is

resolved by using Algorithm PF.

We wish to order tableaux according to last letter order, as follows.

Definition 5.3: ([8], page 3.) An integer is said to be lower in a tableau if it occurs either

in a lower row or in the same row and to be the right of a second integer. Let λ be a
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partition. The set of tableaux of shape λ may be placed in last letter order by placing

tableaux in which in largest letter occurs lower in the tableau later in the ordering. If the

largest letter is in the same partition, tableaux are ordered according to the second largest

letter, and so on.

Example 5.6 Let λ = (3,2). The last-lettering ordering of Young tableaux of shape λ

gives the tableau sequence.

1 3 5
2 4 <

1 2 5
3 4 <

1 3 4
2 5 <

1 2 4
3 5 <

1 2 3
4 5 .

Example 5.7 Let λ = (3,2,1). The sixteen standard tableaux of shape λ are shown ar-

ranged in last letter order below.

1 2 3
4 5
6 <

1 2 4
3 5
6 <

1 3 4
2 5
6 <

1 2 5
3 4
6 <

1 3 5
2 4
6 <

1 2 3
4 6
5 <

1 2 4
3 6
5 <

1 3 4
2 6
5 <

1 2 5
3 6
4 <

1 3 5
2 6
4 <

1 4 5
2 6
3 <

1 2 6
3 4
5 <

1 3 6
2 4
5 <

1 2 6
3 5
4 <

1 3 6
2 5
4 <

1 4 6
2 5
3 .

5.3 The Young-Yamanouchi Representation

In the literature, the most common representation of the symmetric group is the Young-

Yamanouchi representation. The derivation of this representation is due to Yamanouchi
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and is given in Hamermesh [12], pages 214-223.

The representation matrices associated with the Young-Yamanouchi (or YY) basis vectors

are defined in terms of the axial distance between two nodes in a tableau. This definition

is as follows:

Definition 5.3: ([7], page 3.) Let i be the node in row ri and column ci of a tableau. Let j

be the node in row r j and column c j of the same tableau. The axial distance from node i

to node j is

τi j = (c j− r j)− (ci− ri).

The reciprocal of the axial distance, ρ, is defined as

ρ =
1
τ
.

The representation matrix in the YY basis is also defined in terms of the Young-Yamanouchi,

on YY, symbol. This symbol is computed by the following algorithm.

Algorithm YY ([7], page 3.)

Step YY-1 Set x = n.

Step YY-2 Locate the symbol labelled x in the Young tableau. Write down the row of the

tableau in which this symbol appears.

Step YY-3 Remove x from the Young tableau.

Step YY-4 Set x = x−1.
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Step YY-5 If x = 0, the algorithm terminates. Otherwise, go to Step Step YY-2.

Example 5.8 Given the Young tableaux

1 2 3
4 5
6 ,

then the Young-Yamanouchi symbol computed by the above algorithm is

3 2 2 1 1 1.

We are now in a position to define the Young-Yamanouchi representation matrix. Note

that since the symmetric group is generated by adjacent transpositions, it suffices to com-

pute the Young-Yamanouchi representation matrices for the adjacent transposition of the

form (k−1,k). These matrices are written as Mλ

(k−1,k).

Definition 5.4: ([7], page 3.) First, order the tableaux for the partition, λ, according to

last letter order. Also order the Young-Yamanouchi symbols by last letter order. Then

the Young-Yamanouchi representation matrix, Mλ

(k−1,k), for the transposition (k−1,k) is

defined as follows :

(1) The matrix, Mλ

(k−1,k), has +1 is position (r,r) if, in the rth YY symbol, the (n− k +

1)th and the (n− k)th elements are identical, that is, if the rth tableau has (k− 1)

and k in the same row.
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(2) The matrix, Mλ

(k−1,k) has−1 in position (r,r) if, in the rth YY symbol, the (n−k+1)th

element, α, is one more than the (n− k)th element, β, and there does not exist

another YY symbol which is identical to this YY symbol except that its (n−k+1)th

element is β and its (n− k)th element is α, that is, the rth tableau has (k−1) and k

in the same column.

(3) The matrix, Mλ

(k−1,k) has −ρ in position (r,r),
√

1−ρ2 in positions (r,s) and (s,r)

and ρ in position (s,s) if r < s and the rth and sth YY symbols are identical except

that the (n− k + 1)th element of the rth YY symbol is the (n− k)th element of

the sth YY symbol and vice-versa, that is, the sth tableau is obtained from the rth

tableau by interchanging (k−1) and k.

(4) The matrix, Mλ

(k−1,k), has zero in all other positions.

Example 5.9 The YY representation matrices for the transpositions (12), (23), (34),

(45) and (56) are shown below.

[(12)] =

1

1

-1

1

-1

1

1

-1

1

-1

-1

1

-1

1

-1

-1
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[(2,3)] =

1
−1
2√
3
2

√
3
2
−1
2

−1
2√
3
2

√
3
2
−1
2

1
−1
2√

3
2

√
3
2
−1
2

−1
2√
3
2

√
3
2
−1
2

1
−1
2√
3
2

√
3
2
−1
2

−1
2√
3
2

√
3
2
−1
2

1

[(3,4)] =

−1
3√
8
3

√
8
3

1
3

1

1

1
−1
3√

8
3

√
8
3

1
3

1

1
−1
3√
8
3

√
8
3

1
3

1

1

1
−1
3√
8
3

√
8
3

1
3

[(4,5)] =

1

−1
2

√
3
2

−1
2√

3
2

1
2√

3
2

1
2

-1

−1
4

√
15
4

−1
4

√
15
4√

15
4

1
4√

15
4

1
4

1
√

3
2

−1
2

√
3
2√

3
2

1
2√

3
2

1
2

-1
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[(5,6)] =

−1
2

√
3
2

−1
2

√
3
2

−1
2

√
3
2

−1
4

√
15
4

−1
4

√
15
4√

3
2

1
2√

3
2

1
2√

3
2

1
2

−1
2

−1
2

−1
2√

15
4

1
4√

15
4

1
4√

3
2

1
2√

3
2

1
2√

3
2

1
2

The derivation of the representation matrix is due to Yamanouchi and is given in Hamer-

mesh [12], pages 214-223.

5.4 The Transition Matrix

It is sufficient to derive the representation matrix for adjacent transpositions, since the

symmetric group is generated by adjacent transpositions, as described on page 68.

An important basis we will be considering is the split basis. This is the representation of

the symmetric group adapted to a direct product subgroup Sa× Sb, where a + b = n. In

this representation, adjacent transposition will be represented by the Young-Yamanouchi

matrix provided that it falls in the subgroup Sa on the subgroup Sb. There is one transpo-

sition (a,a + 1) whose elements fall in Sa and Sb. The representation of this element in

the split basis is the subject of ongoing research. Indeed, this is the crux of the research
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problem addressed in this thesis.

More generally, we are interested in a representation of the symmetric group adapted to a

direct product of subgroups of the form

Sn1×Sn2× ...×Snk

where

∑
i

ni = n.

In his case there will be k−1 bridging transpositions.

Consider another such direct product of subgroup of the form

Sm1×Sm2× ...×Sml

where

∑
i

mi = n.

We are again interested in a representation adapted to this direct product.

In this research, we are interested in the matrix which transforms between these two bases.

This is known as the transition matrix. It allows coefficients in the representation matrices,

for example, Sa×Sb, to be related to coefficients in the representation matrix for Sc×Sd .

The representation for Sa×Sb will consist of blocks for each of the generators, as will the

representation matrices for Sc× Sd . The transition matrix will relate the coefficients of
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each block between the two sets of representation matrices.
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Chapter 6

The Skew Representation

The research of Hamel et al. [7], and McAven et al. [8], (see Chapter 7) investigates the

removal of nodes from a tableau and the corresponding representation. They do this by

normalizing the resulting skew tableaux and applying the Young-Yamanouchi basis to the

normalized tableaux.

We wish to consider some possible means of furthering this research. One possible

method is introduced in this chapter. It involves the concept of a skew representation.

In this representation, skew tableau are not normalized, but a representation is applied di-

rectly to the skew tableau. This representation is an extension of the Young-Yamanouchi

basis of Chapter 5, defined in Section 5.3. To make this definition, we must first introduce

Young’s Raising Operator and lattice permutations.

This limited coverage closely follows the treatment given in the book by Robinson [5].

For a more comprehensive treatment, the interested reader is thus referred to the book by
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Robinson [5].

6.1 Young’s Raising Operator Rik

Instead of writing the rows of the tableau t above one another as we usually do, we may

write them disjointly, giving a special case of a skew diagram, viz

· · · · · · λ1 nodes

· · · · · · λ2 nodes

...

· · · · · · λh nodes

We designate this skew diagram by a direct product of component tableaux

λ1×λ2×·· ·×λh.

The arrangement of the disjoint rows and the order of the factors is immaterial. The

number of such standard skew tableaux is

fλ =
n!

λ1!λ2! · · ·λh!
.
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This is the degree of the permutation representation of Sn, Mλ, induced by the identity

representation of the subgroup

Sλ = Sλ1×Sλ2× . . .×Sλh .

The matrices of the transpositions (r,r +1) are computed as described in Chapter 5 if we

take ρ = 0.

In order to define skew representations and Young’s Raising Operator, we need to define

dictionary order of tableaux.

Definition 6.1: Lists of tableaux may be placed in dictionary order by assuming that

tableau t precedes tableau t ′, written t < t ′, if the integers in the first r rows of each tableau

are the same, and the first s integers in the (r+1)+h row are the same, but the (s+1)+h

integer in the (r+1)+h row of t precedes the (s+1)+h integer in the (r+1)+h integer

in the (r +1)+h row of t ′.

Example 6.1 Let t and t ′ be the tableaux

t =

1 2 3 4

5 6 7

8

and t ′ =

1 2 3 4

5 6 8

7

.

Then tableau t precedes tableau t ′ in dictionary order.
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The operator theory of representations is based on Young’s substitutional equation:

∑
′ Sλ

λ1!λ2! · · ·λk!
= ∑(∏Rik)

n!
f λ

tλ,

where ∑
′ indicates summation over all n! arrangements of the symbols of the skew dia-

gram above. For i < k, the operator Rik represents the raising of a node from the kth row

to the ith row of t to yield a new skew diagram s. The compound operator uRik represents

successive raisings of nodes in t where i = 1,2, · · · ,h− 1; k = 2,3, · · · ,h. The s tableau

thus obtained precede the tableau t in dictionary order.

The substitutional equation above gives the reduction of the permutation representation

as

[λ1]⊗ [λ2]⊗·· ·⊗ [λh] = ∑(∏Rik)[λ]

= [λ]+ · · ·+[n],

where [λ] and the identity representation [n] each appear once and only once, and [λi] is

the representation of the skew diagram component ti.

When the operator ∏Rik is applied to the tableau s, the result is disregarded if

(1) Any row contains more symbols that a previous row, or

(2) Two symbols from the same row appear in the same column.

Robinson [5] proposes a systematization of the application of Young’s raising operator

Rik, as follows. Suppose that the λ1 symbols in the first row of t are ai’s, the λ2 symbols

in the second row are a2’s, and so on. We add the a2’s in succession from the left to t1
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with some in the first row, and the remainder in the second row, according to the operator:

(1−R12)−1 = 1+R12 +R2
12 + · · ·+Rλ2

12 + · · · .

No operator Ri
12 with i > λ2 is meaningful when applied to t. Then we add the a3’s in all

possible ways to each of the resulting diagrams subject to rules 1 and 2 above.

Each diagram so obtained is associated with an allowable operator from the product

(1−R12)−1(1−R13)−1(1−R23)−1.

Continuing in this manner gives the reduction of the permutation representation as

[λ1]⊗ [λ2]⊗·· ·⊗ [λh] = ∏(1−Rik)−1[λ].

This equation may be inverted to give

[λ] = ∏(1−Rik)[λ1]⊗ [λ2]⊗·· ·⊗ [λh].

Each operator raises a symbol from a specified row, and rows are disjoint. Therefore

the restrictions 1 and 2 above do not apply to this equation. This is an induction on the

identity representation of the subgroup Sλ to obtain a representation of Sn.
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6.2 Lattice Permutations

In a previous section we described the reduction of the permutation representation [λ1]⊗

[λ2]⊗ . . .⊗ [λk] of Sn in terms of the operator Ri j. A more explicit alternative is to associate

each of the fλ standard skew tableaux tλ of λ1×λ2× . . .×λk with a standard right tableau

of an irreducible component. To do this, we firstly superimpose the rows of λ1×λ2× . . .×

λk to yield fλ tableaux tλ of λ, of which only f λ are standard. We form the association by

denoting each symbol in the ith row of tλ by ai. Thus any arrangement of 1,2, · · · ,n in tλ

defines a unique permutation π of the ai. This permutation is defined by the λ1!λ2! . . .λk!

tableaux obtained by rearranging the symbols in the rows of tλ. If tλ is a standard tableau,

then the first r terms of π contains at least as many ai’s as ai+1’s for all i and all r. Such a

permutation is a lattice permutation. Conversely, each lattice permutation defines a unique

standard tableau tλ.

Example 6.2 The lattice permutation corresponding to the standard tableau

1 3 5 a1,

2 4 a2.

is a1a2a1a2a1. Thus the equivalence of the lattice property with standardness is obvious.
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6.3 Skew Diagrams

Consider a diagram α and a diagram β which is superimposed upon α, with upper left

hand corner upon upper left hand corner, such that β is contained entirely within α. The

part of α not covered by β is called a skew diagram, denoted by α/β. The part of the rim

of α beginning with the last node of any row and ending with the last node of an earlier

column is called a skew hook.

The description of α/β in terms of α and β is not unique. It may consist of one or more

disjoint constituents which may themselves be skew diagrams. It is possible to choose

different α and β to represent the same skew diagram. However, in the context of this

research, we will normally choose α and β such that β has normal shape.

We now introduce the operator B−1 which will annihilate those nodes of α belonging to

β, setting

α/β = B−1
α = B−1 | [αi− i+ j] |•

where

B−1 = (R01)β1(R02)β2(R03)β3 · · · ,

and the dot exponent indicates the type of multiplication used. In this case it is the multi-

plication of the elements of the determinant, where addition and subtraction denote union

and difference of tableau shapes respectively.

The operator (R01)β1 corresponds to subtracting β1 nodes from each term in the first

column of | (αi− i+ j) |•. The operator (R02)β2 corresponds to subtracting β2 nodes from
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each term in the second column, and so on.

The result of making these changes can again be expressed as a determinant in the corre-

sponding representation, viz

(α)/(β) =| (αi− i−β j + j) |•,

with degree

f α/β = n!
∣∣∣∣ 1
(αi− i−β j + j)!

∣∣∣∣ .
From the previous equations, we derive the important result that

(α) = B | (αi− i−β j + j) |•,

where we assume that the operator affects only the factors arising from the first column.

Example 6.3 If we consider the tableaux α = (3,2 ,1) and β = (2,1), then α/β is the

skew tableau

• • •

• • •

•

/ • •
• =

•

• •

•

Example 6.4 This skew diagram may equally well be defined by α/β, where α = (4,3,1)
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and β = (3,1), viz

• • • •

• • •

• •

/ • • •
•

•

=

•

• •

•

Example 6.5 Alternatively, this skew diagram may be defined as α/β =(4,3,3,1)/(3,3,1),

that is,

• • • •

• • •

• • •

•

/
• • •

• • •

•
=

•

• •

•

=

•

• •

•

Example 6.6 Using our previous Example 6.3, with α = (32,1) and β = (2,1), then

(α)/(β) = (32,1)/(2,1)

= B−1 | (αi− i+ j) |•,

where

B−1 = (R01)β1(R02)β2

= (R01)2(R02)1

= R01R01R02.
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Therefore

(α)/(β) = (R01)2(R02) | (αi− i+ j) |•

= | (αi− i−β j + j) |•

=

∣∣∣∣∣∣∣∣∣∣∣∣

(3−1−2+1) (3−1−1+2) (3−1−0+3)

(3−2−2+1) (3−2−1+2) (3−2−0+3)

(1−3−2+1) (1−3−1+2) (1−3−0+3)

∣∣∣∣∣∣∣∣∣∣∣∣

•

=

∣∣∣∣∣∣∣∣∣∣∣∣

(1) (3) (5)

(0) (2) (4)

(−3) (−1) (1)

∣∣∣∣∣∣∣∣∣∣∣∣

•

,

and the degree of (α/β) is given by

f α/β = 7!
∣∣∣∣ 1
(αi− i−β j + j)

∣∣∣∣• .

In forming the determinant, addition and subtraction operators denote union and differ-

ence of tableau shapes respectively. We substitute the difference operator / where the

meaning is obvious.
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Example 6.7 Consider the partition λ = (3,2,1) of n = 6. We write

λ = | (λi− i+ j) |•

=

∣∣∣∣∣∣∣∣∣∣∣∣

(3−1+1) (3−1+2) (3−1+3)

(2−2+1) (2−2+2) (2−2+3)

(1−3+1) (1−3+2) (1−3+3)

∣∣∣∣∣∣∣∣∣∣∣∣

•

=

∣∣∣∣∣∣∣∣∣∣∣∣

(3) (4) (5)

(1) (2) (3)

(−1) (0) (−1)

∣∣∣∣∣∣∣∣∣∣∣∣

•

=

∣∣∣∣∣∣∣∣∣∣∣∣

(r) (r +1) (r +2)

(s−1) (s) (s+1)

(t−2) (t−1) (t)

∣∣∣∣∣∣∣∣∣∣∣∣

•

, where r = 3,s = 2, and t = 1.
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(α)/(β) =

∣∣∣∣∣∣∣∣∣∣∣∣

(1) (3) (5)

(0) (2) (4)

(−3) (−1) (1)

∣∣∣∣∣∣∣∣∣∣∣∣
= (1)× ((2)× (1)+(1)× (4))− (3)× ((0)× (−1)− (−3)× (2))

+(5)× ((0)× (−1)− (−3)× (2))

= (2)× (1)× (1)+(4)× (1)× (1)− (3)× (0)× (−1)+(3)× (2)× (−3)+

(5)× (0)× (−1)− (5)× (2)× (−3)

= (2)× (1)× (1)+(1)× (1)× (0)+(3)× (2)× (−3)+(0)× (−2)× (−4)

= (2)× (1)× (1)+(1)× (1)× (0)+(3)× (0)× (−7).

It is convention to write 1 for (0) and 0 for (−r). This gives

(α)/(β) =

∣∣∣∣∣∣∣∣∣∣∣∣

(1) (3) (5)

1 (2) (4)

0 0 (1)

∣∣∣∣∣∣∣∣∣∣∣∣

•

= (1)× ((2)× (1)−0)− (3)× ((1)−0)+(5)× (0−0)

= (2)× (1)× (1)− (3)× (1).

(6.1)

Example 6.8 The skew diagram (32,1)/(2,1) is equally well defined as (42,2,1)/(3,22)
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and we write out its eight standard tableaux and their associated lattice permutations

2 1 1

13 23 24

4 4 3

−→ a1a1a2a3,a1a2a1a3,a1a2a3a1 : (2,12)

2 3

14 14

3 2

−→ a1a1a2a2,a1a2a1a2 : (22)

3 2 1

24 34 34

1 1 2

−→ a1a1a2a3,a1a2a1a3,a1a2a3a1 : (2,12)

so that

(32,1)/(2−1) = (2,12)+(22)+(3,1).

We also have

(32,1)/(2−1) =

∣∣∣∣∣∣∣∣∣∣∣∣

(1) (3) (5)

1 (2) (4)

0 0 (1)

∣∣∣∣∣∣∣∣∣∣∣∣

•

= (2)× (1)× (1)− (3)× (1).
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Using the reduction (3)× (1) = (3,1)+(4). We may write

(32,1) =

∣∣∣∣∣∣∣∣∣∣∣∣

(0) (3) (4)

(−1) (2) (3)

(−4) (−1) (0)

∣∣∣∣∣∣∣∣∣∣∣∣

•

+(3,12)

=

∣∣∣∣∣∣∣∣∣∣∣∣

(3,12) (3) (4)(
2,12) (2) (3)

(0) (0) (1)

∣∣∣∣∣∣∣∣∣∣∣∣

•

=

∣∣∣∣∣∣∣∣
(3,12) (3)(
2,12) (2)

∣∣∣∣∣∣∣∣
•

.

This gives

(32,1)/(2,1) = (2,12)+(22)+(3,1).

From the previous example

(2)× (1)× (1) = (2,12)+(22)+2(3,1)+(4).

Substituting gives

(32,1)/(2,1) = (2,12)+(22)+(22)+2(3,1)+(4)− (3)× (1).

Applying the reduction (3)× (1) = (3,1)+(4) gives

(32,1)/(2,1) = (2,12)+(22)+2(3,1)+(4)− (3,1)− (4)

= (2,12)+(22)+(3,1).
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This shows that the two methods give the same result.

6.4 Young’s Theorem for Skew Tableaux

To define a skew representation, we first introduce Young’s theorem, which is identical to

the Young-Yamanouchi basis of Chapter 5, except that tableaux are ordered according to

dictionary order rather than last-letter order. We give the theorem again for completeness.

Theorem 6.1 Young’s Theorem ([5], page 38.)(

To construct the matrix representing (r,r + 1) in the irreducible representations [λ], ar-

range the f λ standard tableaux · · · , tλ
µ , · · · , tλ

ν · · · in dictionary order and set

(1) 1 in the leading diagonal where tλ has r and r +1 in the same row;

(2) -1 in the leading diagonal where tλ has r and r +1 in the same column;

(3) A quadratic matrix:  −ρ
√

1−ρ2√
1−ρ2 ρ


at the intersection of the rows and columns corresponding to tλ

µ and tλ
ν where µ < ν

and tλ
ν is obtained from tλ

µ by interchanging r and r +1.

If r appears in the (i, j) position and r + 1 appears in the (k, l) position of tλ
u with

i < k, j > l then

ρ = (gi j−gkl)−1 = [( j− i)− (l− k)]−1;

100



(4) Zeros elsewhere.

Young’s theorem enables us to construct are representation corresponding to a direct prod-

uct of tableaux associated with a direct product of subgroups.

Theorem 6.2 The outer product [µ].[ν] = [ν].[µ], where [µ] is any irreducible represen-

tation of Sm and [ν] is any irreducible representation of Sn, denotes that representation

Sm+n induced by the irreducible representation [µ]⊗ [ν] of Sm× Sn. The matrices of the

representation obtained by applying Young’s Theorem to the standard tableaux of [µ].[ν],

setting ρ = 0 if r,r +1 belong to disjoint constituents.

Now we consider again the restrictions of an irreducible representation [λ] of Sn to a

representation of a subgroup of the form

Sn1×Sn2×·· ·Sns,

where n1 +n2 + · · ·+ns = n.

To do this we use the skew representation [α]/[β], denoted here by [α/β].

Consider a sequence of Young diagrams

[λ]⊃ [λ′]⊃ [λ′′] · · · ⊃ [λs−1],

containing n,n′,n′′, · · · ,ns−1 nodes respectively. This is represented symbolically as in

Figure 6.1. If we set n−n′ = ns,n′−n′′ = ns−1, · · · ,ns−1 = n1, then the skew diagrams
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[λ  ]
s−1

[λ ]’

[λ]:

Figure 6.1: Symbolic representation of sequence of Young diagrams

(λs−1),(λs−2/λ
s−1), · · · ,(λ′/λ

′′),(λ/λ
′),

give representations of Sn1,Sn2, · · · ,Sns , respectively. These representations are reducible

in general, except for the first. Because the tableaux are all standard, the first n1, symbols

1,2, · · · ,n1 are associated with Sn1 , the next n2 symbols are associated with Sn2 , and so

on. Taking the transpositions according to Young’s Theorem to give the matrices of the

subgroups gives rise to a direct product

[λs−1]⊗·· ·⊗ [λ−λ
′].

Thus we are now able to define the skew representation. Considering all possible choices

for the sequence of skew diagrams gives rise to a theorem as below.
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Theorem 6.3 If the irreducible representation [λ] of Sn is restricted to the subgroup

Sn1×Sn2×·· ·×Sns,

then the resulting representation is a sum of tensor products

∑[λs−1]×·· ·× [λ−λ
′].

The summation is taken over all possible sequences of skew diagrams, and in general

each term is reducible.

Example 6.9 Consider the irreducible representation [3,2,1] of S6 and let us first restrict

to the subgroup S3×S2×S1.

[3,2,1] ↓ S3×S2×S1 = [3]⊗ [2]⊗ [1]+ [3]⊗ [12]⊗ [1]+3[2,1]⊗ [2,1/1]⊗ [1]+ [13]⊗ [2]⊗ [1]+ [13]⊗ [12]⊗ [1].

Similarly, we have the following reductions:

[3,2,1] ↓ S3×S2 = [3]⊗ [2,1]+ [2,1]⊗ [3,2,1/2,1]+ [13]⊗ [2,1],

[3,2,1] ↓ S4×S1×S1 = 2([3,1]⊗ [1]⊗ [1]+ [21]⊗ [1]⊗ [1]+ [2,12]⊗ [1]⊗ [1]),

[3,2,1] ↓ S3×S1 = [3,2]⊗ [1]+ [3,12]⊗ [1]+ [22,1]⊗ [1].
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Chapter 7

The Transition Matrix between

Symmetric Group Bases

In this chapter, we introduce the contribution of our research, which is the determination

of the matrix which transforms between symmetric group bases associated with represen-

tations of direct products of subgroups of Sn of the form

S(n−a),a×Sa and S(n−b),b×Sb.

To do this, we give outlines of two research papers published by Hamel et al. [7] and

McAven et al.[8] in the Journal of Physics A, and one by Pan and Chen [13].

In the paper by Hamel et al. [7] the authors calculate the matrix which transforms the

basis vectors of the Young-Yamanouchi basis into the basis vectors of its dual. To do

this, the authors devise the representation matrices for both bases and then determine the
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transformation matrix. The dual basis is associated with the subgroup chain

S1×Sn−1 ⊃ S1×S1×Sn−2 ⊃ ·· · ⊃ S1×S1×·· ·S1.

The Young-Yamanouchi, or YY , basis is associated with the subgroup chain

Sn−1×S1 ⊃ Sn−2×S1×S1 ⊃ ·· · ⊃ S1×S1×·· ·S1.

The combinatorial technique of jeu de taquin is used to define the dual, or YY , basis in

terms of the YY symbols and the Young tableaux with which the basis vectors can be

induced.

In the paper by McAven et al. [8] the authors consider matrices transforming between the

standard Young-Yamanouchi basis of the symmetric group Sn and the basis where three

nodes are removed together. The authors derive formulae for all such transformation co-

efficients. A choice of multiplicity separation is required when the three boxes removed

are all non-adjacent. The multiplicity separation links the Sn− S(n−3),3− basis with the

standard basis. The authors then discuss considerations which can be applied to obtain

simple forms for the transformation coefficients and for the multiplicity separation. Some

simple, natural separations are obtained. However, the authors show that the combinato-

rial and algebraic structure of the Littlewood-Richardson rule, also known as the pattern

calculus, does not fix the separation.

The first paper by McAven et al.[7] provides an example of the split basis in the simplest
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case, that of removing one node from a tableau. As such, it provides an example of the

transition matrix in the simplest case. We include a survey of this paper for this reason.

The second paper by McAven et al. [8] tackles the issue of multiplicity separation in the

split-basis. We establish in Chapter 7 that the two crucial issues are multiplicity separa-

tion and the representation of the bridging transposition. It is the focus of this thesis to

address the issue of multiplicity separation, leaving the problem of bridging transposition

to future research. As the paper by McAven et al.[8] discusses the problem of multiplicity

separation, it is of direct relevance to this thesis and has been discussed here.

Other papers are of relevance but have not been surveyed here. In the paper by McAven

et al.[9] prove the block selective conjecture as a means to derive a representation for

the bridging transposition. In a further paper McAven et al.[21] go on to use the block-

selective conjecture to derive transformation coefficients, including for the bridging trans-

position. As the issue of the bridging transposition would be the topic of further research,

these papers are only relevant to further research and are thus not surveyed here.

Chilla[22][23] also published two papers addressing the issue of subduction coefficients

in the split basis. These two papers should also be considered in any future research.

106



7.1 Transformation Between the Young-Yamanouchi Ba-

sis And Its Dual

Hamel et al. [7] give the transformation matrix between the Young-Yamanouchi basis

and its dual in their paper. The research is aimed at investigating representations of the

symmetric group, Sn, and the associated matrices, characters and bases, which arise in the

study of the many-electron problem in quantum mechanics.

The Young-Yamanouchi, or YY basis, occurs frequently as a basis associated with the

subgroup chain

Sn−1×S1 ⊃ Sn−2×S1×S1 ⊃ ·· ·S1×S1×·· ·S1

The subgroup chain associated with the Young-Yamanouchi basis is a chain of maximal

subgroups. Thus the YY basis vectors for the irreducible representations (irreps) of Sn are

also basis vectors for the chain of subgroups. The irreps of a direct product of subgroups

can be written as the direct product of irreps of the factor groups. The only irrep of S1 is

the one dimensional unit matrix. Thus in the YY basis, the irreps of the subgroups can be

labelled by the first factor of the subgroup. In this way, each basis vector can be associated

with the irreps to which it belongs in Sn, Sn−1, Sn−2, · · · ,. This identification corresponds

to the unique Young tableaux for which removal of the box labelled n, n− 1, n− 2, · · ·

yields Young tableaux corresponding to the subgroup. Thus the basis vectors for the YY

basis are indexed by the complete set of Young tableaux.
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A more general set of basis vectors corresponds to the basis

Sn1×Sn2×·· ·×Sn`,

where

n1 +n2 + · · ·+n` = n.

In this basis, the matrices of subgroups are direct sums of tensor products of matrix irreps

of the factor groups. The YY basis is a specific case of this more general basis, where

ni = 1 for all i > 1. The problem posed by the Hamel et al. [7] is to find the general form

of the transformation matrix between two such bases, i.e. for the transformation between

subgroup bases of the form

Sm1×Sm2×·· ·Smk ,

and

Sn1×Sn2×·· ·×Sn`,

where

m1 +m2 + · · ·+mk = n1 +n2 + · · ·+n` = n.

This problem has been the subject of considerable research[7],[8],[9],[13]. Since the sym-

metric group is generated by adjacent transpositions, it suffices to study the transformation

between representations of these transpositions.

The jeu de taquin is a combinatorial technique which is used to construct the YY basis.

The YY symbols are constructed using the following algorithm :-
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Algorithm YS

YS.1 Set x = 1.

YS.2 Remove the box labelled x from the Young tableau.

YS.3 Fill the hole left by the removal using jeu de taquin.

YS.4 Write down the index of the row from which a box is removed after application of

jeu de taquin.

YS.5 Set x = x+1.

YS.6 If x > n, the algorithm terminates. Otherwise, go to Step YS.2.

The list of integers generated by this algorithm is the YY symbol.

Example 7.1 Consider the tableau t of Example 5.8. The sequence of Young tableau and

YY symbol values is

2 3
4 5
6

3 5
4
6

4 5
6

(1) (12) (123)

5
6 6

(1231) (12312) (123121)

Definition 7.1: The companion tableau, t̂ of t is defined to be the tableau such that the

YY symbol of t̂ is equal to the YY symbol of t. The companion relation is a symmetric

relation, that is, the YY symbol of t̂ is equal to the YY symbol of t.
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Example 7.2 Consider the tableau of Example 5.8. Note that the tableau

1 3 6
2 5
4

has YY symbol 123121 and YY symbol 322111. Therefore these two tableaux are com-

panion tableaux.

The list of tableaux, YY symbols and YY symbols is given below, with the tableaux ar-

ranged in dictionary order.
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Tableau YY Symbol YY Symbol Tableau YY Symbol YY Symbol

1 2 3
4 5
6 322111 123121

1 2 5
3 6
4 213211 132121

1 2 4
3 5
6 321211 121321

1 3 5
2 6
4 213121 312121

1 3 4
2 5
6 321121 211321

1 4 5
2 6
3 211321 321121

1 2 5
3 4
6 312211 231121

1 2 6
3 4
5 132211 231211

1 3 5
2 4
6 312121 213121

1 3 6
2 4
5 132121 213211

1 2 3
4 6
5 232111 123211

1 2 6
3 5
4 123211 232111

1 2 4
3 6
5 231211 132211

1 3 6
2 5
4 123121 322111

1 3 4
2 6
5 231121 312211

1 4 6
2 5
3 121321 321211

The YY representation matrix, Mλ

(k−1,k) for the transposition (k−1,k) is defined as follows:-

First arrange the tableax in last letter order. Then the matrix entries are calculated accord-

ing to the following prescription.

(1) The matrix, Mλ

(k−1,k) has +1 in position (r,r) if, in the rth YY symbol, the (k−1)th

and kth elements are identical.

(2) The matrix, Mλ

(k−1,k) has −1 in position (r,r) if in the rth YY symbol, the (k− 1)th

element, α, is one more than the kth element, β, and there does not exist another
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YY symbol which is identical to this YY symbol except that its (k−1)th element is

β and its kth element is α.

(3) The matrix , Mλ

(k−1,k) has −ρ in position (r,r),
√

1−ρ2 in positions (r,s) and (s,r),

and ρ in position (s,s), if r < s and the rth and sth YY symbols are identical except

that the (k− 1)th element of the rth YY symbol is the kth elements of the sth YY

symbol and vice-versa.

(4) The matrix Mλ

(k−1,k), has zero in all other positions.

Example 7.3 The YY representation matrices for the transpositions (12), (23), (34),

(45) and (56) are shown below.

[(1,2)] =

1
2

√
3
2

1
2

√
3
2√

3
2

−1
2

1
2

√
3
2√

3
2

−1
2

1
2

1
4

√
15
4√

15
4

−1
4

1
4

√
15
4√

15
4

−1
4√

3
2

−1
2

1
2

−1
2

√
3
2√

3
2

1
2

√
3
2√

3
2

−1
2√

3
2

−1
2
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[(2,3)] =

1
2

-1

1

−1
4

√
15
4√

15
4

1
4

1
2

√
3
2√

3
2

−1
2

−1
2

−1
2

1
2

√
3
2√

3
2

−1
2

−1
4

√
15
4√

15
4

1
4

-1

1

−1
2

[(3,4)] =

−1
3

√
8
3√

8
3

1
3

1
3

√
8
3

1√
8
3

1
3

-1

1

1

-1

-1

1

1
3

√
8
3

-1√
8
3

−1
3

−1
3

√
8
3√

8
3

1
3
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[(4,5)] =

1
2

√
3
2

-1

-1

1
2

1
2√

3
2

−1
2

−1
2

√
3
2

−1
2

√
3
2√

3
2

−1
2√

3
2

1
2

1
2

√
3
2√

3
2

−1
2√

3
2

−1
2

1

1√
3
2

1
2

[(5,6)] =

-1

-1

-1

-1

-1

1

1

1

-1

-1

-1

1

1

1

1

1

The representation matrices for the YY basis and the YY basis are related by a permutation
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matrix P, where

PMλ

(k−1,k)P
−1 = Mλ

(n−k+2,n−k+1).

We label the lists of YY and YY symbols by x and y, respectively. The permutation matrix

P, which permutes the basis elements, is defined as

Pi, j = δ(xi,y j)

= δ(x j,yi),

where δ is the Kronecker delta function, with

δ(a,b) =


1 if a = b,

0 if a 6= b.

Thus the permutation matrix, P, maps each Young tableau to its companion tableau. We

are now in a position to find the transformation matrix, T .

The transformation matrix, T , maps the representation matrix for (k− 1,k) in the YY

basis, Mλ

(k−1,k), to the representation matrix for (k−1,k) in the YY basis, Mλ

(k−1,k). Thus

Mλ

(k−1,k) = T−1Mλ

(k−1,k)T for all 1 < k ≤ n.

The transformation matrix, T , may be expressed as the product, QP, of two matrices, P

and Q. The matrix P is simply the permutation matrix defined above. It brings the matrix
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Mλ

(k−1,k) to the same form as Mλ

(n−k+2,n−k+1), as shown above. Therefore we have that

P−1Q−1Mλ

(k−1,k)QP = Mλ

(k−1,k),

giving

Q−1Mλ

(k−1,k)Q = PMλ

(k−1,k)P
−1

= Mλ

(n−k+2,n−k+1).

This equation effectively removes the representation matrix in the YY basis, Mλ

(k−1,k),

from the computation of the transformation matrix. This enables the transformation ma-

trix, Q, to be written in terms of mappings between representation matrices in the YY

basis. Thus

Q−1Mλ

(k−1,k)Q = Mλ

(n−k+2,n−k+1).

The Q matrix is the representation matrix that sends n, n− 1, · · ·2,1 to 1,2, · · · ,n− 1,n

respectively. Any permutation σ, can be written as a minimal length product of adjacent

transpositions. This enables the Q matrix to be calculated directly from the representation

matrices in the YY basis for the adjacent transpositions. The minimal length of the product

is the number of inversions, that is, the number of distinct pairs (i, j) with i < j such that

σ(i) > σ( j). We first define

di = card{ j | j > k where σ(k) = i and σ( j) < i}.

116



P =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7.1: The P matrix for λ = 3,2,1.

Then the permutation σ, can be written as

σ = · · ·(τi−1τi−2 · · ·τi−di) · · ·(τn−2τn−3 · · ·τn−1−dn−1)

(τn−1τn−2 · · ·τn−dn),

where τi = (i, i+1) and the ith contribution is included only if di ≥ 1. In the case of Q,

the length of the product will be (n
2) and di = i−1,1≤ i≤ n. Specifically, then,

Q =
n

∏
i=2

1

∏
j=i−1

( j, j +1).

Example 7.4 With λ = 3,2,1, we have that

Q = (16)(25)(34) = (12)(23)(12)(34)(23)(12)(45)(34)(23)(12)(56)(45)(34)(23)(12).

The matrix P and Q are shown in Figures 7.1 and 7.2, respectively.
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Hamel et al. [7] have presented a simple, straightforward method for calculating the

transformation matrix between the YY basis and its dual, the YY basis. It is the goal of

the research to generalize this method to finding the transformation matrix between more

general bases of symmetric, for example, between two bases of Sn of the form

Sn1×Sn2×·· ·×Sn` with n1 +n2 + · · ·n` = n.

7.2 Multiplicity Separation In Symmetric Group Trans-

formation Coefficients

McAven et al.[8] develop their initial research to consider multiplicity separation in sym-

metric group transformation coefficients. The matrices for the standard Young-Yamanouchi

basis of the symmetric group Sn were described in Chapter 5. McAven et al.[8] now con-

sider the matrices transforming between this basis and the basis where three nodes are

removed from the Young tableau together. This is known as the Sn− Sn−3,3 basis. They

develop closed formulae for all such transformation coefficients. When the three removed

nodes are all non-adjacent, a choice of multiplicity separation is needed. The multiplicity

separation links the Sn−Sn−3,3 basis vectors with the basis vectors of the standard basis.

The transition matrix transforms between one basis adapted to :-

(i) Sn, (ii) Sa×Sb, and (iii) Sa×Se×Sd,
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and a second basis adapted to :-

(i) Sn, (ii) Sc×Sd, and (iii) Sa×Se×Sd,

where a+b = a+ e+d = c+d = n.

The transition matrix can be expressed in terms of the transformation coefficients between

the standard Young-Yamanouchi basis and a second basis adapted to the direct product

subgroup, Sa×Sb. This is known as a split-basis, and is written as the Sn−Sa,b basis.

The first symmetric group in which a product multiplicity occurs is S6. Specifically, the

decomposition into the direct product subgroup, S3×S3, contains multiplicity two terms.

The authors use the linear equation method to derive the general solution for Sn−Sn−b,b

bases for b = 3. This method allows the derivation of the formulae for the coefficients

associated with the shapes remaining after removing the Sa irreducible representation

from the Sn irreducible representation. McAven et al.[8] give a general solution for the

case where product multiplicities occur, before a choice of multiplicity separation is made.

7.2.1 A Linear Equation Method

Pan and Chen [13] have tabulated matrices which transform from the standard basis to

the split-bases, for particular cases. Pan and Chen adapt the split-bases of the Hecke

algebras. The Hecke algebra, Hn(q), is a generalization of the symmetric group algebra.

For the symmetric group, adjacent transpositions square to one. For the Hecke algebra,
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an additional function, given by

g2
i = gi(q−q−1)+1,

with gi an adjacent transposition, is used. The special case where q = 1 yields the sym-

metric group relation.

McAven et al. [8] formalize the method of Pan and Chen applied to the calculation

of transformations between the Hn(q)−basis and a split Hn(q)−Hn1,n2(q)−basis. To do

this, they generalize the basis notation introduced in the previous section to suit the Hecke

algebra.

Let {g1,g2, · · · ,gn−1} be a set of adjacent transpositions which generate Hn(q). Further,

let Hn1(q) and Hn2(q) be sub-algebras generated by the subsets of transpositions

{g1,g2, · · · ,gn1−1} and {gn1+1,gn1+2, · · · ,gn−1},

respectively. The expansion of the

Hn(q)−Hn1,n2(q)−basis,

in terms of the Hn(q) basis is given by Pan and Chen as

〈[λ],τα β
m1 m2
〉q = ∑

m
〈|[λ]

m 〉q〈
[λ]
m |[λ],τα β

m1 m2
〉q. (7.1)
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Pan and Chen then derive two sets of linear equations using the two sets of generators

for the Hecke sub-algebras. An equivalent means of deriving the sets of equations exists.

To do this, consider the left and right actions of an operator between a state labelled by a

standard basis vector and a state labelled by a split-basis vector.

〈[λ],τα β
m1 m2
|gi, j|

[λ]
m 〉q = 〈[λ],τα β

m1 m2
|(gi, j|

[λ]
m 〉q) (7.2)

= (〈[λ],τα β
m1 m2
|gi, j)|

[λ]
m 〉q,

The actions of the generators depend on various axial distances. This distance in the first

tableau of the split-basis is the distance from i to i+1, (d1i). In the second tableau of the

split-basis it is the distance from j to j + 1, (d2 j). In the standard basis it is the distance

from i to i+1 and from j to j +1 in the standard tableau.

The first set of equations obtained by Pan and Chen have not been suitably reduced. This

is because the axial distance from i to i + 1 in the standard basis (di) is the same as the

axial distance from i to i+1 in the split-basis, (d1i). Thus in the first set equations of Pan

and Chen, the left-hand side vanishes and the coefficients on the right-hand side are equal

to within a sign. This gives

〈[λ]
m′ |[λ],τα β

m1 m2
〉q =±〈[λ]

m |[λ],τα β

m′1 m2
〉q. (7.3)

The transformation coefficients are independent of m1.
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The second set of equations of Pan and Chen is

(
qd j

[d j]
− qdb

j

[db
j ]

)
|[λ]
m 〉q〈

[λ]
m |[λ],τα β

m1 m2
〉q =

(
[dh

j +1][db
j −1]

[db
j ]2

) 1
2

|[λ]
m 〉q〈

[λ]
m |[λ],τα β

m1 m′2
〉q

−
(

[d j +1][d j−1]
[d j]2

) 1
2

|[λ]
m 〉q〈

[λ]
m′ |[λ],τα β

m1 m2
〉q. (7.4)

Pan and Chen also formulate orthonormality conditions on the transformation coefficients,

∑
m
〈[λ]

m |[λ],τα β

m1 m′2
〉2q = 1. (7.5)

This system may be solved in blocks, where the blocks are labelled by αm1. The individ-

ual m1 are distinct with orthogonality satisfied, so the blocks may be solved separately.

Within each block there are sub-blocks of rows which are related by the generators of the

second subgroup. However, as the sub-blocks are orthonormal, the complete block may

be calculated.

McAven et al.[8] then construct a computational method of formally constructing the

general system of linear equations. The matrix X is the matrix for the general system of

linear equations, that is, by setting XL = 0 we can obtain a homogeneous set of equations

where L is defined below. Blocks can be solved independently, so the matrix is constructed

for each block. McAven et al. construct the matrix X for the transformation coefficients

appearing in the block corresponding to the second factor group in the direct product
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subgroup.

All of the tableau pairs labelling this block have the same first tableau, but they differ in

the second tableau. Removal of the shape associated with the irreducible representation α

from the upper left-hand corner of the shape associated with the irreducible representation

λ leaves a skew shape. We denote the number of ways of filling this shape by N. The

number N is found from Young tableau theorems and is equal to the dimension of the

block.

This list of transformation coefficients is ordered first on the tableau pairs and then on the

standard tableaux.

Example 7.5 We are given a list of four standard tableaux

U = {A,B,C,D},

and an associated list of four tableau pairs

V = {A′,B′,C′,D′}.
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Then our ordered list is

L = {< A′|A >,< A′|B >,< A′|C >,< A′|D >,

< B′|A >,< B′|B >,< B′|C >,< B′|D >,

< C′|A >,< C′|B >,< C′|C >,< C′|D >,

< D′|A >,< D′|B >,< D′|C >,< D′|D >}.

The basis tableaux in both bases are ordered in U and in V according to the conventions

described in Section 5.2.

The first row of X corresponds to the two-way expansion of < A′|ga|A > as in Equa-

tion 7.2. The next m2−1 rows relate to the expansion associated with the generator ga of

the other transformation coefficients in L where m = dim(U) = dim(V ). Then we move

to the next generator, ga+1, and return to the start of L. We know from Equation 7.4 that

at most three entries in each row of X will be non-zero, so that X is sparse.

We consider the general transformation from the Sn-basis to the Sn− Sn−b,b split basis.

The transformation matrix is associated with the shape of the tableau obtained by remov-

ing n− b nodes from the basis tableaux of the Sn-basis. This produces a tableau pair,

having shapes α and λ/α respectively. The first is a standard tableau associated with

the irreducible representations of the Sn−b subgroup. The second shape is skew and is

associated with non-standard irreducible representation of Sb. The second tableau may

be brought to normal shape using jeu de taquin. This is associated with an irreducible

representation indexed by tableau pairs of the split-bases.
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The transformation coefficient is the same for each basis vector of the first irreducible

representation. Thus the transformation coefficient matrix splits into blocks of dimension

|λ/α| of the skew shape remaining after removal of the nodes. The blocks are indexed by

the tableaux in the standard basis, and by the tableau pairs in the second basis.

Let m be the dimension of the skew shape λ/α. The transformation coefficient matrix will

contain m2 rows for each generator, or adjacent transposition, of Sb. These correspond to

indexing the list L, firstly on the tableau pair of the split basis and secondly on tableaux

of the standard basis. Thus there exists a block for each adjacent transposition. Note that

there are m2 entries in the list L.

These correspond to the pairing of each standard tableau with each tableau pair. We must

express the transformation coefficients for each pairing, for each generator. This accounts

for the m2 rows in the matrix for each generator.

The transformation coefficients correspond to an operator from a state labelled by the

standard basis to a state labelled by the split-basis.

The dimension of the irreducible representation is the number of tableau and therefore,

tableau pairs, given by m. This determines the size of the matrix representation of the

generator in the irreducible representation, and therefore the size of each sub-block.

The transformation coefficient matrix performs the transformation

XMλ(gi)X−1 = Mλ

a,b(gi),

for each generator gi. We can index into the matrix X firstly on the tableau pairs and
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secondly on the tableaux to find the coefficient which transforms from the matrix Mλ(gi)

for the generator, gi, in the irreducible representation for the partition, λ, to the the matrix

Mλ

a,b(gi) for the generator gi, in the irreducible representation in the split basis.

When multiplicity separation occurs, non-square blocks of transformation coefficients

may arise. In this case, the redundant terms in X may be removed by applying Gauss-

Jordan elimination to obtain reduced row echelon form. The algebraic conditions are

the same for transformation coefficients differing only in the product multiplicity. This

implies that only a sub-block associated with one multiplicity needs to be calculated. The

solution for the other multiplicities may be obtained by a relabelling of variables, with

consideration of orthonormality conditions.

With X constructed, we solve the homogeneous system of equations

XL = 0.

together with the orthonormality conditions described by Equation 7.5. In the cases with-

out product multiplicities, we need only make phase choices.

7.2.2 Formulae For Removing Three Nodes

McAven et al. [8] considered removing three nodes from a Young tableau, first when

there is no multiplicity, and then for the case where multiplicity occurs. They do this by

considering the general transformation from the standard Sn-basis to the split Sn−Sn−b,b

basis. The transformation matrix may be split into cases associated with the shape of
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the tableau of the Sn-basis. Removal of these nodes yields two shapes, α, and a skew

shape λ/α. The first shape is standard and is associated with irreducible representations

of the Sn−b subgroup. The second shape is associated with the non-standard irreducible

representations of the Sb subgroup. The second shape may be standardized using jeu de

taquin to give the second irreducible representation of the pair labelling. The shape of the

first representation is invariant under the action of permutations. Schur’s lemma implies

that the transformation coefficient is the same for each basis vector of this representation.

In this way, the transformation matrix splits into two blocks. The blocks are of dimension,

|λ/α|, of the skew shape of the second tableau. The basis vectors are obtained in the

manner described in Section 7.2.1.

There are two irreps of dimension one. These are [b] and [1b]. They always give rise to a

single 1×1 block with a simple phase freedom.

Now consider removal of two nodes. These two nodes are n and (n−1). The three cases

are shown below.

d

(a) (b) (c)

Figure 7.3: Removal of two nodes from a tableau.

Cases (a) and (c) have transformation coefficients ±1.

To investigate case (b), we order the basis tableaux as described in Chapter 5. Label the

case alphabetically according to the order. Equation 7.2 gives the two-way expansion of
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the entries on the diagonal of the 2×2 transformation matrix, given by

< A′|(n−1,1)|A >=< A′|A >=
−1
d

< A′|A > +

√
d2−1

d
< A′|B >.

d

dim = 1 dim = 2 dim = 3
(a) (b) (c1)

d
d

e
d

dim = 3 dim = 6 dim = 3
(c2) (d) (e1)

d

dim = 3 dim = 2 dim = 1
(e2) ( f ) (g)

Figure 7.4: The skew shapes remaining after removal of (n− 3) nodes, showing axial
distances d and e.

In this equation, d is the absolute value of the axial distance from the node (n−1) to the

node n, in the tableau labelled A. Using this value of d, we have

< B′|(n−1,1)|B >=−< B′|B >=
−1
d

< B′|A > +

√
d2−1

d
< A′|B >.
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We use Θ to denote a phase ±1. Applying orthonormality of the basis tableaux gives

∣∣∣∣∣∣∣∣
Θ

√
(d−1)

2d Θ

√
(d+1)

2d

−Θ

√
(d+1)

2d Θ

√
(d−1)

2d

∣∣∣∣∣∣∣∣ .

Next, consider the removal of three nodes. The nine (9) cases are shown in Figure 7.4.

McAven et al.[8] used the package MAPLE to implement the linear equation method of

Pan and Chen[13]. Thus they derive a general formula for this case. Two phases, Θ and

φ, occur here. The cases are:

Case (a)

Completely symmetric, Θ. (7.6)

Case(b) ∣∣∣∣∣∣∣∣
Θ 0

0 Θ

∣∣∣∣∣∣∣∣ (7.7)

Case(c1)

Θ

√
d−
3d+

Θ

√
d−d++
3dd+

Θ

√
d++
3d

−φ

√
d++
6d+

−φ

√
d++
6dd+

φ

√
2d−
3d

−φ

√
d++
2d+

φ

√
d

2d+
0

(7.8)

Case(c2)

Θ

√
d−
3d+

Θ

√
d−d++
3dd+

Θ

√
d++
3d

−φ

√
2d++
3d+

−φ

√
d−

6d+d φ

√
d−
6d

0 −φ

√
d+
2d φ

√
d−
2d

(7.9)
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Case(d)

Θ

√
d−e− f−

6de f Θ

√
d−e+ f−

6de f Θ

√
d+e− f−

6de f Θ

√
d−e+ f+

6de f Θ

√
d+e− f+

6de f Θ

√
d+e+ f+

6de f

φ

√
d+e+ f+

6de f −φ

√
d+e− f+

6de f −φ

√
d−e+ f+

6de f φ

√
d+e− f−

6de f φ

√
d−e+ f−

6de f −φ

√
d−e− f−

6de f

(7.10)

Case(e1)

Θ

√
d−
2d Θ

√
d+
2d 0

−Θ

√
d−
6d Θ

d−√
6d+d Θ

√
2d++
3d+

φ

√
d++

3d −φ

√
d−d++
3d+d φ

√
d−
3d+

(7.11)

Case(e2)

0 −Θ

√
d

2d+
−Θ

√
d++
2d+

−Θ

√
2d−
3d −Θ

√
d++
6d+d φ

√
d++
6d+

φ

√
d++

3d −φ

√
d−d++

3d+
φ

√
d−

3d+

(7.12)

Case(f)

Θ

2

√
3Θ

2
√

3Θ

2
−Θ

2

(7.13)

Case(g)

Completely antisymmetric, Θ. (7.14)

In case (d) we give just the top and bottom row from the 6x6 block.

In these coefficients, there are the two basic axial distances, as shown in Figure 7.4, d and

e, and also augmented hook lengths, f = d +e, d+ = d−1, d++ = d +2, and d = d−2.

Two phases, Θ and φ, occur in the multiplicity free cases.
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In the matrices above, the four central rows of case (d) have multiplicity separation. The

system of equations includes three orthonormality equations. Therefore, three indepen-

dent choices of phase exist. These are denoted by Θ,φ and ψ. One free factor governs

multiplicity separation. We express all coefficients in terms of two related variables, x and

y, with

y = rx.

The variable x and y are not independent. The authors recommend choosing x and y to

determine a desirable multiplicity separation.

This gives

x =
1√

6de f (2de+d− e+1)(1+3d+d−e+e− f+ f−r2)
. (7.15)

This equation has many solutions. We use ai j to denote the element in the ith row and jth

column of the four central rows of (d). Thus the solutions are :-

a11 =
√

d−/d+a13

a12 =
√

f−/ f+a14

a13 =−d+
√

f−[Θe++x+3ψd−e+e− f+y]

a14 =
√

d+d−e+e− f+[2Θx−3ψ f+ f−y]

a15 =
√

e−/e+a16

a16 =
√

e+e− f+[−Θd x+3ψd+d−e+ f−y]

a21 =
√

d−/d+a23

a22 =
√

f−/ f+a24

a23 =−
√

3d+d−e+e− f+[x+φd+e++ f−y]
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a24 = f+
√

3 f−[−x+2φd+d−e+e−y]

a25 =
√

e−e+a26

a26 = e+
√

3d+d− f−[x−φd e− f+y]

a31 =−
√

d+/d−a33

a32 =−
√

f+/ f−a34

a33 = d−
√

3 f−[−Θex+ψd+e+e− f+y]

a34 = ψ(2de+d− e+1) f
√

3d+d−e+e− f+y

a35 =−
√

e+/e−a36

a36 =
√

3e+e− f+[Θdx+ψd+d−e− f−y]

a41 =−
√

d+/d−a43

a42 =−
√

f+/ f−a44

a43 =
√

d+d−e+e− f+[x−3φd−e f−y]

a44 = (2de+d− e+1)
√

f−x

a45 =−
√

e+/e−a46

a46 = e−
√

d+d− f−[x+3φde+ f+y].

7.2.3 Choices of Phase and Multiplicity Separation

In order to find the simplest and most natural form for the symmetric group transformation

coefficients, Hamel et al.[7] make the following considerations.
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(I) The transformation coefficients can be chosen to be real.

(II) The general formulae obtained in the previous sections depend only on the axial dis-

tances, and are independent of n. Therefore the phases and multiplicity separation

should be chosen independent of n.

(III) In the cases where either of the axial distances d or e is unity, the multiplicity is

lifted. The expression for the multiplicity two coefficients must reduce to the mul-

tiplicity free solutions.

(IV) The multiplicity separations should be chosen so that a maximal number of zero

coefficients is obtained.

(V) It is desirable to have the coefficients expressible as a single surd of the form a
√

b/c,

with a,b and c integers.

(VI) We require that the only prime numbers which occur in the surd are as small as

possible relative to d and e.

7.2.4 Comments

The aims of McAven et al. [8] were as follows.

(i) The bridging transposition in the split basis cannot be calculated as directly as the

other transpositions.

(ii) General formula for the split-standard transformation coefficients are not available.
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The authors sought to extend the existing two node formulae to the case of three

nodes.

(iii) Pan and Chen [13] make different multiplicity choices for the first situation in which

such a choice is necessary.

(iv) They also aimed to determine if the Littlewood-Richardson rule could yield a canon-

ical multiplicity separation.

McAven et al. [8] presented an explicit formula for the removal of three nodes. There

are nine separate cases. There are distinguished by the skew shape remaining after the

removal of (n−3) nodes from the left. The authors obtained the general multiplicity two

solutions for the Sn− Sn−3,3-basis. They listed six considerations which must be made

in choosing phases and multiplicity separations. The simpler separations corresponded to

one of twelve zero conditions. These occurred in pair linked by relabelling the multiplic-

ity. Two of these six pairs matched the solutions of degenerate cases. McAven et al. [8]

chose a solution which simplified the form of phases and magnitude.

McAven et al. [8] claimed that the Littlewood-Richardson rule does not lead to a specific

separation. When no multiplicities exist, the Littlewood-Richardson rule gives the pat-

tern relations between the split and standard bases. These pattern relations do not give a

canonical set of basis functions for the bases labelled by multiplicity labels. Therefore,

criteria beyond the Littlewood-Richardson rule must be applied.
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7.3 Conclusion

In this chapter, we have surveyed two papers by Hamel et al.[7] and McAven et al.[8] on

the calculation of the transformation matrix between symmetric group bases.

In Hamel et al. [7] the authors calculated the matrix which transforms the basis functions

of the Young-Yamanouchi basis into the basis function of its dual. They first derived

the representation matrices for both bases, and then calculated the transformation matrix.

This is a very specific case of the more general problem of finding the transformation

matrices between any symmetrical group bases.

In McAven et al.[8] they found the transformation matrices between the standard Young-

Yamanouchi basis and the basis where three boxes are removed together. Thus McAven

et al.[8] consider a more general case of transforming between symmetric group bases.

In the next chapter of this thesis, we endeavor to continue the research into the general

problem of calculating the transformation matrix between symmetric group bases.
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Chapter 8

The Decomposition of Tableaux Into

Skew Tableaux

In this chapter, the author of this thesis develops the research by Hamel et al. [7] and

McAven et al. [8] which is given in Chapter 7. The author of this thesis examines the de-

composition of a tableau into component tableaux. The author of this thesis also consider

the justification of the component tableau into normal tableaux.

The author of this thesis’s approach is to apply set-theoretic and combinatorial concepts

to the decomposition of a tableau. In this way, I attempt to establish a formal and rigorous

mathematical framework in which further research may be undertaken.

Except where otherwise noted, all definitions, theorems and proofs in this chapter are my

original work. Definitions, theorems and proofs marked (†) are the authors original work.

To the best of my knowledge, they do not currently exist in the literature on tableaux.
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8.1 An Ordered Decomposition of a Tableaux

In Chapter 7, we described the research undertaken by McAven et al. into the transition

matrix between symmetric group bases. Primary to this research is the splitting of Young

tableaux into component tableaux. In its most general formulation, this involves the re-

moval of boxes from Young tableaux in arbitrary order. In this section, we attempt to place

such removal of boxes into a generalized mathematical framework, so that the concepts

and principles of algebra may be applied to the calculation of the transition matrix.

A Young tableau is a special case of a partial skew tableau. Recall that the latter has

skew shape and distinct entries whose rows and columns increase. Our first definition

formalizes the splitting of a partial skew tableau into component tableau. This definition

encompasses the removal of nodes from a tableau as considered by McAven et al.

Though McAven et al. eventually use jeu de taquin to normalize the skew tableaux ob-

tained from ordered decompositions, we consider the latter separately for two reasons.

First, we wish to derive the mathematical properties of the first part of the decomposition

process. Second, we wish to leave open the possibility of applying the skew representation

of Chapter 6 to the partial skew tableaux produced by an ordered decomposition.

Note that in addition to encompassing the removal of nodes as per McAven et al., this

definition encompasses the removal of nodes by Robinson [5] in Chapter 6. To do this,

we simply choose sets of nodes in the ordered decomposition which correspond to the

removal of an outermost diagonal strip tableau, followed by a next outermost diagonal

strip tableau, and so on.
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Recall from Chapter 2 that a composition of n is a partition of n without the weakly

decreasing condition.

Definition 8.1 (†) Let t be a partial skew tableau. An ordered decomposition of t into

partial skew tableaux (t1, t2, · · · , tk) is the k-tuple of partial skew tableaux produced from

t by the ordered removal of sets of boxes.

[(ik1, jk1),(ik2, jk2), · · · ,(ikl, jkl1)],

[(i(k−1)1, j(k−1)1),(i(k−1)2, j(k−1)2), · · · ,(i(k−1)m, j(k−1)l2)],

...

[(i11, j11),(i12, j12), · · · ,(i1p, j1l j)].

We call the set of integers (li) the structure of the decomposition. Note that

∑
i

li = n,

so that the structure is a composition of n.

Example 8.1 Let λ = (6,3,1) be a partition of n = 9. Consider the partial skew tableau,

t, with shape λ/ν = (5,3,1)/(2,1), given by

2 4 7
3 5

8
.

This tableau represents the shape (5,3,1)/(2,1). Then the following pair of tableaux is
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an ordered decomposition of t into partial skew tableaux (t1, t2) with structure (3,3):

(t1, t2) =

(
2 4 7 ,

3 5
8

)
,

obtained by the removal of boxes

(t(2,2), t(2,3), t(3,1)),

followed by the removal of boxes

(t(1,3), t(1,4), t(1,5)).

Note that the order of removal within a set of boxes is immaterial, but the order of the sets

of boxes is important. Thus the removal of the set of boxes

(t(1,3), t(1,4), t(1,5)),

followed by the removal of boxes

(t(2,2), t(2,3), t(3,1)),

produces the pair of tableaux

(t ′1, t
′
2) =

(
3 5

8 , 2 4 7

)
,
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which is distinct from the pair (t1, t2). Note also that for convenience, we may treat the

last set of boxes

(t(1,1), t(1,2), · · · , t(1,p)),

simply as those boxes remaining after the removal of all other sets of boxes.

Now consider an ordered decomposition of t with structure (4,2), to produce the pair

(t ′′1 , t ′′2 ) =

(
2 4 7
5 ,

3
8

)
.

The first tableau is edge-connected and the second tableau is corner-connected. In general,

the tableaux in the tuple may be edge-connected, corner-connected or unconnected. For

example, consider an ordered decomposition of t with structure (3,2,1), to produce the

triplet

(t ′′′1 , t ′′′2 , t ′′′3 ) =

(
2 4

8 ,
7

3 , 5

)
.

Both tableaux t ′′′1 and t ′′′2 are unconnected. Note also that a composition is an ordered

sequence of non-negative integers, so that the composition (3,1,2) with triplet

(t ′′′′1 , t ′′′′2 , t ′′′′3 ) =

(
2 4

8 , 5 ,
7

3

)
.

has the same component tableaux as the previous triplet but in different order. The

usually-decreasing order of a partition does not hold, so such a structure is permissable.

It should also be pointed out that the original tableau may be edge-connected, corner-

connected or unconnected.
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In the case of an unconnected tableau, the number of nodes separating parts of the tableau

is significant. Thus the shape (5,2,1)/(3,1), shown below,

is distinct from the shape (6,2,1)/(4,1), shown below

Tableaux having the same entries but different shapes are considered distinct. Thus we are

considering an infinite number of shapes, and therefore an infinite number of tableaux.

It is useful to count the number of ordered decompositions of a tableau. The following

theorem does this.

Theorem 8.1 (†) Let t be a partial skew tableau with n boxes containing n distinct ele-

ments. Let µ = (l1, l2, · · · , lk) be a composition of n. The number of ordered decomposition

of t into partial skew tableau having structure µ is given by

n!
l1!l2! · · · lk!

This is the number of orderings on n objects where the objects are indistinguishable.

Thus, N = n!
l1!l2!···lk!
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Example 8.2 Let t be the partial skew tableau

t =
2 4 6

8
9

.

Let µ = (3,2). The complete list of ordered decompositions of t having structure µ is

(
2 4 6 ,

8
9

) (
2 4

8 ,
6

9

)
(

2 4
9 ,

6
8

) (
2 6

8 ,
4

9

)
(

2 6
9 ,

4
8

)  2
8
9

, 4 6

(
4 6

8 ,
2

9

) (
4 6

9 ,
2

8

)
 4

8
9

, 2 6


 6

8
9

, 2 4


Thus there are

5!
3!2!

=
5×4×3×2×1
3×2×1×2×1

= 10

pairs of tableau, as predicted by Theorem 8.1.

Lemma 8.1 (†) Let µ = (µ1,µ2, · · · ,µk) be the structure of an ordered decomposition of

a partial tableau t. Let d be an ordered decomposition having structure µ. Then d defines

a unique skew shape, which we shall denote by λ/ν.
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Proof. Consider the set of boxes

dk = [(ik1, jk1),(ik2, jk2), · · ·(ikl, jkl)]

removed from the partial tableau t. In this formulation, dk denotes one set of nodes

removed from a tableau in an ordered decomposition. Each of these boxes defines a

unique node in the skew shape, say λk/νk, as shown below.

Similarly, the set of boxes dk−1, defines a unique skew shape, λk−1/νk−1, and so on, until

we reach the skew shape λ1/ν1. Each box is uniquely defined, so the complete set of

boxes is the disjoint union of these k skew shapes, that is,

T =
k]

i=1

λi/νi.

This clearly defines a skew shape, which we shall denote by λ/ν.

Next we must show that λ/ν is unique. Suppose that there exists a second skew shape,

λ′/ν′, such that µ defines an ordered decomposition on λ′/ν′. Then one part of the struc-

ture must define two distinct skew shapes. Without loss of generality, we may assume that

dk defines distinct skew shapes, λk/νk and λ′k/ν′k. This requires that some box in dk, say

(ikl, jkl), defines two distinct locations, that is, (ikl, jkl) and (i′kl, j′kl). But clearly ikl = i′kl
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and jkl = j′kl . Hence t has a unique shape λ/ν.

2

Example 8.3 Let d be the ordered decomposition of Example 8.1, that is,

d = {[(1,3),(1,4),(1,5)], [(2,2)(2,3),(3,1)]}.

Then d2 defines skew shape λ2/ν2, given by

λ2/ν2 = .

Also, d1 defines skew shape λ1/ν1, given by

λ1/ν1 = .

The disjoint union of these skew shapes, λ/ν, is

λ/ν =

This lemma establishes that there is one skew shape associated with an ordered decom-

position. Further, this skew shape can be constructed wholly from the ordered decompo-

sition.

We now establish that a composition may be the structure of several ordered decomposi-
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tions.

Lemma 8.2 (†) Let t be a partial skew shape tableau having n nodes and skew shape

λ/ν. Let µ be a composition of n. Then there may be several ordered decompositions of t

having structure µ.

Proof. This is an immediate corollary of Theorem 8.1.

2

We have established in Lemma 8.1 and Lemma 8.2 that a composition defines several

ordered decompositions. We now establish that there may be many such compositions

associated with a skew shape.

Theorem 8.2 (†) Let t be a partial skew tableau having n nodes and skew shape λ/ν.

Then there may be many distinct compositions of n, each of which each define several

distinct ordered decompositions of t.

Proof. There are several partitions of n. A composition of n is a partition of n without

the weakly decreasing condition. Hence there may be several compositions of n. From

Lemma 8.2, each of these compositions may define several distinct ordered decomposi-

tions of t.

2
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Example 8.4 Let t be the tableau of Example 8.1, that is,

t =
2 4 7

3 5
8

.

Let µ = (3,3). Let d be the ordered decomposition of t with structure µ, given by

d = {[(1,3),(1,4),(2,3)], [(1,5),(2,2),(3,1)]}.

This decomposition gives the ordered pair of tableaux

(t1, t2) =

 2 4
5 ,

7
5

8

 .

Now let d′ be the ordered decomposition of t with structure µ, given by

d′ = {[(1,3),(2,2),(3,1)], [(1,4),(1,5),(2,3)]}.

This decomposition gives the ordered pair of tableaux

(t ′1 , t ′2 ) =

 2
3

8
,

4 7
5

 .

Let µ′ = (2,2,2). Let d′′ be the ordered decomposition of t with structure µ′ given by

d′′ = {[(1,4),(15)], [(1,3),(2,3)], [(2,2),(3,1)]}.
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This decomposition gives the ordered triplet of tableaux

(t ′′1 , t ′′2 , t ′′3 ) =

(
4 7 ,

2
5 ,

3
8

)
.

Let d′′′ be the ordered decomposition of t with structure µ′, given by

d′′′ = {[(1,3),(1,4)], [(2,2),(2,3)], [(1,5),(3,1)]}.

This decomposition gives the ordered triplet of tableaux

(t ′′′1 , t ′′′2 , t ′′′3 ) =

(
2 4 , 3 5 ,

7
8

)
.

The tuples arising from these decompositions are all partial skew tableaus. Note that a

partial skew tableau may be unconnected.

We are now able to establish the important result that an ordered decomposition is a

mapping. This enables us to apply the properties of mappings to ordered decompositions.

Theorem 8.3 (†) Let n be a positive integer. Let U be a set of n positive integers,

U = {u1,u2, · · · ,un}.
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Let T be the set of partial skew tableaux with elements drawn from U, that is,

T = {t;ui, · · · ,u j| t is a partial skew tableau;

ui, · · · ,u j ∈U ;ui, · · · ,u j are nodes of t}.

Let Tn denote the subset of T with exactly n nodes, that is,

Tn = {t|t ∈ T, t has exactly n nodes}.

Let µ = {µ1,µ2, · · · ,µk} be a composition of n.

Let α be an ordered decomposition of a tableau with structure µ, which defines a skew

shape λ/ν. Let Tλ/ν be the subset of Tn with shape λ/ν. Then α is a mapping from the set

of tableaux, Tλ/ν, into the Cartesian product of tableaux, T ×T ×·· ·×T︸ ︷︷ ︸
k terms

.

That is, a unique partial skew tableau maps to one and only one k-tuple of partial skew

tableaux under the action of α.

Proof. Let t ∈ Tλ/ν. Since µ is a composition of n, it is a valid to form an ordered

decomposition of t with structure µ. This holds for all such elements of Tλ/ν. Hence

the domain of the operation of ordered decomposition is the set of tableaux Tλ/ν. The

elements of the k-tuple of partial skew tableaux produced by the ordered decomposition

are all elements of the set of tableaux, T . Hence the codomain of the operation is the

Cartesian product

T ×T ×·· ·×T︸ ︷︷ ︸
k terms

.
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To show that the ordered decomposition is indeed a mapping, we must show that it is

well-defined. To do this, suppose that the tableau t decomposes into two distinct k-tuples

of tableaux. These are

t1× t2×·· ·× tk, and t ′1× t ′2×·· ·× t ′k.

Recall from our definition of an ordered decomposition that it requires the removal of

boxes, first,

[(ik1, jk1),(ik2, jk2), · · · ,(ikl, jkl)].

These boxes are distinct and unique. Let the boxes in t ′k be given by

tk1, tk2, · · · , tkl,

and the boxes in t2k be given by

t ′k1, t
′
k2, · · · , t ′kl,

where tk1 and t ′k1 are the boxes removed at (ik1, jk1),etc. Then as this box is unique, it

follows that

tk1 = t ′k1.

Similarly tk2 = t ′k2, · · · , tkl = t ′kl . Hence the tableau tk is identical with the tableau t ′k. Sim-

ilarly, t(k−1) = t ′(k−1), · · · , t1 = t ′1. Therefore, these two k-tuples of tableaux are identical.
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Hence the ordered decomposition is a mapping from Tλ/ν into

T ×T ×·· ·×T︸ ︷︷ ︸
k terms

.

2

Example 8.5 Consider the tableau of Example 8.1, and the tableau pair (t1, t2). In this

example, U is the set of positive integers

U = {2,3,4,5,7,8}.

and n = 6. T6 is the set of tableaux with elements drawn from U. The tableau t ∈ Tn is the

tableau in the example with shape (5,3,1)/(2,1), and µ = (3,3). T is the set of tableau

with elements drawn from U. The ordered decomposition removing the set of boxes

[(22),(23),(31)],

then

[(13),(14),(15)],

produces the tableau pair (t1, t2). This decomposition is a mapping from t to (t1, t2), where

t ∈ T6 and (t1, t2)∈ T ×T . In keeping with the usual notation of mappings, we may denote

this mapping by a lowercase Greek letter, say α. Then

α(t) = (t1, t2).
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Theorem 8.3 establishes that an ordered decomposition is a mapping. The following

corollary shows that an ordered decomposition which acts on a subset of nodes is also a

mapping.

Corollary 8.1 (†) Let U, n and T be as in Theorem 8.3. Let m be a positive integer with

m < n. Let Um be a subset of U, given by

Um ⊂U, |Um|= m.

Let Tm be the subset of T with elements drawn from Um. Let w = (w1,w2, · · · ,wl) be

a composition of m. Let t ∈ Tm. Then an ordered decomposition of t into partial skew

tableaux, with structure w, is a mapping from the set of tableaux T λ/ν into the Cartesian

product of tableaux

T ×T ×·· ·×T︸ ︷︷ ︸
l terms

.

Example 8.6 Let U,n and T be as in Example 8.5. Let m = 4, and

Um = {2,3,5,8}.

Let t be a tableau with shape (4,2,1)/(2,1), where

t =
2 5

8
3

.
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Let v = (2,2) be a composition. We may write an ordered decomposition as

β(t) = (t1, t2)

where

(t1, t2) =

(
5

3 ,
2

8

)
.

8.2 Properties of An Ordered Decompostion

Theorem 8.3 and Corollary 8.1 provide formal mathematical definitions of ordered de-

composition of tableaux. Since an ordered decomposition of a tableau is a mapping, the

mathematical properties of mappings may be applied to it. To facilitate this, we investi-

gate the properties of this mapping. We first show that an ordered decomposition is an

injective mapping.

Theorem 8.4 (†) Let n,U,T,Tn,α and Tλ/ν be as in Theorem 8.3. Then α is a one-to-one

mapping from the set Tλ/ν into the set

T ×T ×·· ·×T︸ ︷︷ ︸
k terms

.

Proof. Let t be a tableau having shape λ/ν, that is, t ∈ Tλ/ν. Let

α(t) = (t1, t2, · · · , tk),
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where t1 has shape λ1/ν1, t2 has shape λ2/ν2, and so on. Suppose there exists another

tableau t ′ ∈ Tλ/ν such that

α(t ′ ) = α(t) = (t1, t2, · · · , tk).

Consider the tableau tk. It is formed by the removal of boxes

{(ik1, jk1),(ik2, jk2), · · · ,(ikl, jkl)},

from both tableaux t and t ′. Since the integers in these boxes must be identical in both t

and t ′, it follows that these tableaux of shape λk/νk are identical in both t and t ′. Similarly,

the tableaux of shape λk−1/νk−1 must be identical in both t and t ′, and so on. There-

fore, the tableaux t and t ′ are identical since they are composed of identical component

tableaux, that is, t = t ′.

Hence, α is a one-to-one mapping. Thus we have the situation show in Figure 8.2.

2

Example 8.7 Let U = {1,2,3,4} and n = 4. Let

λ/ν = = (2,2,1,1)/(1,1) and µ = (2,2).
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Figure 8.1: Mapping Theorem 8.4

Consider the ordered decomposition given by

α = {[(1,2),(2,2)], [(3,1),(4,1)]}.

There are six partial skew tableaux having shape λ/ν. The operation of the ordered
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decomposition α, is shown below.

t1 =

1
2

3
4

⇒

(
1
2 ,

3
4

)

t2 =

1
3

2
4

⇒

(
1
3 ,

2
4

)

t3 =

1
4

2
3

⇒

(
1
4 ,

2
3

)

t4 =

2
3

1
4

⇒

(
2
3 ,

1
4

)

t5 =

2
4

1
3

⇒

(
2
4 ,

1
3

)

t6 =

3
4

1
2

⇒

(
3
4 ,

1
2

)

As predicted by Theorem 8.4, the ordered pairs of tableaux are distinct.

Theorem 8.4 is an important result in two ways.

First, it establishes that a set of distinct tableaux under the action of an ordered decompo-

sition will each map to a distinct tuple of skew tableaux. This ensures the uniqueness of

the tuples of skew tableaux produced by an ordered decomposition.

Second, it allows us to construct the original tableau from the tuple of skew tableaux,

just by knowing the ordered decomposition. This is because an injective mapping is
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an invertible operation. Recall that in Chapter 4, we recorded the original tableau to

construct an order on the original tableau. We have shown here that by knowing the

ordered decomposition, we can construct the original tableau.

Next, we establish the cardinality of Tn, the set of partial skew tableaux having n nodes

drawn from the set U . Recall that such tableaux may assume any skew shape.

Theorem 8.5 (†) Let U,n,T and Tn be as in Theorem 8.3. Tn is the set of partial skew

tableaux with exactly n nodes drawn from the set U. Then Tn defines an infinite number

of skew shapes, that is, Tn is an infinite set, ie.

|Tn|= ∞.

Proof. Suppose that Tn is finite, that is,

|Tn|= x,

for some positive integer x. Let t be an element of Tn with shape λ/ν, such that the

rightmost box in row 1 of t is the rightmost box of any box in row 1 of any tableau in

Tn. We may write this as the box (1, j) of t. It is such that all boxes in row 1 of all

tableaux in Tn occurs at positions (1,k) for 1≤ k ≤ j. Now consider the tableau t ′ which

is identical to tableau t except that the box at (1, j) is moved one node to the right, that

is, at (1, j + 1). The tableau t ′ contains n nodes, so it is an element of Tn, that is, t ′ ∈ Tn.

Hence |Tn|= x+1, contradicting the hypothesis. Hence Tn is an infinite set.
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2

We wish to investigate the operation of an ordered decomposition on Tn, the set of partial

skew tableaux having n nodes drawn from the set U . To do this, we define a relation on

skew tableaux which have the same skew shape, as follows.

Definition 8.2 (†) Let the symbol u denote a relation between two tableaux t and t ′,

meaning that tableau t ′ has the same skew shape as tableau t. That is, we write

t u t ′ ,

if both t and t ′ have skew shape λ/ν.

Example 8.8 Let tableaux t and t ′ be defined by

t =
1

2 4
3

and t ′ =
1

2 3
4

.

Both tableaux have skew shape (3,3,1)/(2,1), so we write t u t ′.

In order to show that the property of tableaux having the same skew shape partitions the

set Tn, we first show that it is an equivalence relation.

Theorem 8.6 (†) The relation u between tableaux is an equivalence relation.

Proof. Since a tableau has the same shape as itself, the relation is reflexive.
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Next suppose that there exists a tableau t ′ such that t u t ′. Since t ′ has the same shape as

t, we may write t ′ u t. Hence the relation is symmetric.

Last suppose there exist a third tableau t ′′ such that t ′ u t ′′. Then as t as the same shape

as t ′ and t ′ has the same shape as t ′′, it follows that t has the same shape as t ′′. Hence we

may write t u t ′′. Therefore a relation is transitive. Hence the relation is an equivalence

relation.

2

Example 8.9 Let t and t ′ be as in Example 8.8, and let the tableau t ′′ be defined by

t ′′ =
1

3 4
2

.

Since all three tableaux have skew shape (3,3,1)/(2,1), we may write

t u t,

t u t ′,

t ′ u t,

t ′ u t ′′,

t u t ′′.

It follows that the relation of tableaux having the same skew shape partition the set of

partial skew tableaux.
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Corollary 8.2 (†) Let ν,n and Tn be as in Theorem 8.3. Then the relation u defined on

the set Tn is a partition of Tn.

Proof. Since the relation u is an equivalence relation and an equivalence relation on a set

defines a partition of a set, the relation u defines a partition of the set Tn.

2

Example 8.10 Let V = {1,2,3,4} and n = 4. The set Tn is the set of partial skew

tableaux having four boxes drawn from V . From Theorem 8.5, Tn is an infinite set. Let

λ/ν = (2,2,1,1)/(1,1). The six tableaux having skew shape λ/ν were enumerated in

Example 8.6.

Now let λ∗/ν∗,= (3,2,2,1)/(2,1,1), that is,

λ
∗/ν
∗ = .

There are twelve partial skew tableaux having shape λ∗/ν∗. These tableau are

1
2
3

4
,

1
2
4

3
,

1
3
4

2
,

2
3
4

1
,

2
1
3

4
,

2
1
4

3
,

3
1
2

4
,

3
1
4

2
,

3
2
4

1
,

4
1
2

3
,

4
1
3

2
,

4
3
2

1
.
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Notice that these subsets are disjoint, that is,

Tλ/ν

\
Tλ∗/ν∗, = φ.

Thus we have the situation shown in Figure 8.2.

Tλ/ ν Tλ /ν

Tn

* *

Figure 8.2: Partition of Tn

In Theorem 8.5, we showed that the set Tn is an infinite set. We now generalize this result

to the case of partial skew tableaux having n nodes, regardless of the choice of integers

used to fill the nodes.

Theorem 8.7 (†) Let n be a positive integer. Then the number of skew shapes having n

boxes is infinite.

Proof. Suppose that the number of skew shapes having n boxes is finite, say x. Let λ/ν

denote the shape having the rightmost box in row 1, say (1, j). We may say that for all

other such skew shapes, the rightmost box in row 1 is located at position (1,k), where

1≥ k ≥ j. Let λ∗/ν∗ denote the skew shape with the box at (1, j) moved one position to

161



the right, that is, to position (1, j +1). As this skew shape has n boxes, it is an element of

the set of skew shapes having n boxes. Hence the number of skew shapes having n boxes

is x+1. As this contradicts the hypothesis, the number of skew shapes having n boxes is

infinite.

2

Corollary 8.3 (†) The relation u defined on the set Tn partitions Tn into an infinite num-

ber of infinite subsets, each being represented by a distinct skew shape.

We also generalize Theorem 8.5 to the case of partial skew tableaux having any number

of nodes.

Theorem 8.8 (†) Let U and T be as in Theorem 8.3. Then T is an infinite set, that is,

|T |= ∞.

Proof. Suppose that T is a finite set consisting of x elements. Let t ∈ T be the tableau

containing the rightmost element in row 1, that is, t has a box at position (1, j) and all

other tableaux in T have their rightmost box at position (1,k) for 1≤ k≤ j. Then let t ′ be

the tableau t with node (1, j) move right one position to (1, j+1). Then t ′ ∈ T since all its

boxes contain elements from the set U . Hence |T | = x + 1, contradicting the hypothesis.

Hence T is an infinite set.

2

Corollary 8.4 (†) The set T ×T ×·· ·×T︸ ︷︷ ︸
k terms

is an infinite set.
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Definition 8.2 defined a relation on skew tableaux which have the same shape. The fol-

lowing definition generalizes this to the case of tuples of tableaux which pairwise have

the same skew shape.

Definition 8.3 (†) Let u denote a relation on two k-tuples of tableaux with the meaning

that t1× t2×·· ·× tk u t ′1× t ′2×·· ·× t ′k if corresponding tableaux in each tuple have the

same skew shape, that is,

t j u t ′ j for all 1≤ j ≤ k.

This is obviously an extension of Definition 8.2 for tuples of tableaux. Obviously, if tuples

have different numbers of tableaux, they are incompatible.

Example 8.11 Let

t = t1× t2× t3 =

(
1 2
3 ,

4
5 , 6

)
and

t ′ = t ′1× t ′2× t ′3 =

(
1 2
4 ,

5
6 , 3

)
.

Then we may write t1× t2× t3 u t ′ = t ′1× t ′2× t ′3.

Theorem 8.6 stated that the relation defined in Definition 8.2 is an equivalence relation.

The following theorem generalizes this result to the case of the relation defined on tuples

of tableaux.

Theorem 8.9 (†) The relation u between k-tuples of tableaux is an equivalence relation.
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Proof. First we show that u is reflexive. Let

t = t1× t2×·· ·× tk. by relexivity of u on tableaux

Clearly t j u t j for all 1≤ j ≤ k. Hence t u t.

Next we show that u is symmetric. Let

t ′ = t ′1× t ′2×·· ·× t ′k.

such that t u t ′. Then by definition of u,

t j u t ′j for all 1≤ j ≤ k.

From Theorem 8.6, it follows that

t ′j u t j for all 1≤ j ≤ k, by symmetry of u on tableaux

Hence t ′j u t j, so u is symmetric.

Last we must show that u is transitive. Let

t ′′ = t ′′1 × t ′′2 ×·· ·× t ′′k ,
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such that

t ′ u t ′′.

Then from the definition of u,

t ′j u t ′′j for all 1≤ j ≤ k.

Hence

t j u t ′′j for all 1≤ j ≤ k.

by transitivity of u on tableaux. Hence t u t ′′, so u is transitive.

2

Example 8.12 Let t and t ′ be as in Example 8.11, and let

t ′′ = t ′′1 × t ′′2 ×·· ·× t ′′3 =

(
2 3
4 ,

5
6 , 1

)
.

Then we may write

t u t ′ u t ′′.

It follows that the relation of Definition 8.3 defines a partition on tuples of tableaux.

Corollary 8.5 (†) The relation u describes a partition on the set T ×T ×·· ·×T︸ ︷︷ ︸
k terms

. This

is a partition of an infinite set into an infinite number of infinite subsets.
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Thus we have the situation shown in Figure 8.3.

T × T × · · · T

k t erms

Tλ 1 /ν 1
× Tλ 2 /ν 2

· · · Tλ k /ν k

Tλ
1
/ν

1
× Tλ

2
/ν

2
· · · Tλ

k
/ν

k
* ** * * *

Figure 8.3: Partition of T ×T ×·· ·×T

In order to study the properties of an ordered decomposition, we need to study the shapes

produced by one or more decompositions. The following theorem assists in this study.

Given a composition which defines a structure of an ordered decomposition on a skew

shape λ/ν, then there may be several such ordered decompositions which produce the

tuple of skew shapes

λ1/ν1×λ2/ν2×·· ·×λk/νk.

Example 8.13 As an example consider the skew shape

λ/ν = = (5,5,4,3,1)/(4,3,2,1),
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and structure µ = (3,2,2,1). The ordered decomposition, given by

α = {[(1,5),(2,4),(3,3)], [(4,2),(5,1)], [(2,5),(3,4)][(4,3)]},

produces the tuple of skew shapes

 , , ,

 .

Also producing this tuple of skew shapes are the following decompositions -

β = {[(1,5),(2,4),(3,3)], [(2,5),(3,4)], [(4,2),(5,1)], [(4,3)]}

γ = {[(1,5),(2,4),(3,3)], [(4,2),(5,1)], [(3,4),(4,3)], [(2,5)]}

ξ = {[(1,5),(2,4),(3,3)], [(3,4),(4,3)], [(4,2),(5,1)], [(2,5)]}

π = {[(3,3),(4,2),(5,1)], [(1,5),(2,4)], [(2,5),(3,4)], [(4,3)]}

Ω = {[(3,3),(4,2),(5,1)], [(2,5),(3,4)], [(1,5),(2,4)], [(4,3)]}

ϒ = {[(3,3),(4,2),(5,1)], [(1,5),(2,4)], [(3,4),(4,3)], [(2,5)]}

∆ = {[(3,3),(4,2),(5,1)], [(3,4),(4,3)], [(1,5),(2,4)], [(2,5)]}

Example 8.14 As another example consider the skew shape

λ
∗/ν
∗ = = (4,4,4,3,2,2)/(3,3,2,1,1),
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and structure µ′ = (3,3,2,2). The ordered decomposition given by

α
′ = {[(1,4),(2,4),(3,3)][(4,2),(5,2),(6,1)][(3,4),(4,3)][(6,2),(7,1)]},

produces the tuple of skew shapes

 , , ,

 .

Also producing this tuple of skew shapes are the following ordered decompositions :-

β′ = {[(4,2),(5,2),(6,1)][(1,4),(2,4),(3,3)][(3,4),(4,3)][(6,2),(7,1)]},

γ′ = {[(1,4),(2,4),(3,3)][(4,2),(5,2),(6,1)][(6,2),(7,1)][(3,4),(4,3)],}

ξ′ = {[(4,2),(5,2),(6,1)][(1,4),(2,4),(3,3)][(6,2),(7,1)][(3,4),(4,3)]}.

8.3 Conclusion

We have derived a vigorous mathematical framework for the removal of nodes from a

tableau. In the next chapter, we investigate the normalisation of the resulting tableau

tuples using jeu de taquin.
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Chapter 9

The Decomposition of Tableaux into

Normal Tableaux

In the previous chapter, we developed a mathematical framework for the decomposition

of a partial skew tableau into a tuple of partial skew tableau. In this chapter, we extend

the mathematical framework to cover the normalisation of the tableau tuple using jeu de

taquin.

9.1 Normalisation of Skew Tableau Tuples

The research of McAven et al. (see Chapter 7) was concerned with decomposing tableaux

into tuples of normal tableaux. In order to further their research, we make the following

definition.
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Definition 9.1 (†) Let t be a partial skew tableau. Then an ordered decomposition of

t into partial normal tableaux, with structure µ, is an ordered decomposition of t into

partial skew tableaux (t1, t2, · · · , tk), followed by justification of each skew tableau, ti,

using jeu de taquin.

This definition extends the definition of an ordered decomposition by providing for justi-

fication of the skew tableaux produced by an ordered decomposition, using jeu de taquin.

This is the approach taken by McAven et al.

Example 9.1 Let t be the tableau

t =

2
1 3
4 10

5 11
7 13

6 15

with skew shape λ/ν = (5,5,5,4,3,2)/(4,3,3,2,1). Let µ = (3,3,3,2) be the structure of

an ordered decomposition of t into partial normal tableaux, defined by

γ = {[(1,5),(2,4),(3,4)], [(4,3),(5,2),(6,1)], [(2,5),(3,5),(4,4)], [(5,3),(6,2)]}.

Applying the ordered decomposition of t into partial skew tableaux yields the 4-tuple of

skew tableaux

(t1, t2, t3, t4) =

 2
1
4

,

5
7

6
,

3
10

11
,

11
15

 .
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Justification of these skew tableaux using jeu de taquin yields the 4-tuple of normal

tableaux

(n1,n2,n3,n4) =

 1 2
4 ,

5 7
6 ,

3
10
11

,
13
15

 .

We seek to show that an ordered decomposition into normal tableaux is a composition

of mappings. To do this, we show that justification of a tableau using jeu de taquin is a

mapping.

Theorem 9.1 (†) Let U, n and T be as in Theorem 8.3. Let N be the subset of T having

normal shape. Then justification of elements of T using jeu de taquin is a mapping from

T into N.

Proof. Let t ∈ T with skew shape λ/ν. Let n ∈ N be the normal tableau resulting from

justification of t using jeu de taquin, that is,

n = j(t).

Theorem 3.5 states that j(t) is well-defined. Hence the operation j(t) is a mapping from

T into N. Theorem 3.4 further states that j(t) is the Robinson-Schensted insertion tableau

for the row word of t, πi.

2
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Example 9.2 Consider the skew tableau t1 from Example 9.1, that is,

t1 =
2

1
4

,

with row word πt1 = 412. Then

j(t) =
1 2
4

and this is the Robinson-Schensted insertion tableau for the permutation πt1 .

It immediately follows that an ordered decomposition into normal tableaux is a composi-

tion of mappings.

Corollary 9.1 (†) Let U, n, T , Tn, u and Tλ/ν be as in Theorem 8.3. Then an or-

dered decomposition, γ, of a tableau t ∈ Tλ/ν into partial normal tableaux is a mapping,

α, from Tλ/ν into T ×T ×·· ·×T︸ ︷︷ ︸
k terms

followed by a mapping, β, from T ×T ×·· ·×T︸ ︷︷ ︸
k terms

into

N×N×·· ·×N︸ ︷︷ ︸
k terms

. That is

γ(t) = β(α(t)) = β(t1× t2×·· ·× tk) = n1×n2×·· ·×nk.

Example 9.3 Let γ be the ordered decomposition of Example 9.1. This mapping γ can be

seen by inspection to comprise the composition of two mappings, α and β. The first map-

ping, α, maps t to a 4-tuple of partial skew tableaux, (t1, t2, t3, t4). The second mapping,

β, maps this tuple to a 4-tuple of partial normal tableaux, (n1,n2,n3,n4).
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In the following pages, we wish to investigate the multiplicity case considered by McAven

et al., that is, the case where several tuples of skew tableaux map to the same tuple of

normal tableaux under jeu de taquin. The following lemma and theorems furnish the

basis for the study of the multiplicity case.

Lemma 9.1 (†) Let n be the normal tableau obtained by justification of the tableau t

using jeu de taquin, that is,

n = j(t)

= jCm , jCm−1, · · · , jC2 jC1(t),

where Ci is the cell occupied by the ith forward slide on t. Then there exists a sequence of

backward slides which may be applied to n to yield t.

Proof. Let di be the cell vacated by the ith forward slide on t. Let ti be the tableau

resulting from the ith forward slide on t. Then we may write

t0 = t

t1 = jC1(t0)

n = tm,

with vacating cells

dmdm−1 · · ·d2d1.
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However, we know from Theorem 3.4 that a slide is an invertible operation, that is,

jdi jCi(ti−1) = ti−1.

Specifically,

jdm jC1(tm−1) = tm−1.

We propose the sequence of backward slides to be

jd1 jd2 · · · jdm−1 jdm.
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For we have that

jd1 jd2 · · · jdm−1 jdm j(t)

= jd1 jd2 · · · jdm−1 jdm jCm(t)

= jd1 jd2 · · · jdm−1( jdm jCm(t))

= jd1 jd2 · · · jdm−1(tm−1)

= jd1 jd2 · · · jdm−1 jCm−1(tm−2)

= jd1 jd2 · · ·( jdm−1 jCm−1(tm−2))

= jd1 jd2 · · · jdm−2(tm−2)

...

= jd1(t1)

= jd1 jC1(t0)

= ( jd1 jC1)(t0)

= t0

= t.

2

Example 9.4 Let t be the second skew tableau from the 4-tuple of Example 9.3, that is,

t =
5

7
6

.

To justify t, we first perform a forward slide into cell c1 = (1,2), giving

t1 = j(1,2)(t) =
5
7

6
.
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This vacates cell d1 = (1,3).

Next, we perform a forward slide into cell c2 = (2,1), giving

t2 = j(2,1)(t1) =
5

6 7 .

This vacates cell d2 = (3,1). We then perform a forward slide on cell c3 = (1,1), giving

t3 = j(1,1)(t2) =
5
6 7 .

This vacates cell d3 = (1,2). Last, we perform a forward slide on cell c4 = (1,2), giving

t4 = j(1,2)(t3) =
5 7
6 .

This vacates cell d4 = (2,2).

From the preceding Lemma, we propose

j(1,3) j(3,1) j(4,2) j(2,2)t4,

as the sequence of backward slides required to restore t from t4. We have

j(2,2)t4 =
5
6 7 = t3.
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This vacates cell c4 = (1,2). Then, performing a backward slide into cell (1,2) gives

j(1,2)t3 =
5

6 7 = t2,

vacating cell c3 = (1,1). Next, performing a backward slide into cell d2 = (3,1) gives

j(3,1)t2 =
5
7

6
= t1,

vacating cell c2 = (2,1). Last, we perform a backward slide into cell d1 = (1,3) giving

j(1,3)t1 =
5

7
6

= t.

This vacates cell c1 = (1,2). Thus the sequence of backward slides restores tableau t from

t4.

Corollary 9.2 (†) Let

(n1,n2, · · · ,nk) ∈ T ×T ×·· ·×T︸ ︷︷ ︸
k terms

,

be the tuple of normal tableaux obtained by justification of the k-tuple of skew tableaux

(t1, t2, · · · , tk) ∈ T ×T ×·· ·×T︸ ︷︷ ︸
k terms

,

using the k-tuple of forward slide sequence

( jb1, jb2, · · · , jbk).
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Then there exists a tuple of backward slide sequences which will restore (t1, t2, · · · , tk)

from (n1,n2, · · · ,nk).

Example 9.5 Let (t1, t2, t3, t4) and (n1,n2,n3,n4) be as in Example 9.3. The 4-tuple of

forward slide sequence is

j f1 = j(1,1), vacating cell d1 = (3,1);

j f2 = j(1,2) j(1,1) j(2,1) j(1,2), vacating cells

d1 = (1,3), d2 = (3,1),

d3 = (1,2), d4 = (2,2);

j f3 = j(1,1) j(2,1), vacating cells

d1 = (2,2), d2 = (1,2);

j f4 = j(1,1), vacating cells

d1 = (1,2).

It can be seen that the 4-tuple of backward slide sequences

jb1 = j(3,1); jb2 = j(1,3) j(3,1) j(1,2) j(2,2);

jb3 = j(2,2) j(1,2); jb4 = j(1,2),

will restore (t1, t2, t3, t4) from (n1,n2,n3,n4).
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9.2 Properties of Normalisation of Tableau Tuples

We seek to show that normalization of a tuple of skew tableaux is a many-to-one mapping.

To do this, we first show that normalization of a single tableau is a many-to-one mapping.

Theorem 9.2 (†) Let n be a normal tableau. Then there may be several skew tableaux,

not necessarily of the same shape, which map to n under jeu de taquin. That is, jeu de

taquin is a many-to-one mapping.

Proof. Since n has at least one node, it must have at least one outer corner, possibly more.

Performing a backward slide into any of these outer corners produces a skew tableau,

t, which maps to n under jeu de taquin. Now t must have at least one outer corner,

possibly more. Performing a backward slide into any of these outer-corners produces a

skew tableau t ′, which also maps to n under jeu de taquin, and so on. Thus there may be

more than one skew tableau which maps to n under jeu de taquin.

2

Example 9.6 Let n1 be the normal tableau of Example 9.4, that is,

n1 =
5 7
6 .

This normal tableau was produced by justification of the skew tableau

t =
5

7
6

.

179



It can be seen by inspection that the following skew tableaux also map to n under jeu de

taquin;

t ′ =
5
7

6
,

t ′′ =
5

7
6

,

t ′′′ =
5

7
6

.

Corollary 9.3 (†) Let

(n1,n2, · · · ,nk) ∈ N×N×·· ·×N︸ ︷︷ ︸
k terms

,

be a k-tuple of normal tableaux. Then there may be more than one k-tuple of skew tableaux

which map to (n1,n2, · · · ,nk) under jeu de taquin of each tableau.

Example 9.7 Let (n1,n2,n3,n4) be the 4-tuple of normal tableau of Example 9.3, that is,

(n1,n2,n3,n4) =

 1 2
4 ,

5 7
6 ,

3
10
11

,
13
15

 .

This 4-tuple of normal tableaux was produced by performing jeu de taquin on the 4-tuple

of skew tableaux.

(t1, t2, t3, t4) =

 2
1
4

,

5
7

6
,

3
10

11
,

13
15

 .

It can be seen from inspection that the following 4-tuple of skew tableaux also map to
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(n1,n2,n3,n4) under jeu de taquin of each tableau;

(t ′1, t
′
2, t
′
3, t
′
4) =

 2
1

4
,

7
5

6
,

3
10

11
,

13
15

 ,

(t ′′1 , t ′′2 , t ′′3 , t ′′4 ) =

 1
2

4
,

5
7

6
,

10
3

11
,

13
15

 ,

(t ′′′1 , t ′′′2 , t ′′′3 , t ′′′4 ) =

 2
1
4

,

7
5

6
,

3
10

11
,

13
15

 .

Thus we have the situation shown in Figure 9.1. In this manner, we have a mathematical

proof of an observation in section 5.2.

Tλ′

1
/ν′

1
× Tλ′

2
/ν′

2
× · · · × Tλ′

k
/ν′

k

T × T × · · ·T
︸ ︷︷ ︸

k terms

� U

Tλ1/ν1
× Tλ2/ν2

× · · · × Tλk/νk

�

NΩ1
× NΩ2

× · · · × NΩk

O

N × N × · · ·N
︸ ︷︷ ︸

k terms

NΩ′

1
× NΩ′

2
× · · · × NΩ′

k

s

s

s

s s

s

s

s

s-

z

1*

-

s1

Figure 9.1: Mappings from T ×T ×·· ·×T to N×N×·· ·×N
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Corollary 9.4 (†) There may be more than one partial skew tableau which produces

the same tuple of normal tableaux under an ordered decomposition into partial normal

tableaux.

Example 9.8 Let (n1,n2,n3,n4) be as in Example 9.7. Also let the 4-tuple of skew tableaux

be as in that example. It can be seen that the skew tableau

t =

2
1 3
4 10

5 11
7 13

6 15

,

maps to (t1, t2, t3, t4), which in turn maps to (n1,n2,n3,n4). However the tableau

t ′ =

2
1 3
4 10

5 11
7

6 13
15

.

also maps to (t1, t2, t3, t4) and then to (n1,n2,n3,n4). However, this requires a different

structure for the ordered decomposition.

Now the skew tableau

t ′′′ =

2
1 3
4 10

7 11
5 13

6 15

.

maps to (t1, t2, t3, t4) and then to (n1,n2,n3,n4). This ordered decomposition has the same
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structure as that which acts on t to produce (n1,n2,n3,n4).

Example 9.9 Consider the decompositions of the tableaux of shape λ = (3,2,1)

,

given in Example 5.5. The two tableaux

td =
1 2 4
3 6
5

,

and

tg =
1 2 6
3 4
5

,

both map to the tableau pair

1 2
3 ×

4 6
5 .

under an ordered decomposition into normal tableaux. The structures of these decompo-

sitions are identical. Thus they are the same decomposition.

The preceding results establish that an ordered decomposition into partial normal tableaux

is a composition of a one-to-one mapping and a many-to-one mapping, as shown by the

following theorem.

Theorem 9.3 (†) An ordered decomposition of a partial skew tableau into partial normal

tableaux is a composition of mappings. Specifically, it is a one-to-one mapping from a
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partial skew tableau to a k-tuple of partial skew tableaux, followed by a many-to-one

mapping to a k-tuple of partial normal tableaux.

Proof. Theorem 8.4 shows that the first part of the definition of an ordered decomposition

of a partial skew tableau into partial normal tableaux is a one-to-one mapping from the

set Tλ/ν into the set T ×T ×·· ·×T︸ ︷︷ ︸
k terms

.

Theorem 8.1 shows that the second part of the definition is a many-to-one mapping from

the set T ×T ×·· ·×T︸ ︷︷ ︸
k terms

into the set N×N×·· ·×N︸ ︷︷ ︸
k terms

.

Thus an ordered decomposition is a composition of mappings.

2

Example 9.10 Consider the partial skew tableau

t =

2
1 3
4 10

5 11
7 13

6 15

,

of Example 9.3. The ordered decomposition described first maps t to the 4-tuple of partial

skew tableaux

(t1, t2, t3, t4) =

 2
1
4

,

5
7

6
,

3
10

11
,

13
15

 ,
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then maps this 4-tuple to the 4-tuple of normal tableaux

(n1,n2,n3,n4) =

 1 2
4 ,

5 7
6 ,

3
10
11

,
13
15

 .

Example 9.11 Consider the tableau

td =
1 2 4
3 6
5

,

of Example 9.9. The ordered decomposition described first maps td to the tableau pair

 1 2
3 ,

4
6

5

 ,

then maps this tableau pair to the pair of normal tableaux

(
1 2
3 ,

4 6
5

)
.

Thus in general we have the situation shown in Figure 9.2.
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In the research of McAven et al., we are particularly interested in the multiplicity case,

that is, when several tableaux map to the same tuple of normal tableaux. To study this

case further, we establish the following lemma.

Lemma 9.2 (†) Let t1 and t2 be two partial skew tableaux which are justified to the same

partial normal tableau, n1, using jeu de taquin. Then t2 may be obtained from t1 by a

sequence of slides, and vice-versa.

Proof. Suppose that n1 is obtained from t1 by a sequence of forward slides, j f1 , which

comprises jeu de taquin. Then there is a corresponding sequence of backward slides, jb1 ,

which restores t1, from Lemma 9.1. Similarly, there exists sequences of slides, j f2 and

jb2 , for t2.

Now we may apply sequence j f2 to t2 to produce n1, followed by jb1 to produce t1 from

t2. Similarly, we may apply j f1 to t1 to produce n1, followed by jb2 to produce t2 from t1.

Hence, the tableaux t1 and t2 may be obtained from each other by sequences of slides.

2

Example 9.12 Let n1 be the normal tableau of Example 9.6, that is,

n1 =
5 7
6 .

Further, choose two tableaux from that example which justify to n1 using jeu de taquin,
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that is,

t1 =
5

7
6

,

and

t2 =
7

5
6

.

The sequence of forward slides on t1 corresponding to jeu de taquin is

t ′1 = j2,1(t1) =
5

6 7 ;

t ′′1 = j1,2(t ′1) =
5

6 7 ;

n1 = j1,1(t ′′1 ) =
5 7
6 .

The corresponding sequence of backward slides is

t ′′1 = j2,2(n1) =
5

6 7 ;

t ′1 = j1,3(t ′′1 ) =
5

6 7 ;

t1 = j3,1(t ′1) =
5

7
6

.
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Similarly, the sequence of forward slides on t2, corresponding to jeu de taquin, is

t ′2 = j2,1(t2) =
7

5
6

;

t ′′2 = j1,2(t ′2) =
7

5
6

;

n1 = j1,1(t ′′2 ) =
5 7
6 .

The corresponding sequence of backward slides is

t ′′2 = j3,1(n1) =
7

5
6

;

t ′2 = j1,3(t ′′2 ) =
7

5
6

;

t2 = j2,2(t ′2) =
7

5
6

.

We may apply the sequence of slides to t1

n1 = j(t1) = j1,1( j1,2( j2,1(t1))),

followed by the sequence of slides to n1

t2 = j2,2( j1,3( j3,1( j(t1)))),

to obtain tableau t2 from tableau t1. Similarly, we may obtain t1 from t2 by a sequence of
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slides.

Thus we have shown that two partial skew tableaux, t1 and t2, are equivalent, written

t1 u t2, if they both justify to the same normal tableau, n1 under the operation of jeu de

taquin.

The preceding results now enable us to characterize the multiplicity case mathematically.

Theorem 9.4 (†) Two partial skew tableaux, t1 and t2, are brought to the same normal

tableau, n1, under jeu de taquin, if and only if the are Knuth equivalent, written

t1
K∼= t2.

Proof. We established in Lemma 9.2 that

t1 ∼= t2.

Theorem 3.5 shows that this condition is equivalent to the condition of Knuth equivalence,

that is,

t1
K∼= t2.

2

Example 9.13 Let t1 and t2 be the two partial skew tableaux of the previous example, that
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is,

t1 =
5

7
6

and t2 =
7

5
6

.

Then two tableaux are brought to the same normal tableau using jeu de taquin. Inspection

shows that these two tableaux are Knuth equivalent, for their row words are

π1 = 675 and π2 = 657.

It can be seen that

π1
1∼= π2.

Corollary 9.5 Consider the two k-tuples of partial skew tableaux,

t = (t1, t2, · · · , tk) and t ′ = (t ′1, t
′
2, · · · , t ′k).

The tuples, t and t ′, map to the same k-tuple of partial normal tableaux

n = (n1,n2, · · · ,nk),

under jeu de taquin if and only if they are pairwise Knuth equivalent.

Example 9.14 Let (t ′1, t
′
2, t
′
3, t
′
4) and (t ′′1 , t ′′2 , t ′′3 , t ′′4 ) be the 4-tuples of tableaux of Exam-

ple 9.7. It can be seen by inspection that

t ′1
1∼= t ′′1 , t ′2

1∼= t ′′2 , t ′3 = t ′′3 , and t ′4 = t ′′4 .
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Thus these two 4-tuples of tableaux are pairwise Knuth equivalent.

Example 9.15 Let td and tg be as in Example 5.5, that is,

td =
1 2 4
3 6
5

and tg =
1 2 6
3 4
5

,

under the ordered decomposition into partial skew tableaux described by

γ = {[(1,1),(1,2),(2,1)], [(1,3),(2,2),(3,1)]}.

This gives the following 2-tuples of partial skew tableau

(td1 , td2) =

 1 2
3 ,

4
6

5

 ,

(tg1 , tg2) =

 1 2
3 ,

6
4

5

 .

It can be seen by inspection that

td1 = tg1, and td2

1∼= tg2.

9.3 Conclusion

In the previous chapter we defined the decomposition of a partial skew tableau into a tuple

of partial skew tableaux. In this chapter we have also defined the decomposition of a
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partial skew tableau into partial normal tableaux. The decompositions of a Young tableau

may be considered to be special cases of these decompositions. Thus the decomposition

given by McAven et al. is a special case of our more general mathematical framework.

We have developed the set-theoretic and combinatorial aspects of these decompositions,

in order to facilitate further research in this area.

Inspection shows that the decompositions in Chapter 6, which accounts for restricted

representations, comprises sets of ordered decompositions of a tableau into skew tableau.

This decomposition is taken from Robinson [5], who approaches the problem through the

application of group character theory. The author believes that such an approach holds

the most promise of finding the transition matrix between symmetric group bases. The

material given in this chapter is intended to serve as an adjunct to such research. The

development of the set-theoretic and combinatorial theory, in conjunction with the group

character approach, could be the topic of further work.
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Chapter 10

Conclusion and Further Research

We have introduced the representation theory of the symmetric group, with a view to

deriving the transition matrix between symmetric group bases. We have given a survey of

the research by Hamel et al. [7], and McAven et al. [8, 9] in this area.

The research by McAven et al. [7, 8, 9] hinges on the decomposition into subgroups of the

symmetric group, and hence the Young tableaux in Young’s representation of the symmet-

ric group. We have initiated research into furnishing a formal mathematical framework

for this. To do this we investigated the set-theoretic and combinatorial properties of the

decomposition of tableaux. We have derived one significant result (Corollary 9.5). This

result characterises tableaux which decompose to the same tuple of normal tableaux. In

doing this we have established 4 definitions, proved 15 theorems, 4 lemmas and given 11

corollaries. We have also given 35 examples demonstrating the various theories, corollar-

ies and lemmas given in this thesis.
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We have assumed a knowledge of group character theory. Robinson [5] derives a decom-

position in terms of character theory. This decomposition also has an analysis in terms of

the decomposition of tableaux. Thus there is a link between the character-theoretic de-

composition of Robinson [5] and the combinatorial decomposition derived in this thesis.

It has been the author’s intention to further investigate these two decompositions and the

link between them. This would have been done by combining character theory with the

set-theoretic and combinatorial principles developed in this thesis.

The decomposition by Robinson [5] hinges upon the removal of successively outermost

diagonal strips from a tableau. This can be accommodated by an ordered decomposition

by choosing sets of nodes in this fashion.

In Chapter 6, we introduced the skew representation. This could be applied to each tableau

in the tuple of partial skew tableau produced by an ordered decomposition.

We have used Corollary 9.5 to characterize mathematically the multiplicity case investi-

gated by McAven et al. Because tuples in the multiplicity case are pairwise Knuth equiv-

alent, we have eliminated the need to justify the tuples of skew tableaux to determine

which constitute the multiplicity case. Further, we can apply the skew representation to

each tableau in the tuple of partial skew tableaux. This could be the subject of further

research.

We have discussed polytabloids. The author spent a considerable amount of time inves-

tigating the application of polytabloids to finding the transition matrix. The nature of

this investigation was computational rather than proof-theoretic. This investigation was
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not included in the thesis because it did not establish any new results. However, it did

confirm an observation made by McAven et al. in their research. They observed that

determining the matrix representation for the bridging transposition (a,a+1) in the split

basis adapted to Sa×Sb is the crux of the problem of finding the transition matrix. The au-

thor believes that this problem is best approached combinatorially, at least initially. Thus,

to apply polytabloids to the problem requires the further development of the combinato-

rial approach undertaken in Chapter 8. This could be the subject of further research work.

As we have characterised the multiplicity case mathematically, it may be possible to use

this to devise on order on tuples of tableux based on their row words.

We have introduced symmetric functions. In this thesis, symmetric functions have not

been applied to the problem of finding the transition matrix. However, the author believes

that they may have proved useful in addressing the problem of the bridging transposition.

This could be done by combining symmetric functions with the combinatorial approach

taken in Chapter 8. Again, there arises the need to further develop the combinatorial

theory of the decomposition of tableaux.

We have characterised the multiplicity case mathematically using combinatorial tech-

niques. We have proposed the skew representation of Robinson[5]. as a means of resolv-

ing multiplicity separation. We have proved that multiplicity arises from normalisation of

tuples of skew tableaux using je de taquin. The skew representation is applied to tuples

of skew tableaux before normalisation, thus avoiding the problem of multiplicity.

Thus the focus of this thesis is addressing the issue of multiplicity separation. The other

issue which must be addressed is that of finding a representation of the bridge transforma-
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tion. McAven et al.[8],[9] propose the block selective conjecture as a means of resolving

the bridging transposition. Some computational work undertaken by the author demon-

strates that the skew representation, while addressing the issue of multiplicity, does not

resolve the problem of the bridging transposition. Thus the problem of the bridge trans-

position could be the topic of future work. The papers by McAven et al.[8],[9] would be

the starting point for such research.

The issue of subduction coefficients has not been considered in this thesis, but remains a

possible focus for further research. The papers by Chilla[22],[23] have initiated research

in this area. These papers could be the starting point for further research.

In this thesis, we have introduced the representation theory of the symmetric group. We

have discussed polytabloids, symmetric functions and combinatorial methods. We have

attempted to apply some of these techniques to finding the transition matrix between

symmetric group bases. Specifically, we have studied combinatorial techniques. Fur-

ther research work could bring the other methods to bear on the problem of finding the

transition matrix. The combinatorial approach is common to these various techniques.

Therefore, further research into combinatorial techniques is seen to be crucial in finding

the transition matrix.

These approaches to the representation theory of the symmetric group could also be used

to investigate the transition matrix between symmetric group bases.
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