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Abstract
Starting with an arbitrary inverse semigroup with zero, we study two well-
known groupoid constructions, yielding groupoids of filters and groupoids of
germs. The groupoids are endowed with topologies making them étale. We
use the bisections of the étale groupoids to show there is a topological isomor-
phism between the groupoids. This demonstrates a widely useful equivalence
between filters and germs. We use the isomorphism to characterise Exel’s
tight groupoid of germs as a groupoid of filters, to find a nice basis for the
topology on the groupoid of ultrafilters and to describe the ultrafilters in the
inverse semigroup of an arbitrary self-similar group.
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Chapter 1

Introduction

In this thesis we investigate various groupoids associated to inverse semi-
groups. Groupoids (introduced by Brandt [Bra27]) and inverse semigroups
(introduced independently by Wagner [Vag52] and Preston [Pre54a; Pre54b;
Pre54c]) are generalisations of groups. The importance of groupoids in
the study of operator algebra, in particular, is demonstrated in Renault’s
monograph [Ren80], where he describes how to associate a C*-algebra to a
groupoid. Renault also poses the question of finding nice groupoids asso-
ciated to inverse semigroups in [Ren80, Remark III.2.4]. Starting with an
arbitrary inverse semigroup, we consider two well-known groupoid construc-
tions and show that there is an isomorphism between the groupoids.

The first construction uses a ‘filter approach’. A filter is a special subset
of the inverse semigroup depending on the natural partial order. The filter
approach was pioneered by Lenz in [Len08] and has seen refinement over time
[Law12; LMS13; Bic19; Cas20].

Another well-known groupoid construction is the ‘germ approach’, which
depends on an action of the inverse semigroup on the space of representations
of its idempotents. Paterson founded the germ approach [Pat99, pp. 177],
which was streamlined by Exel in [Exe08].

According to the literature, algebraists tend to use the filter approach
while analysts use the germ approach. Thus, our work is partly motivated
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2 CHAPTER 1. INTRODUCTION

by an interest in unifying these two constructions to enable diverse collabo-
rations.

It is mentioned in the literature that the two approaches yield the same
groupoids up to isomorphism (for example, see [Res10, Exercise III.3.16(2)],
[LMS13, §3.3], [LL13, §5.1], [Bic19, Remark 2.41] and [Cas20, Corollary 6.8]).
However, there is limited detail of the precise connection. Our aim is to find
explicit isomorphisms between the various groupoids of filters and groupoids
of germs. That is, starting with an arbitrary inverse semigroup with zero, we
find an isomorphism π : F → G0 from the groupoid F of proper filters to the
groupoid G0 of proper germs (Theorem 3.4.1), and we show how π restricts
to the subgroupoids of ultrafilters and tight filters.

When the project began, we were mainly interested in inverse semigroups
associated to self-similar groups. We emphasise the importance of this special
case. It is shown in [EP17] that self-similar graphs (which generalise self-
similar groups) yield a unifying class of C*-algebras, where each C*-algebra
is the groupoid C*-algebra of Exel’s tight groupoid of germs associated to
the inverse semigroup of a given self-similar graph.

In the self-similar group setting, we found an isomorphism between the
groupoid of germs and the groupoid of filters. As we put the details to-
gether, we realised that our isomorphism would generalise to an arbitrary
inverse semigroup with zero, giving rise to π : F → G0. This generalisation
bridged the project with a prior collaboration between Lisa Orloff Clark,
Becky Armstrong and Ying-Fen Lin. Together with Astrid an Huef, our re-
sults are available in preprint as [Arm+20], which condenses the results of
this thesis and omits the self-similar group application.

We will consider a number of structures whose notation is collated here:

• S is a fixed inverse semigroup, as of Assumption 2.1.9,

• E is the set of idempotents in S,

• L is the set of filters in S, which will be endowed with a multiplication
so that L is an inverse semigroup, and we get a groupoid L of filters
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by restricting the multiplication,

• F is the groupoid of proper filters,

• F(E) is the set of proper filters in E,

• T is the groupoid of tight filters,

• U is the groupoid of ultrafilters,

• G0 is the groupoid of proper germs,

• Gtight is Exel’s tight groupoid, and

• G∞ is the groupoid of ultragerms.

We will revisit the below guiding diagram and highlight what part of the
diagram we are establishing in some sections of the thesis.

S L ≥ F ≥ T ≥ U

F(0)

F(E) G0 ≥ Gtight ≥ G∞

G(0)
0

π π|T π|U

π|
F(0)

We write G ≥ H to mean H is a subgroupoid of G.

We will outline the content of some subsections with this formatting.

A roadmap for the thesis is as follows. In Section 2.1, we give some defi-
nitions and fix an inverse semigroup S with zero. We then outline rudiments
of the natural partial order on S. In Section 2.2, we define filters and a
filter composition, which gives the inverse semigroup L of filters. In Section
3.1, we see groupoids of filters and germs that represent the filter approach
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and germ approach discussed above. Some preliminary interactions between
these structures prepare us for the topological isomorphism π : F → G0. The
class of étale groupoids is defined in Section 3.2. Tools developed while show-
ing a groupoid of filters is étale will support the definition of π : F → G0. In
Section 3.3, we identify the unit spaces of F and G0 with F(E). This identifi-
cation implies a map between the unit spaces of the groupoids that extends
to π : F → G0 in Section 3.4. We conclude in Section 3.5 by examining how
π allows filters in inverse semigroups to be described in terms of the filters
of idempotents, which we apply to self-similar groups.



Chapter 2

Inverse semigroups

2.1 Inverse semigroups

We define an inverse semigroup S with zero, establishing the first structure in
the diagram, and we discuss the natural partial order of the inverse semigroup
on which the definitions of filters and germs depend.

S L ≥ F ≥ T ≥ U

F(0)

F(E) G0 ≥ Gtight ≥ G∞

G(0)
0

π π|T π|U

π|
F(0)

2.1.1 Preliminaries

We refer the reader to [How76] and [Law98] for treatments of semigroups and
inverse semigroups, respectively. A semigroup S is a set with an associative
binary operation. Given x and y in a semigroup S, we say x is an idempotent
if xx = x, and we say y is an inverse of x if

xyx = x and yxy = y.

5



6 CHAPTER 2. INVERSE SEMIGROUPS

We say S is a regular semigroup if every element has an inverse, and S is an
inverse semigroup if every element has a unique inverse, in which case the
inverse of x is denoted by x∗.

The above definition has appeared explicitly in the literature as early as
[How76, §V.1, pp. 129].1 Inverse semigroups were originally defined to be
regular semigroups whose idempotents commute, when they were indepen-
dently introduced by Wagner [Vag52] and Preston [Pre54a; Pre54b; Pre54c].2

We introduce elementary properties of inverse semigroups toward a proof of
Theorem 2.1.7, verifying the definitions are equivalent.

Let S be an inverse semigroup. Denote by E the set of idempotents in
S. Two properties are immediate from the uniqueness of inverses in S.

Lemma 2.1.1. For all x ∈ S, (x∗)∗ = x.

We say x in S is self-inverse if x∗ = x.

Lemma 2.1.2. Idempotents are self-inverse.

Idempotents are well-behaved in many ways, but we have yet to see that
such elements exist. Indeed they do. Define d(x) := x∗x, which we call the
source of x, for each x ∈ S.

Lemma 2.1.3. The set E of idempotents in S is E = d(S).

Proof. Fix e ∈ E. Then, e∗ = e by Lemma 2.1.2. Thus,

e = ee = e∗e = d(e) ∈ d(S).

If x∗x ∈ d(S), then (x∗x)(x∗x) = x∗(xx∗x) = x∗x, so x∗x ∈ E.
1Quoting [Pet84, §I.1, pp. 2], “the simple and [a]esthetically pleasing axioms for in-

verse semigroups have exercised a certain charm upon many researchers in the field of
semigroups.”

2Preston was aware of Wagner’s work no later than when he wrote the final note in
[Pre54c] acknowledging the equivalence between their definitions of inverse semigroups.
Charles Ehresmann is also due acknowledgement for early work relating to inverse semi-
groups via inductive groupoids [Ehr57; Ehr60].
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Knowing idempotents are prevalent via the source map d : S → E, we
investigate the good behaviour of E in more detail.

Lemma 2.1.4. Idempotents are closed under multiplication.

Proof. Fix e, f ∈ E. We show f(ef)∗e is an inverse of ef , like in [Law98,
Theorem 1.1.3]. Observe

ef(f(ef)∗e)ef = e(ff)(ef)∗(ee)f = ef(ef)∗ef = ef

and

f(ef)∗e(ef)f(ef)∗e = f(ef)∗(ee)(ff)(ef)∗e = f((ef)∗ef(ef)∗)e = f(ef)∗e,

so f(ef)∗e is an inverse of ef . Inverses are unique, so (ef)∗ = f(ef)∗e.
Further,

(f(ef)∗e)(f(ef)∗e) = f((ef)∗ef(ef)∗)e = f(ef)∗e ∈ E.

Hence, (ef)∗ ∈ E, which means ef = ((ef)∗)∗ = (ef)∗ ∈ E by Lemmas 2.1.1
and 2.1.2.

Lemma 2.1.5. The set E is commutative.

Proof. Fix e, f ∈ E. Because E is closed under multiplication (Lemma 2.1.4),
ef, fe ∈ E, and idempotents are self-inverse (Lemma 2.1.2), so (ef)∗ = ef .
Since inverses are unique, it suffices to show fe is an inverse of ef . Observe
that

effeef = efef = ef and feeffe = fefe = fe

because e, f, ef, fe ∈ E, so fe is an inverse of ef .

Now we can show the operations in S cooperate in the following sense.

Lemma 2.1.6. For all x, y ∈ S, (xy)∗ = y∗x∗.
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Proof. Idempotents commuting (Lemma 2.1.5) and E = d(S) (Lemma 2.1.3)
imply

xy(y∗x∗)xy = x(yy∗)(x∗x)y = xx∗xyy∗y = xy

and
y∗x∗xyy∗x∗ = y∗yy∗x∗xx∗ = y∗x∗,

so y∗x∗ is an inverse of xy. Inverses are unique, so (xy)∗ = y∗x∗.

The following characterisation of inverse semigroups was proved indepen-
dently by Liber, and by Munn and Penrose together. We cite Wagner’s
presentation of the result in [Vag53, Theorem 3.3].

Theorem 2.1.7. Let S be a semigroup. The following are equivalent:

(1) S is a regular semigroup whose idempotents commute;

(2) S is an inverse semigroup.

Proof. Lemma 2.1.5 tells us that (2) implies (1). Suppose (1) holds. Fix
x ∈ S. Since S is regular, x has at least one inverse. Suppose a and b are
inverses of x. Then, xax = x, axa = a, xbx = x and bxb = b. Observe
(xa)(xa) = (xax)a = xa, so xa ∈ E. Similarly, we can show ax, xb, bx ∈ E.
Notice

a = axa = a(xbx)a = (ax)(bx)a = (bx)(ax)a = bxa,

and
bxa = b(xbx)a = b(xb)(xa) = b(xa)(xb) = bxb = b,

since idempotents commute. Hence, a = b.

Example 2.1.8 (Proposition 1.1.2 of [Law98]). Let X be a set. A partial
function on X is a function f : A→ B, where A,B ⊆ X. A bijective partial
function is called a partial bijection on X. The set of partial bijections
on X is denoted by I(X). The composition of two partial functions is the
usual composition but defined on the largest domain possible. Under partial
function composition I(X) is an inverse semigroup.
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Assumption 2.1.9. Let S be an inverse semigroup.

Observe that the set E of idempotents in S is an inverse semigroup be-
cause E is closed under multiplication and inversion by Lemmas 2.1.4 and
2.1.2, respectively.

Note that the tools established in this section will be used without refer-
ence throughout the thesis.

2.1.2 Assuming zero exists

A zero in S is an element, denoted by 0, such that x0 = 0x = 0, for all x ∈ S.
If there is a zero in S, then we say S is an inverse semigroup with zero, and
any x in S such that x 6= 0 is nonzero.

Zeros can be troublesome. A group is an inverse semigroup with a unique
idempotent [Law98, Proposition 1.4.4, pp. 19]. The real numbers with the
standard multiplication is not a group because both zero and one would be
idempotents. (In general, a group contains a zero if, and only if, the group
is trivial.) However, the reals under multiplication is an inverse semigroup
whose idempotents are zero and one, so there are nontrivial inverse semi-
groups with zero. Better yet, we will see that, if S contains a zero, then the
zero is the minimum element of S with respect to the natural partial order.
Moreover, any inverse semigroup can be embedded in an inverse semigroup
with zero by adding a new element, denoted by 0, and extending the mul-
tiplication appropriately. Thus, it is both helpful and reasonable to restrict
our attention to inverse semigroups with zero, like in [Exe09].

Assumption 2.1.10. Assume S is an inverse semigroup with zero.3

Notice that E is an inverse semigroup with zero because 0 ∈ E.
3Quoting [Exe09], “one may wonder why in the world would anyone want to insert a zero

in an otherwise well behaved semigroup. Rather than shy away from inverse semigroups
with zero, we will assume that all of them contain a zero element, not least because we
want to keep a close eye on this exceptional element”.
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2.1.3 Natural partial order

We define a partial order on S that is essential to the definition of both
filters and germs. The results of the present section are in [Law98].

A partial order on a set is a binary relation that is reflexive, antisymmetric
and transitive. The natural partial order on S is the relation

a ≤ b ⇐⇒ a = eb for some e ∈ E.

Lemma 2.1.11. The natural partial order is a partial order.

Proof. The relation ≤ is reflexive because d(S) = E and a = aa∗a, for all
a ∈ S. Transitivity follows from E being closed under multiplication. Lastly,
≤ is antisymmetric because idempotents commute.

Lemma 2.1.12. For all a, b ∈ S, the following are equivalent:

(1) a ≤ b,

(2) a = aa∗b,

(3) a = ba∗a,

(4) a = be for some e ∈ E, and

(5) a∗ ≤ b∗.

Proof. We show

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1) ⇐⇒ (5).

Suppose (1), so a = eb for some e ∈ E. Then,

aa∗b = eb(eb)∗b = ebb∗e∗b = ee∗bb∗b = eeb = eb = a,

so (2) holds. If (2) holds, then

ba∗a = b(aa∗b)∗aa∗b = bb∗aa∗aa∗b = aa∗aa∗bb∗b = aa∗b = a,
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so (3) holds. Since a∗a ∈ E, if (3) holds, then (4) holds. If (4) holds, then

aa∗b = be(be)∗b = beb∗b = bb∗be = be = a,

and aa∗ ∈ E, so (1) holds. Thus,

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1).

To see (1) ⇐⇒ (5). it suffices to show (5) implies (1) because (x∗)∗ = x,
for all x ∈ S. If (5) holds, then x∗ = ey∗ for some e ∈ E. Then,

x = (x∗)∗ = (ey∗)∗ = (y∗)∗e∗ = ye,

so x = ye, and it follows that x ≤ y because (4) is equivalent to (1).

Lemma 2.1.13. For all a, b, c, d ∈ S, if a ≤ b and c ≤ d, then ac ≤ bd.

Proof. Suppose a ≤ b and c ≤ d, so a = be and c = fd for some e, f ∈ E.
Observe

ac(ac)∗bd = befd(befd)∗bd = befdd∗efb∗bd = bb∗befefdd∗d = befd = ac,

so ac ≤ bd by Lemma 2.1.12(2).

We will say the natural partial order in S is compatible with multiplication
and inversion in reference to Lemma 2.1.12(5) and Lemma 2.1.13. Note also
that, for all x, y ∈ S, we write x ≥ y if, and only if, y ≤ x.

In the following lemma, we collate other useful facts about S.

Lemma 2.1.14. For all a, b ∈ S and for all e ∈ E,

(1) 0 ≤ a,

(2) (ab)∗ab ≤ b∗b,

(3) a∗ea ∈ E,

(4) ea, ae ≤ a, and
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(5) a ≤ e implies a ∈ E.

Proof. Fix a, b ∈ S and let e ∈ E.
(1) Notice 0 = 0a and 0 ∈ E, so 0 ≤ a by definition.
(2) Observe

(ab)∗ab((ab)∗ab)∗b∗b = (ab)∗ab(ab)∗abb∗b = (ab)∗ab(ab)∗ab = (ab)∗ab.

(3) Notice a∗eaa∗ea = a∗aa∗eea = a∗ea.
(4) Compute ea(ea)∗a = eaa∗e∗a = ee∗aa∗a = ea, so ea ≤ a, and a

similar computation shows ae ≤ a.
(5) Suppose a ≤ e. Then, a = fe for some f ∈ E, and E is closed under

multiplication (Lemma 2.1.4), so a ∈ E.

For all s, t ∈ S, if {s, t} has a greatest lower bound u with respect to the
natural partial order, we say u is the meet of s and t, and we write u = s∧ t.

Lemma 2.1.15. For all e, f ∈ E, e ∧ f exists and equals ef .

Proof. Notice ef = (ef)e = (ef)f , so ef is a lower bound of {e, f}. Suppose
p is a lower bound of {e, f}. We know p ∈ E by Lemma 2.1.14(5), so

p = pp ≤ ef

because the natural partial order is compatible with multiplication (Lemma
2.1.13). Thus, ef is the greatest lower bound of {e, f}.

2.2 Filters

We define filters L, proper filters F, ultrafilters U, idempotent proper filters
F(0) and proper filters of idempotents F(E). A composition of filters yields
the inverse semigroup L of filters, and we show S embeds in L as in the
guiding diagram below.
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S L ≥ F ≥ T ≥ U

F(0)

F(E) G0 ≥ Gtight ≥ G∞

G(0)
0

π π|T π|U

π|
F(0)

We use similar notation and terminology to [Law10b] for our description
of filters. Given A ⊆ S, we write

A↑ := {b ∈ S : ∃a ∈ A(a ≤ b)} and A↓ := {b ∈ S : ∃a ∈ A(b ≤ a)}.

Also,
a↑ := {a}↑ and a↓ := {a}↓,

for all a ∈ S. To exercise the new notation, observe 0↑ = S, 0↓ = {0}
and E↓ = E from Lemma 2.1.14. The reflexivity and transitivity of the
natural partial order implies (A↑)↑ = A↑. We say A is down-directed if, for
all a, b ∈ A, there is c ∈ A such that c ≤ a, b. We say A is an up-set if
A↑ = A. Given an up-set A, an element a ∈ A and b ∈ S such that a ≤ b,
we will often form our arguments as follows. Notice

A 3 a ≤ b,

which implies b ∈ A because A is an up-set. A filter is a nonempty down-
directed up-set in S. We denote the set of filters in S by L.

2.2.1 Trivial and proper filters

Since S has a zero, the subset S of the inverse semigroup S is a filter in
S, which we call the trivial filter. Some authors assume filters are proper
subsets, like in [LL13, Remark 1.1]. In Section 2.2.4, we show the inverse
semigroup S embeds in an inverse semigroup of filters in which the trivial
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filter is the zero. Thus, permitting the trivial filter reflects the zero in the
inverse semigroup S from Assumption 2.1.10.

That said, we will work primarily with filters that are not trivial, which
we call proper filters. Since 0 is the minimum in S, a filter is proper if, and
only if, it does not contain 0. We denote the set of proper filters in S by F.

2.2.2 Ultrafilters

A filter in S that is maximal among proper filters is an ultrafilter. That is, a
proper filter F in S is an ultrafilter if, and only if,

G ⊇ F implies G = S or G = F, (2.1)

for all G ∈ L. We denote the set of ultrafilters in S by U. Filters are
abundant because x↑ is a filter, for all x ∈ S. For the existence of ultrafilters,
we assume Zorn’s lemma.

Given a partial order ≤ on a set P , a chain is a subset of P that is
antisymmetric, transitive and satisfies that either x ≤ y or y ≤ x, for all
x, y ∈ P . That is, a chain is a totally ordered subset of P . We state Zorn’s
lemma as in [Hal60, §16, pp. 62].

Theorem 2.2.1 (Zorn’s lemma). Let P be a partially ordered set. If every
chain in P has an upper bound, then P contains a maximal element.

Corollary 2.2.2. Every proper filter is contained in an ultrafilter.

Proof. We give the details of a standard argument using Zorn’s lemma ap-
pearing on [UT18]. The power set of S is partially ordered by the inclusion
relation. We show the union of a chain of proper filters is a proper filter. Let
(Fk)k∈K be a chain in the power set of S, and put G := ⋃

k∈K Fk. Every Fk

is nonempty, so G is nonempty. Fix a, b ∈ G. Find j, k ∈ K so that a ∈ Fj
and b ∈ Gk. Either Fj ⊆ Fk or Fk ⊆ Fj because (Fk)k∈K is a chain. We
suppose without loss of generality that Fj ⊆ Fk. Then, a, b ∈ Fk, and Fk

is down-directed, so there is c ∈ Fk ⊆ G such that c ≤ a, b. Hence, G is
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down-directed. Fix c ∈ S and suppose a ≤ c. Then, c ∈ Fj ⊆ G because Fj
is an up-set. Thus, G is an up-set. Lastly, notice every Fk is proper, so G is
a proper filter.

We show every proper filter is contained in an ultrafilter by Zorn’s lemma.
Fix a proper filter F . Let FF := {G ∈ F : F ⊆ G}. The set FF is partially
ordered by inclusion. We show every chain in FF has an upper bound. If
there are no chains in FF , then the claim holds vacuously. Otherwise, let
(Gk)k∈K be a chain in FF . By the above argument, ⋃k∈K Gk is a proper
filter. Also, F ⊆ Gj ⊆

⋃
k∈K Gk, for all j ∈ K, so ⋃

k∈K Gk ∈ FF and⋃
k∈K Gk is an upper bound on the chain (Gk)k∈K . Thus, every chain in

(Gk)k∈K has an upper bound, so Zorn’s lemma (Theorem 2.2.1) implies FF

contains a maximal element U . Fix G ∈ F. Suppose U ⊆ G. Then, F ⊆ G

because F ⊆ U , so G ∈ FF , and U is maximal in FF , so U = G. Hence, U
is an ultrafilter containing F .

2.2.3 Idempotent filters and filters of idempotents

Recall E is the set of idempotents in S. Given F ∈ L, we say F is idempotent
if F ∩ E 6= ∅. The terminology is reinforced by Proposition 2.2.8 where we
show L is an inverse semigroup whose idempotents are precisely the idempo-
tent filters. We denote the set of idempotent proper filters by F(0) and the set
of idempotent ultrafilters by U(0). The notation will be explained in Chapter
3, where we see that the groupoid F of proper filters and the groupoid U of
ultrafilters have unit spaces F(0) and U(0), respectively.

Recall from Section 2.1.2 that E is an inverse semigroup with zero, so
there are filters in E. We denote the set of proper filters in E by F(E) and
the set of ultrafilters in E by U(E).
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2.2.4 Inverse semigroup of filters

We show S embeds in an inverse semigroup L of filters. We characterise
reverse inclusion of filters as the natural partial order on L in order to
define the groupoid U of ultrafilters.

Lemma 2.2.3. For all A,B ⊆ S, and for all x ∈ S, if A and B are down-
directed, then AB, xB and Ax are down-directed.

Proof. Let A,B ⊆ S. Fix ab, cd ∈ AB so that a, c ∈ A and b, d ∈ B.
Because A and B are down-directed, there are x ∈ A and y ∈ B such that
x ≤ a, c and y ≤ b, d. Since the natural partial order is compatible with
multiplication (Lemma 2.1.13), xy ≤ ab, cd, and xy ∈ AB. Therefore, AB is
down-directed. The reflexivity of the natural partial order implies singletons
are down-directed, so the remainder of the lemma is a special case.

Lemma 2.2.4. If A ⊆ S is nonempty and down-directed, then A↑ is a filter.

Proof. This follows from (A↑)↑ = A↑, for all A ⊆ S.

Any two filters F and G are down-directed, so Lemma 2.2.3 implies FG
is down-directed. Thus, (FG)↑ is a filter by Lemma 2.2.4, so we have a map

(F,G) 7→ F ·G := (FG)↑

from L× L to L as in [Law10b], called filter composition. The associativity
of the multiplication in S ensures filter composition in L is associative, so L

is a semigroup. It is known that L is an inverse semigroup [LMS13, §3.1].
We provide a proof for completeness.

For any A ⊆ S, we write A∗ := {a∗ : a ∈ A}.

Lemma 2.2.5 (Lemma 2.6 of [Law10b]). For all F ∈ L, F = FF ∗F .

Proof. Let F ∈ L. For all f ∈ F , f = ff ∗f , so we have F ⊆ FF ∗F . Fix
fg∗h ∈ FF ∗F , where f, g, h ∈ F . Since filters are down-directed, there is
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a ∈ F such that a ≤ f, g, h. Then,

F 3 a = aa∗a ≤ fg∗h,

which implies fg∗h ∈ F because filters are up-sets. Hence, F ⊇ FF ∗F .

Lemma 2.2.6. The semigroup L is an inverse semigroup.

Proof. Fix F ∈ L. Lemma 2.2.5 implies F = FF ∗F ⊆ F · F ∗ · F . Fix
x ∈ F ·F ∗ ·F . There exists f, g, h ∈ F such that fg∗h ≤ x, using transitivity.
Filters are down-directed, so there is a ∈ F such that a ≤ f, g, h. Then,

F 3 a = aa∗a ≤ fg∗h ≤ x,

which implies x ∈ F . Therefore, F ⊆ F · F ∗ · F ⊆ F , and so F = F · F ∗ · F .
Notice (F ∗)∗ = F , so F ∗ = F ∗ · F · F ∗ follows from a similar argument.
Therefore, F ∗ is an inverse of F .

We show F ∗ is the unique inverse of F . Suppose also G is an inverse of
F . We show G = F ∗. Fix g ∈ G. Filters are nonempty, so take f ∈ F .
Observe

g ≥ f ∗fgff ∗ ∈ F ∗ · F ·G · F · F ∗ = F ∗ · F · F ∗ = F ∗

because G is an inverse of F , and so g ∈ F ∗. Thus, G ⊆ F ∗.
Because G · F ·G = G, we know G∗ · F ∗ ·G∗ = G∗. Then, it follows from

a similar argument to above that G ⊇ F ∗.

Thus, the inverse semigroup S yields the inverse semigroup L of filters,
which is denoted by L(S) in [Law10b, Proposition 2.12]. Indeed the inverse
semigroups are closely related as follows. A map φ from S to an inverse
semigroup T is called a homomorphism if φ(xy) = φ(x)φ(y), for all x, y ∈ S.
An injective homomorphism φ : S → T is called an embedding. Proposition
2.2.7 below is known [LMS13, §3.1, pp. 245], but we provide another proof
for completeness.

Proposition 2.2.7. The map x 7→ x↑ from S to L is an embedding.
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Proof. Fix a, b ∈ S. Compatibility of the natural partial order with multi-
plication implies a↑ · b↑ ⊆ (ab)↑, and a↑ · b↑ ⊇ (ab)↑ holds because ab ∈ a↑ · b↑.
Thus, a↑ · b↑ = (ab)↑. Suppose a↑ = b↑. Reflexivity of ≤ implies

a ∈ a↑ = b↑ 3 b,

so a ∈ b↑ and b ∈ a↑. Then, antisymmetry of ≤ implies a = b.

We aim to answer three questions about the inverse semigroup L. What
are its idempotents? What is the natural partial order? Does it have a zero?

Recall that a filter in S is idempotent if it intersects E.

Lemma 2.2.8 (Lemma 2.8(2) of [Law12]). The idempotents in the inverse
semigroup L are precisely the idempotent filters.

Proof. Suppose F is an idempotent in the inverse semigroup L. Filters are
nonempty, so take x ∈ F . Idempotents are self-inverse, so

x∗x ∈ F ∗F ⊆ F ∗ · F = F · F = F,

and x∗x ∈ E. Hence, F is an idempotent filter.
Now suppose F is an idempotent filter. Find e ∈ F ∩ E. Fix x ∈ F .

Since ex ∈ FF ⊆ F · F , we have

F · F 3 ex ≤ x,

which implies x ∈ F · F because filters are up-sets. Now fix y ∈ F · F , and
find a, b ∈ F so that ab ≤ y. Filters are down-directed, so there is c ∈ F such
that c ≤ a, b, in which case cc ≤ y. Using down-directedness for a second
time, we find d ∈ F so that d ≤ c, e. Then, dd ≤ y, but d is an idempotent
because d ∈ e↓ ⊆ E↓ = E, so d = dd ≤ y. Hence,

F 3 d ≤ y,

which implies y ∈ F . Therefore, F · F = F , and so F is an idempotent in
the inverse semigroup L.



2.2. FILTERS 19

Lemma 2.2.9 (§3.1 of [LMS13]). The natural partial order ≤L on the inverse
semigroup L of filters is reverse inlcusion. That is,

F ⊇ G ⇐⇒ F ≤L G,

for all F,G ∈ L.

Proof. Suppose F ⊇ G. We claim F · F ∗ ·G = F . Observe

F · F ∗ ·G ⊆ F · F ∗ · F = F.

It remains to show F ⊆ F ·F ∗ ·G. Fix f ∈ F . Filters are nonempty, so take
g ∈ G. Then, g ∈ F because G ⊆ F . Filters are down-directed, so there is
h ∈ F such that h ≤ f, g. Then,

F · F ∗ ·G 3 hh∗g = h ≤ f,

which implies f ∈ F · F ∗ ·G. Hence, F = F · F ∗ ·G, so F ≤L G.
Now suppose F ≤L G. That is, F = F · F ∗ · G. Fix g ∈ G. Filters are

nonempty, so take f ∈ F . Because ff ∗ ∈ E, we have ff ∗g ≤ g. Then,

F = F · F ∗ ·G 3 ff ∗g ≤ g,

which implies g ∈ F . Therefore, F ⊇ G.

The characterisation of the natural partial order on L in Lemma 2.2.9
will help us to construct the groupoid U of ultrafilters in Section 3.1.2.

Lemma 2.2.10. The trivial filter S is the zero in the inverse semigroup L.

Proof. For any F ∈ L, F · S = (FS)↑ = S = (SF )↑ = S · F.

Recall from Section 2.1.1 that inverse semigroups have source maps. In
particular, for each F ∈ L, we have d(F ) = F ∗ · F . Any filter can be
reconstructed from any member of and the source of the filter as per the
following lemma, which is Proposition 1.4 of [Law93].
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Lemma 2.2.11. For all F ∈ L and for all x ∈ F ,

F = (xd(F ))↑.

Proof. Fix F ∈ L and x ∈ F . Using the definition of filter composition,

(xd(F ))↑ ⊆ (Fd(F ))↑ = F · d(F ) = F.

Fix f ∈ F . Filters are down-directed, so there is y ∈ F such that both y ≤ x

and y ≤ f . The former means y = xy∗y. Together with the latter, we get
xy∗y ≤ f . That is, f ∈ (xy∗y)↑ ⊆ (xd(F ))↑. Hence, F ⊆ (xd(F ))↑.

This way of reconstructing filters will be critical in Theorem 3.4.1, where
we show there is a topological isomorphism π : F → G0.



Chapter 3

Groupoids

3.1 Groupoids of filters and germs

We define groupoids of filters and germs and observe important interactions
that prepare us for the topological isomorphism π : F → G0. In terms of
our guiding diagram, we establish the groupoid F of proper filters and the
groupoid G0 of proper germs, as well as their unit spaces F(0) and G(0)

0 .

S L ≥ F ≥ T ≥ U

F(0)

F(E) G0 ≥ Gtight ≥ G∞

G(0)
0

↑

π π|T π|U

π|
F(0)

3.1.1 Groupoids associated to inverse semigroups

We give the rudiments of groupoids as in [Sim18], and we consider our
first notion of a groupoid associated to an inverse semigroup.

21
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A groupoid1 is a set G with a subset G(2) ⊆ G×G, a composition (α, β) 7→
αβ from G(2) to G and an inversion γ 7→ γ−1 on G so that, for all α, β, γ ∈ G,

(1) (γ−1)−1 = γ and (γ−1, γ) ∈ G(2),

(2) if (α, β), (β, γ) ∈ G(2), then (α, βγ), (αβ, γ) ∈ G(2) and α(βγ) = (αβ)γ,
and

(3) if (γ, η) ∈ G(2), then γ−1γη = η and γηη−1 = γ.

Given a groupoid G, the elements of the subset G(2) are called the com-
posable pairs. The units are the elements of the unit space

G(0) := {γ−1γ : γ ∈ G}.

The source d and range r in G are maps from G to G defined by d(γ) := γ−1γ

and r(γ) := γγ−1. A subset H of a groupoid G is a subgroupoid if, for all
α, β ∈ H, α−1 ∈ H and (α, β) ∈ G(2) implies αβ ∈ H. A subgroupoid is a
groupoid.

Inverse semigroups and groupoids both generalise groups. The notable
difference is that groupoid composition is partial while inverse semigroup
multiplication is total, so it is natural to ask if we can restrict the inverse
semigroup product to get a groupoid. Notice both structures have a totally
defined inversion. This common ground indicates how to restrict the prod-
uct because the partiality of groupoid composition depends on the common
ground in the following way.

Lemma 3.1.1 (Lemma 2.1.4 of [Sim18]). Let G be a groupoid. The compos-
able pairs are given by

G(2) = {(α, β) ∈ G × G : d(α) = r(β)}.
1The generalisation of groups to groupoids is due to Brandt, which is documented in his

1927 paper ‘On a generalisation of the group’ [Bra27]. The definition we give can be found
in [Hah78, Definition 1.1], attributed to a suggestion by George Mackey in conversation.
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Proof. Suppose (α, β) ∈ G(2). Notice

d(α) = α−1α = ((α−1α)β)β−1 = α−1(α(ββ−1)) = ββ−1 = r(β).

For the reverse inclusion, suppose (α, β) ∈ G × G and d(α) = r(β). We
know (α,d(α)) ∈ G(2), so (α, r(β)) ∈ G(2). Also, (r(β), β) ∈ G(2). Since
(α, r(β)), (r(β), β) ∈ G(2), it follows that (α, β) ∈ G(2).

Thus, the groupoid composition depends on the common ground between
groupoids and inverse semigroups in a precise way, motivating the restricted
product below.

Like d : S → E, define the range map from S to E by x 7→ r(x) := xx∗.
The restricted product in the inverse semigroup S is the restriction of the
product in S to

S(2) := {(s, t) ∈ S × S : d(s) = r(t)}.

The set S endowed with the restricted product and the inversion in S is a
groupoid [Law98, Proposition 3.1.4], called the associated groupoid of S. The
unit space of the associated groupoid of S is E [Pat99, Proposition 1.0.1].

3.1.2 Groupoids of filters

We utilise associated groupoids of inverse semigroups to define the
groupoid L of filters, and we extract the groupoid F of proper filters.
To construct the groupoid U of ultrafilters, we leverage our charac-
terisation of the natural partial order ≤L on L to view ultrafilters as
‘primitive’ elements of L, as in [Law10b, §2].

The associated groupoid of the inverse semigroup L of filters is called the
groupoid of filters. Recall a filter in S is idempotent if it contains an idempo-
tent. In Lemma 2.2.8, we saw that the idempotents in the inverse semigroup
L of filters are precisely the idempotent filters, so the unit space L(0) of the
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groupoid L of filters is the set of idempotent filters. The composable pairs
are

L(2) = {(F,G) ∈ L× L : d(F ) = r(G)}.

Recall F denotes the set of proper filters in S. In the following lemma,
we show F is a subgroupoid of L, which we call the groupoid of proper filters.

Proposition 3.1.2. The subset F of the groupoid L of filters is a sub-
groupoid.

Proof. Fix F,G ∈ F. Because the natural partial order is compatible with
inversion (Lemma 2.1.14(5)), we know F ∗ ∈ F. Suppose (F,G) ∈ L(2),
so d(F ) = r(G). Assume for a contradiction that 0 ∈ F · G. Filters are
nonempty, so take g ∈ G. Then,

0 = 0g∗ ∈ F ·G ·G∗ = F · r(G) = F · d(F ) = F,

but F is proper, so we have a contradiction. Thus, F ·G is in F.

Recall that an ultrafilter is a maximal proper filter and that U denotes
the set of ultrafilters in S. We use ‘primitives’ in inverse semigroups to
characterise the groupoid U of ultrafilters, as per [Law10b, §2]. A nonzero
element a in S is said to be primitive if

b ≤ a implies b = 0 or b = a (3.1)

as per [Law98, 9.2, pp. 278], and

Prim(S) := {a ∈ S : a is primitive} ∪ {0}.

Recall from Lemma 2.2.10 that L is an inverse semigroup with zero S, so
Prim(L) is defined.

Lemma 3.1.3. The set Prim(L) is an inverse semigroup, and

Prim(L) = U ∪ {S}.
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Proof. Consider the inverse semigroup L. The zero in L is the filter S, so

Prim(L) = {F ∈ L : F is primitive} ∪ {S}.

Thus, to show Prim(L) = U ∪ {S}, it suffices to show a filter is primitive
if, and only if, the filter is an ultrafilter. Notice the similarilty between
Equations (2.1), defining ultrafilters, and (3.1), defining primitive elements,
so the equivalence is immediate from Lemma 2.2.9, which tells us that the
natural partial order ≤L on L is reverse inclusion. Then, it follows from
[Law98, Proposition 9.2.1, pp. 278] that Prim(L) is an inverse semigroup.

The inverse semigroup Prim(L) has an associated groupoid Prim(L).

Lemma 3.1.4. The subset U is a subgroupoid of the groupoid Prim(L).

Proof. Fix U, V ∈ U. Suppose U∗ ⊆ F for some F ∈ F. Then, U = (U∗)∗ ⊆
F ∗, but U is an ultrafilter, so U = F ∗. Thus, U∗ = (F ∗)∗ = F , which means
U∗ is an ultrafilter.

Now suppose (U, V ) ∈ Prim(L)(2). Either U · V is in U or U · V = S by
Lemma 3.1.3, so we need only show U · V 6= S. (That is, [Law98, Propsition
9.2.1, pp. 278] did the hard yards by eliminating the possibility that U ·V is
proper but not an ultrafilter.) Suppose for a contradiction that U · V = S,
so 0 ∈ U · V . Take a ∈ U . Then,

0 = a∗0 ∈ U∗ · U · V = V

because U and V are composable. However, 0 ∈ V implies V = S, contra-
dicting the fact that V is proper. Therefore, U · V is in U.

We call the subgroupoid U the groupoid of ultrafilters. Notice U is con-
tained in F by definition of ultrafilters. In fact, U is an ideal in F in the
following sense.

Proposition 3.1.5. For all (F,G) ∈ F(2), if either F or G is in U, then
F ·G ∈ U.
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Proof. We follow the argument used in [Bic19, Proposition 2.39]. Take
(F,G) ∈ F(2). Suppose G ∈ U. We show F · G ∈ U. Suppose for a contra-
diction there is H ∈ F such that F ·G ( H. Notice that

r(F ) = r(F ·G) ⊆ r(H)

because F and G are composable and F ·G ⊆ H, so

r(F ) ·H ⊆ r(H) ·H = H.

We show F ∗ · H is a proper filter properly containing G. (It is tempting
to think F ∗ · H is immediately proper because both F ∗ and H are in the
groupoid F of proper filters, but we may not have that (F ∗, H) ∈ F(2).)
Suppose for a contradiction that F ∗ ·H is not proper. Filters are nonempty,
so take y ∈ F . Then, r(F ) ·H ⊆ H from above implies

0 = y0 ∈ F · F ∗ ·H = r(F ) ·H ⊆ H,

contradicting the fact that H is proper. Thus, F ∗ ·H is proper. Observe

G ⊆ (y∗yG)↑ ⊆ F ∗ · F ·G ⊆ F ∗ ·H,

so the proper filter F ∗ ·H contains G. Since F ·G ( H, there is x ∈ H \F ·G.
Notice y∗x ∈ F ∗ ·H. Suppose for a contradiction that y∗x ∈ G. One of our
rudiments from Lemma 2.1.14 gives us

F ·G 3 yy∗x ≤ x,

which implies x ∈ F ·G, contradicting our choice of x. Hence, the proper filter
F ∗ ·H properly contains G, but then G could not be an ultrafilter. Therefore,
no proper filter properly contains F ·G, making F ·G an ultrafilter.

The other case follows from a similar argument.

Notice that U being an ideal in F implies U is a subgroupoid, so there
is an alternate construction of the groupoid U of ultrafilters. We keep the
construction of the groupoid U via Prim(L) as a reminder of the rich theory
of inverse semigroups and the value of viewing L as an inverse semigroup.
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3.1.3 Groupoids of germs

Groupoids of germs are well documented [Exe08]. We give an abridged
construction of a particular groupoid of germs that is the range of the
topological isomorphism π : F → G0.

The initial data for a groupoid of germs comes from an action of an
inverse semigroup on a topological space. In Section 3.2.1, we will treat the
set F(E) of proper filters in E as a topological space. We are exclusively
interested in the standard action of S on F(E) from [EP16, §3]. We discuss
the standard action without defining actions of inverse semigroups in general.
For an extensive treatment of groupoids of germs, we refer to [Exe08].

For all e ∈ E, we write Fe := {ξ ∈ F(E) : e ∈ ξ}. Define

Ω := {(s, ξ) ∈ S × F(E) : ξ ∈ Fs∗s},

and define a relation∼ on Ω by (s, ξ) ∼ (t, η) if, and only if, there is e ∈ ξ = η

such that se = te. The relation ∼ is an equivalence relation on Ω [EP16, §3].
We denote the equivalence class of (s, ξ) by [s, ξ], and we denote the set of
equivalence classes by G0. For each s ∈ S and ξ ∈ Fs∗s, define

βs(ξ) := {f ∈ E : ∃e ∈ ξ(ses∗ ≤ f)},

as per [EP16, Equation (3.4)]. Define

G(2)
0 := {([s, ξ], [t, η]) ∈ G0 × G0 : ξ = βt(η)}.

The set G0 with the subset G(2)
0 ⊆ G0 × G0 and the operations

([s, βt(η)], [t, η]) 7→ [s, βt(η)][t, η] := [st, η] and [s, ξ] 7→ [s, ξ]−1 := [s∗, βs(ξ)]

forms a groupoid [EP16, §3, pp. 284], called the groupoid G0 of proper germs.
In the remainder of the section, we investigate how filters in S are related

to the structure underlying G0. We start by generalising parts of [Law12,
Lemma 2.18] (which has additional assumptions on S).
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Proposition 3.1.6. The map ε : F(0) → F(E), F 7→ ε(F ) := E ∩ F , is a
bijection with inverse ε−1 : F(E)→ F(0), ε−1(ξ) = ξ↑.

Proof. We check ε and ε−1 are well defined. Fix F ∈ F(0). As F is an
idempotent filter, ε(F ) is nonempty. The subset ε(F ) is an up-set in E

because F is an up-set in S, and ε(F ) is down-directed because E↓ = E and
filters are down-directed. Hence, ε(F ) is a filter in E. To see ε(F ) is proper,
suppose for a contradiction ε(F ) = E, so 0 ∈ ε(F ) = E ∩F , but then 0 ∈ F ,
contradicting F being proper. Therefore, ε(F ) is a proper filter in E. That
is, ε(F ) ∈ F(E), and so ε : F(0) → F(E) is well defined.

Now fix ξ ∈ F(E). As ξ is a nonempty subset of ε−1(ξ), we know ε−1(ξ)
is nonempty. The subset ε−1(ξ) is an up-set in S because of the reflexivity of
the natural partial order. The transitivity of the natural partial order with
the down-directedness of ξ implies ε−1(ξ) is down-directed. Hence, ε−1(ξ)
is a filter in S. To see ε−1(ξ) is proper, suppose for a contradiction that
ε−1(ξ) = S, so 0 ∈ ε−1(ξ). Find x ∈ ξ so that x ≤ 0. Then, x = xx∗0 = 0,
in which case 0 ∈ ξ, contradicting the fact that ξ is proper. Therefore,
ε−1(ξ) is proper. Moreover, there is an idempotent in ε−1(ξ), so ε−1(ξ) is
an idempotent filter. Hence, ε−1(ξ) ∈ F(0). Thus, ε−1 : F(E) → F(0) is well
defined.

To verify bijectivity it suffices to show F = ε(F )↑ and ξ = ε(ξ↑), for all
F ∈ F(0) and ξ ∈ F(E). Fix F ∈ F(0). Let x ∈ F . Since F ∈ F(0), there is
e ∈ ε(F ). Because F is down-directed, there is f ∈ F such that f ≤ e, x.
As E↓ = E, we know f ∈ E, so f ∈ ε(F ), in which case x ∈ ε(F )↑. Now
let x ∈ ε(F )↑, and find e ∈ ε(F ) ⊆ F so that e ≤ x. It follows that x ∈ F .
Therefore, F = ε(F )↑. Now fix ξ ∈ F(E). The inclusion ξ ⊆ ε(ξ↑) follows
from the refexivity of the natural partial order and the fact that ξ ⊆ E. Also,
ξ ⊇ ε(ξ↑) follows from ξ being an up-set in E. Thus, ξ = ε(ξ↑). Therefore,
ε : F(0) → F(E) is a bijection.

Define F 7→ ξF := ε(d(F )) from F to F(E); this is well defined by Propo-
sition 3.1.6 since d(F) = F(0).
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Lemma 3.1.7. For all F ∈ F and for all s, t ∈ F , [s, ξF ] = [t, ξF ].

Proof. Filters are down-directed, so there is u ∈ F such that u ≤ s, t. Using
a characterisation of ≤, we have tu∗u = u = su∗u, so tu∗u = su∗u. Also,
u∗u ∈ d(F ) ∩ E = ε(d(F )) = ξF . Therefore, [s, ξF ] = [t, ξF ].

Lemma 3.1.8. For all F ∈ F and for all s ∈ F , βs(ξF ) = ξF ∗ .

Proof. Fix F ∈ F and let s ∈ F . We show ξF ∗ ⊆ βs(ξF ). First we claim
r(F ) ⊆ ε−1(βs(ξF )). To prove the claim, fix x ∈ r(F ). Filters are down-
directed, so there is a ∈ F such that aa∗ ≤ x, and there is b ∈ F such that
b ≤ a, s. Compatibility of the natural partial order with multiplication and
inversion implies

d(F ) 3 b∗b = b∗bb∗b ≤ s∗aa∗s,

which implies s∗aa∗s ∈ d(F ). Lemma 2.1.14(3) implies s∗aa∗s ∈ E, so
s∗aa∗s ∈ ε(d(F )) = ξF . Notice

s(s∗aa∗s)s∗ = ss∗(aa∗)(ss∗) = ss∗ss∗aa∗ = ss∗aa∗ ≤ aa∗,

from which it follows that aa∗ ∈ βs(ξF ). Since aa∗ ≤ x, we have x ∈
βs(ξF )↑ = ε−1(βs(ξF )). Thus, r(F ) ⊆ ε−1(βs(ξF )), which implies ε(r(F )) ⊆
βs(ξF ) since ε is a bijection (Proposition 3.1.6). Then,

ξF ∗ = ε(d(F ∗)) = ε(r(F )) ⊆ βs(ξF ).

It remains to show ξF ∗ ⊇ βs(ξF ). Fix f ∈ βs(ξF ) ⊆ E, so ses∗ ≤ f for
some e ∈ ξF . Notice s∗ ∈ F ∗ and e ∈ ξF = ε(d(F )) ⊆ d(F ), so

f ≥ ses∗ ∈ F · d(F ) · F ∗ = F · F ∗ = r(F ).

Then, f ∈ r(F )↑ = r(F ) = d(F ∗), and f ∈ E, so

f ∈ E ∩ d(F ∗) = ε(d(F ∗)) = ξF ∗ .

Therefore, ξF ∗ ⊇ βs(ξF ).
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3.2 Étale groupoids of filters and germs

We give topologies on F(E), and we describe topologies on the groupoids
F and G0 such that both are étale groupoids. The tools we develop while
showing F is étale prepare us to describe π : F → G0.

S L ≥ F ≥ T ≥ U

F(0)

F(E) G0 ≥ Gtight ≥ G∞

G(0)
0

↑

d
π π|T π|U

ε

π|
F(0)

d

3.2.1 Topologies on filters of idempotents

We refer the reader to [Mun00] for rudiments of point-set topology.
Let 2 := {0, 1}. The topologies on F(E) that we consider arise from

topologies on 2. There are three topologies up to homeomorphism on 2: the
trivial topology {∅,2}, the Sierpiński topology2 {∅, {1},2} and the discrete
topology {∅, {0}, {1},2}. The topologies are given in order of separability:
the trivial topology is not T0, the Sierpiński topology is T0 but not T1, and the
discrete topology is T2. The Sierpiński and discrete topologies are separable
enough to continue investigating.

Let 2E be the power set of E. Notice 2E is in bijective correspondence
with ∏

e∈E 2. Via this identification, we can endow 2E with the product
topologies on ∏e∈E 2.

Patch topology

Consider the product topology on 2E with respect to the discrete topology
on 2, which is called the patch topology and denoted by τpatch. Subspaces of

2The Sierpiński topology is named after Wac law Sierpiński [Sie34].
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2E with respect to τpatch will have the same name and notation. For example,
the topology τpatch on F(E) is the subspace topology with respect to τpatch

on 2E.
If X is a set, we write A ⊆fin X when A is a finite subset of X. The

collection of subsets of 2E of the form

{ξ ∈ 2E : X ⊆ ξ ⊆ E \ Y },

where X, Y ⊆fin E, is a basis for τpatch on 2E because τpatch is the product
topology with respect to the discrete topology on 2. Then, the collection of
subsets of F(E) of the form

FX:Y := {ξ ∈ 2E : X ⊆ ξ ⊆ E \ Y } ∩ F(E),

where X, Y ⊆fin E, is a basis for τpatch on F(E). For all X ⊆fin E and for all
e ∈ E, define Fe:X := F{e}:X .

Lemma 3.2.1. The collection (Fe:X)e∈E,X⊆fine↓ is a basis for τpatch on F(E).

Proof. The following argument elaborates on the strategy in [Law12, pp. 16].
Fix X, Y ⊆fin E for an arbitrary basic open set FX:Y in F(E). Let ξ ∈ FX:Y .
Recall that, for all e, f ∈ E, ef is the meet of e and f . Since X is finite, the
product f := ∏

x∈X x is the greatest lower bound of X. Then, f ∈ ξ because
X ⊆fin ξ and ξ is a down-directed up-set. Hence, ξ ∈ Ff :Y . A short proof
by contradiction shows that ξ ∈ Ff :fY because ξ is an up-set and fY ⊆ Y ↓.
Also, fY ⊆fin f

↓, so we have Ff :fY ∈ (Fe:X)e∈E,X⊆fine↓ . Since filters are down-
directed up-sets and fy is the meet of f and y, for all y ∈ Y , we find that
Ff :fY ⊆ FX:Y . Hence,

ξ ∈ Ff :fY ⊆ FX:Y .

Therefore, (Fe:X)e∈E,X⊆fine↓ is a basis for τpatch on F(E).

The set 2 with discrete topology is Hausdorff, so 2E with τpatch is Haus-
dorff because a product of Hausdorff spaces is Hausdorff [Mun00, Theorem
19.4]. Further, F(E) and U(E) with τpatch are Hausdorff because subspaces
of Hausdorff spaces are Hausdorff [Mun00, Theorem 17.11].
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Sierpiński topology

While we are mainly interested in the patch topology τpatch, we also define a
useful coarser topology τS. For example, in Section 3.2.3 below we use τS to
show the groupoid F of proper filters is étale under both τS and τpatch.

Recall the Sierpiński topology on 2 is {∅, {1},2}. Consider the product
topology on 2E with respect to the Sierpiński topology on 2, which we call
the Sierpiński topology and denote by τS. Subspaces of 2E with respect to
τS will have the same name and notation. We find a basis for τS on F(E).
For all X ⊆fin E and for all e ∈ E,

FX := FX:∅ and Fe := F{e}.

Observe that, for all X ⊆fin E,

FX = {ξ ∈ 2E : X ⊆ ξ} ∩ F(E),

and the collection of subsets of the form {ξ ∈ 2E : X ⊆ ξ} is a basis for τS
on 2E since τS is the product topology on 2E with respect to the Sierpiński
topology on 2. It follows that (FX)X⊆finE is a basis for τS on F(E). Because
filters are down-directed up-sets, we can show the subcollection (Fe)e∈E of
(FX)X⊆finE is a basis for τS on F(E).

The Sierpiński topology on 2 is only T0, so Hausdorffness is rare among
subspaces of 2E with τS. To see how rare Hausdorffness is in F(E), we
characterise convergence in F(E) and give a sufficient condition for non-
Hausdorffness. A sequence (An)n∈N of subsets of E pointwise eventually
contains a subset A of E if, for all a ∈ A, there is Na ∈ N such that n ≥ Na

implies a ∈ An.

Lemma 3.2.2. A sequence (ξn)n∈N in F(E) converges to ξ with respect to
τS if, and only if, ξ is pointwise eventually contained in (ξn)n∈N.

Proof. Suppose (ξn)n∈N converges to ξ with respect to τS. Fix e ∈ ξ. Notice
Fe is a neighbourhood of ξ, so there is Ne ∈ N such that n ≥ Ne implies
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ξn ∈ Fe by definition of convergence. That is, n ≥ Ne implies e ∈ ξn.
Therefore, ξ is pointwise eventually contained in (ξn)n∈N.

Suppose ξ is pointwise eventually contained in (ξn)n∈N. Let O be a neigh-
bourhood of ξ. Since (Fe)e∈E is a basis for τS on F(E), we have O = ⋃

e∈A Fe
for some A ⊆ E, so ξ ∈ Fe for some e ∈ A. That is, e ∈ ξ, so there is Ne ∈ N
such that n ≥ Ne implies e ∈ ξn. That is, n ≥ Ne implies ξn ∈ Fe ⊆ O.
Hence, (ξn)n∈N converges to ξ with respect to τS.

Proposition 3.2.3. The set F(E) with τS is non-Hausdorff, provided there
are distinct e, f ∈ E such that ef 6= 0.

Proof. Suppose there are distinct e, f ∈ E such that ef 6= 0. We know
ef ≤ e and ef ≤ f by Lemma 2.1.14, so e 6= f implies that either ef 6= e or
ef 6= f . Otherwise, antisymmetry would imply e = f . We assume without
loss of generality that ef 6= e. Notice e↑ and (ef)↑ are in F(E) because e and
ef are nonzero so the filters are proper. Since ef ≤ e, we know e↑ ⊆ (ef)↑.
Denote by ((ef)↑) the constant sequence of (ef)↑ in F(E). Observe the
sequence ((ef)↑) pointwise eventually contains both e↑ and (ef)↑, so ((ef)↑)
converges to both e↑ and (ef)↑ by Lemma 3.2.2. But e↑ and (ef)↑ are distinct
because e↑ = (ef)↑ would imply ef = e. Therefore, F(E) is non-Hausdorff
since convergent sequences in Hausdorff spaces have unique limits [Mun00,
Theorem 17.10].

Example 3.2.4. Recall from Example 2.1.8 that there is an inverse semigroup
of partial bijections associated to each set. Consider the inverse semigroup
I(2) of partial bijections of 2. The empty map 02 is the zero in the inverse
semigroup I(2). Denote by E(I(2)) the idempotents in I(2). Then, the
identity maps id{0} on {0} and id2 on 2 are distinct in E(I(2)) and id{0}id2 =
id{0} 6= 02. Hence, the set of filters in E(I(2)) with τS is non-Hausdorff by
Proposition 3.2.3.

Though the Sierpiński topology is usually too coarse to make proper filters
Hausdorff (Proposition 3.2.3), ultrafilters in E are always Hausdorff. Define
Ue := Fe ∩ U(E), for all e ∈ E, and define A↑E := A↑ ∩ E, for any A ⊆ E.
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We denote the set of filters in E by L(E). We add details to the proof of
[Law10a, Lemma 2.3] in our proof of the following lemma.

Lemma 3.2.5. The set U(E) with τS is Hausdorff.

Proof. We show U(E) with τS is Hausdorff by definition. Fix distinct ξ, η ∈
U(E). Filters are nonempty, so take e ∈ ξ and f ∈ η. Observe that

ξ ⊆ (ξf)↑E ⊆ (ξη)↑E ∈ L(E) and η ⊆ (eη)↑E ⊆ (ξη)↑E ∈ L(E).

Since ξ and η are ultrafilters, either ξ = (ξη)↑E or (ξη)↑E = E, and either
η = (ξη)↑E or (ξη)↑E = E. Because ξ and η are distinct, it follows that
(ξη)↑E = E. Thus, 0 ∈ (ξη)↑E , so there are x ∈ ξ and y ∈ η such that xy ≤ 0,
in which case xy = 0. If µ ∈ Ux ∩ Uy, then 0 = xy ∈ µ = E, contradicting
µ ∈ U(E). Therefore, Ux ∩ Uy = ∅. Since Ux and Uy are neighbourhoods of
ξ and η in τS, respectively, it follows that U(E) is Hausdorff.

Recall that U(E) is Hausdorff with respect to τpatch too. Hence, the patch
and Sierpiński topologies agree on the Hausdorff property within U(E). In
fact, the topologies coincide on U(E).

Lemma 3.2.6 (Lemma 2.26 of [Law12]). The topologies τpatch and τS on
U(E) are equal.

Thus, Lemma 3.2.5 is a consequence of Lemma 3.2.6.

3.2.2 Patch topological groupoid of filters

Recall, for any set X, we write A ⊆fin X when A is a finite subset of X. For
all x ∈ S and for all T ⊆fin x

↓, define

Fx:T := {F ∈ F : x ∈ F ⊆ S \ T}.

Recall the source map d : S → E defined by d(x) = x∗x. The proof of
Proposition 3.2.7 mimics the argument used for [Len08, Proposition 4.1].
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Proposition 3.2.7. The collection (Fx:T )x∈S,T⊆finx↓ is a basis for a topology
on F.

Proof. Fix F ∈ F. Filters are nonempty, so there is x ∈ F , in which case
F ∈ Fx. Suppose F ∈ Fx:A ∩ Fy:B. Find z ∈ F such that z ≤ x, y. Put
C := zd(A ∪B). We show F ∈ Fz:C ⊆ Fx:A ∩ Fy:B.

We know z ∈ F . Suppose for a contradiction there is c ∈ F ∩ C. By
definition of C, either c = za∗a for some a ∈ A or c = zb∗b for some b ∈ B.
Suppose the former. Then,

a = xa∗a ≥ za∗a = c ∈ F,

so a ∈ F ↑ = F , contradicting F ∈ Fx:A. Similarly, c = zb∗b for some b ∈ B
yields a contradiction with F ∈ Fy:B. Therefore, F ∩ C is empty, and so
F ∈ Fz:C .

We show Fz:C ⊆ Fx:A ∩ Fy:B. Fix G ∈ Fz:C . Notice z ≤ x, y, so x, y ∈
F ↑ = G. Suppose for a contradiction there is a ∈ G ∩ A. Then,

za∗a ∈ GG∗G = G,

using Lemma 2.2.5, but za∗a ∈ C and G ∈ Fz:C , so we have a contradiction.
Thus, G ∈ Fx:A. Similarly, G ∈ Fy:B. Therefore, Fz:C ⊆ Fx:A ∩ Fy:B.

Recall from Lemma 3.2.1 that (Fe:X)e∈E,X⊆fine↓ is basis for τpatch on F(E).
Motivated by the apparent similarity of the bases, we recycle terminology
and call the topology on F generated by (Fx:T )x∈S,T⊆finx↓ the patch topology
τpatch.

A groupoid G is topological if G is a topological space in which composition
and inversion are continuous. The source and range maps d, r : G → G are
continuous too because compositions of continuous functions are continuous.

We aim to show the groupoid F with τpatch is topological. Showing filter
composition is continuous will require the following transcedence of compos-
ability of filters to the filters’ members.
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Lemma 3.2.8. For all (F,G) ∈ F(2) and for all (f, g) ∈ F × G, there is
(a, b) ∈ F ×G such that

ab = fg and a∗a = bb∗.

Proof. Put a := fgg∗ and b := f ∗fg so that ab = fg, using the commutativity
of idempotents. Notice

a∗a = (fgg∗)∗fgg∗ = gg∗f ∗fgg∗ = f ∗fgg∗gg∗ = f ∗fgg∗

and
bb∗ = f ∗fg(f ∗fg)∗ = f ∗fgg∗f ∗f = f ∗ff ∗fgg∗ = f ∗fgg∗.

Hence, a∗a = bb∗. It remains to show (a, b) ∈ F ×G, which is where we need
the composability of F and G. Notice

a = fgg∗ ∈ F · r(G) = F · d(F ) = F.

Similarly, b ∈ G. Therefore, (a, b) ∈ F ×G.

Proposition 3.2.9. The groupoid F with τpatch is topological.

Proof. We show filter inversion on F with the patch topology is continuous.
Fix x ∈ S and T ⊆fin x

↓ for an arbitrary basic open set Fx:T in F. Observe
the preimage of Fx:T under inversion is Fx∗:T ∗ , which is open.

We show filter composition from F(2) to F is continuous, where F has the
patch topology and F(2) has the subspace topology relative to the product
topology on F × F. Our argument mimics that of [Len08, Proposition 4.3].
Recall that d(x) = x∗x and r(x) = xx∗, for all x ∈ S, and denote filter
composition by m : F(2) → F. We show basic open sets have open preimages.
Fix x ∈ S and T ⊆fin x

↓ for an arbitrary basic open set Fx:T in F. Take any
(F,G) ∈ m−1(Fx:T ), so F ·G ∈ Fx:T . Find f ∈ F and g ∈ G so that fg ≤ x.
We show F ∈ Ff :r(T )f . Suppose for a contradiction there is t ∈ T such that
tt∗f ∈ F . If so,

t = tt∗x ≥ tt∗fg ∈ FG
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because t ≤ x, but then t ∈ F · G, contradicting F · G ∈ Fx:T . Thus,
F ⊆ S \ r(T )f , and so F ∈ Ff :r(T )f . Similarly, G ∈ Fg:gd(T ). Hence, (F,G) ∈
Ff :r(T )f × Fg:gd(T ) ∩ F(2). We show Ff :r(T )f × Fg:gd(T ) ∩ F(2) ⊆ m−1(Fx:T ).
Fix (H, I) ∈ Ff :r(T )f × Fg:gd(T ) ∩ F(2). Observe x ≥ fg ∈ HI, so x ∈ H · I.
It remains to show H · I ⊆ S \ T . Suppose for a contradiction there is
t ∈ H · I ∩ T , and find h ∈ H and i ∈ I so that hi ≤ t. Since h, f ∈ H

and i, g ∈ I, there are j ∈ H and k ∈ I such that j ≤ h, f and k ≤ i, g. By
the transcendence of composability from filters to filters members (Lemma
3.2.8), we assume without loss of generality that j∗j = kk∗. Compute

j ≤ jkk∗f ∗f ≤ hik∗f ∗f ≤ tg∗f ∗f = (tt∗x)(fg)∗f ≤ tt∗xx∗f ≤ tt∗f,

so tt∗f ≥ f ∈ H implies tt∗f ∈ H, contradicting H ∈ Ff :r(T )f . Thus,
H · I ⊆ S \ T , which means (H, I) ∈ m−1(Fx:T ), and so Ff :r(T )f × Fg:gd(T ) ∩
F(2) ⊆ m−1(Fx:T ). That is, for all (F,G) ∈ m−1(Fx:T ), there are f, g ∈ S such
that

(F,G) ∈ Ff :r(T )f × Fg:gd(T ) ∩ F(2) ⊆ m−1(Fx:T ).

It follows that m−1(Fx:T ) is a union of basic open sets, so m−1(Fx:T ) is open.
Therefore, m is continuous.

The topological groupoid F with τpatch will be the domain of π : F → G0.

3.2.3 Étale groupoids

Let G be a groupoid. Given subsets A and B of G, we define

AB := {αβ : (α, β) ∈ G(2)}.

A subset B of G is called a local bisection if B−1B and BB−1 are subsets of
G(0) [BS19, Definition 6.2].3

Lemma 3.2.10. If B is a local bisection in G, then the source map d is
injective on B.

3Some authors just say “bisection” for brevity [LL13].
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Proof. Fix α, β ∈ B. Since B is a local bisecton, αβ−1 is in G(0). Suppose
d(α) = d(β). Then, α and β−1 are composable, so

α = α(β−1β) = (αβ−1)β = β

because αβ−1 is in G(0). Hence, the restriction of d to B is an injection.

A groupoid G is said to be étale if G is topological and the source map
d : G → G is a local homeomorphism [BS19, Definition 6.1].

Remark 3.2.11. The literature contains various definitions of étale groupoids.
For disambiguation, note that it is equivalent to say that a groupoid G is étale
if G is topological and, for each γ ∈ G, there is a local bisection Bγ containing
γ such that both Bγ and d(Bγ) are open in G.

Let G be both a groupoid and a topological space. A basis B for the
topology on G is called étale if

(1) O−1 ∈ B,

(2) ON ∈ B, and

(3) O−1O ⊆ G(0),

for all O,N ∈ B [BS19, Definition 6.5]. In this work, we prove groupoids are
étale via étale bases using the following result.

Proposition 3.2.12 (Proposition 6.6 of [BS19]). Let G be both a groupoid
and a topological space. The topological space G has an étale basis if, and
only if, the groupoid G is étale, in which case G is a topological groupoid.

We aim to show F is an étale groupoid with respect to τpatch. We first
show F is étale with respect to the coarser topology defined below, and we
conclude that F is étale with respect to τpatch as desired.

For all x ∈ S, define

Fx := {F ∈ F : x ∈ F}.
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Proposition 3.2.13. The collection (Fx)x∈S is a basis for a topology on F.

Proof. Fix F ∈ F. Filters are nonempty, so there is x ∈ F , in which case
F ∈ Fx. Suppose F ∈ Fx∩Fy. Then, x, y ∈ F , and filters are down-directed,
so there is z ∈ F such that z ≤ x, y. Notice F ∈ Fz. Also, filters are up-sets,
so Fz ⊆ Fx ∩ Fy.

We call the topology on F generated by (Fx)x∈S the Sierpiński topology
and denote it by τS. Items (1), (2) and (3) in Lemma 3.2.14 below are adapted
from items (2), (3) and (4) in [Law12, Lemma 2.10] (which has additional
assumptions on S).

Lemma 3.2.14. For all s, t ∈ S,

(1) F∗s = Fs∗,

(2) FsFt = Fst,

(3) Fs is a local bisection in F,

(4) d(Fs) = Fs∗s, and

(5) (Fx)x∈S is an étale basis for the topology on the groupoid F.

Proof. Item (1) follows from the fact that s = (s∗)∗ and F = (F ∗)∗, for all
F ∈ F, because S and F are inverse semigroups.

(2) We follow the argument for [Law12, Lemma 2.10(4)]. Given (F,G) ∈
FsFt, we have st ∈ FG ⊆ F · G ∈ F, so F · G ∈ Fst. Fix H ∈ Fst. Put
F := (s(td(H)t∗)↑)↑ and G := (td(H))↑. The subsets F and G are filters by
Lemma 2.2.4. We show F and G contain s and t, respectively. One of the
rudiments of inverse semigroups from Lemma 2.1.14 implies t∗t ≥ (st)∗st ∈
d(H), so t∗t ∈ d(H)↑ = d(H). Then, t = tt∗t ∈ (td(H))↑ = G by definition
of G. Also,

s∗s ≥ s∗stt∗ ≥ tt∗s∗stt∗ = t(st)∗stt∗ ∈ td(H)t∗,
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so s∗s ∈ (td(H)t∗)↑. Thus, s = ss∗s ∈ (s(td(H)t∗)↑)↑ = F . That is, s ∈ F
and t ∈ G.

We show d(F ) ⊆ r(G). Fix x ∈ F . It suffices to show x∗x ∈ r(G). Using
the down-directedness of filters, we can find h ∈ H such that x ≥ sth∗ht∗.
Since h, st ∈ H, we assume without loss of generality that h ≤ st. Then,
h = sth∗h, so x ≥ sth∗ht∗ = ht∗. Then,

x∗x ≥ (ht∗)∗ht∗ = th∗ht∗ = th∗hh∗ht∗ = th∗h(th∗h)∗ ∈ r(G).

Hence, x∗x ∈ r(G)↑ = r(G). Similar computations yield d(F ) ⊇ r(G).
Therefore, d(F ) = r(G).

Next we show F · G = H. Fix x ∈ F · G. There exists h1, h2 ∈ H such
that (sth∗1h1t

∗)(th∗2h2) ≤ x. Since h1, h2, st ∈ H, there is h ∈ H such that
h ≤ h1, h2, st. Observe

x ≥ sth∗1h1t
∗th∗2h2 = stt∗th∗1h1h

∗
2h2 = sth∗1h1h

∗
2h2 ≥ sth∗h = h ∈ H,

so x ∈ H↑ = H. For the reverse inclusion, if h ∈ H, we can assume h ≤ st.
Then, a similar comptuation yields h = (sth∗ht∗)(th∗h) so that h ∈ F · G.
Hence, F ·G = H.

It remains to show F and G are proper so that H = F · G ∈ FsFt. If
either F or G contained 0, then so would H because H = F · G, but H is
proper, so neither F nor G contains 0.

(3) We show F∗xFx ∪ FxF
∗
x ⊆ F(0). Observe F∗xFx = Fx∗Fx = Fx∗x by

(1) and (2). Similarly, FxF∗x = Fxx∗ , so F∗xFx ∪ FxF
∗
x = Fx∗x ∪ Fxx∗ . Since

idempotent proper filters are units in the groupoid F (see Section 3.1.2), we
have F∗xFx ∪ FxF

∗
x = Fx∗x ∪ Fxx∗ ⊆ F(0).

(4) Observe d(Fx) = {F ∗ ·F : F ∈ Fx} ⊆ Fx∗x. For the reverse inclusion,
it is enough to show d(Fx) ⊇ Fx∗Fx by (2). Take F · G ∈ Fx∗Fx, where
(F,G) ∈ Fx∗×Fx∩F(2). Observe that d(F ) = d(G∗) and F,G∗ ∈ Fx∗ , which
is a local bisection by (3), so F = G∗ by Lemma 3.2.10. Thus,

F ·G = G∗ ·G = d(G) ∈ d(Fs).

(5) This is a consequence of (1), (2) and (4).
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Proposition 3.2.15. The groupoid F of proper filters is étale with respect
to both τS and τpatch.

Proof. It is immediate from Lemma 3.2.14(5) that F is étale with respect to
τS due to Proposition 3.2.12, which says a groupoid with an étale basis is
étale.

In Proposition 3.2.9, we showed F with τpatch is a topological groupoid.
Since τpatch is finer than τS and F is étale with respect to τS, we have that
F is étale with respect to τpatch too–there being more open sets for the same
points.

Assumption 3.2.16. The groupoid F is endowed with τpatch.

The source map in F interacts with a basis for τpatch in the following way.
(Both d : F → F(0) and d : S → E are used in the following result; which
map is being used is implicit from the context.)

Lemma 3.2.17. For all s ∈ S and for all T ⊆fin s
↓,

d(Fs:T ) = Fs∗s:s∗sd(T ).

Proof. Take any F ∈ Fs:T . Notice s∗s ∈ d(F ). We show d(F ) ⊆ S \s∗sd(T ).
Suppose for a contradiction that s∗st∗t ∈ d(F ) for some t ∈ T . Since t ≤ s,
we have t = st∗t, so s∗t = s∗st∗t ∈ d(F ). Then, t ∈ (sd(F ))↑ = F by Lemma
2.2.11. But t ∈ F contradicts F ∈ Fs:T . Thus, d(F ) ⊆ S \ s∗sd(T ), and so
d(F ) ∈ Fs∗s:s∗sd(T ).

For the reverse inclusion, let X ∈ Fs∗s:s∗sd(T ). Then, X ∈ Fs∗s = d(Fs) by
Lemma 3.2.14(4), so there is F ∈ Fs such that X = d(F ). It remains to show
F ∈ Fs:T . We ensured s ∈ F . Suppose for a contradiction that t ∈ F for some
t ∈ T . Then, s∗s, t∗t ∈ d(F ), but that would mean s∗st∗t ∈ d(F ) since s∗st∗t
is the meet of s∗s and t∗t (Lemma 2.1.15), contradicting d(F ) ∈ Fs∗s:s∗sd(T ).
Therefore, F ∈ Fs:T .
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Groupoid of proper germs

We treat the topology on the groupoid G0 of proper germs as briefly as we
did the groupoid’s construction in Section 3.1.3. Consider F(E) with τpatch.
The collection of subsets

Θ0(x,A) := {[x, ξ] ∈ G0 : ξ ∈ A},

where x ∈ S and A ⊆ Fx∗x is open in F(E), is a basis for a topology on G0

such that G0 is étale [EP16, §3].

3.3 Hausdorff unit spaces

We show F(E), F(0) and G(0)
0 are homeomorphic, and we study the identifi-

cation that arises between the unit spaces F(0) and G(0)
0 . This identification

of unit spaces will be extended to the topological isomorphism π : F → G0.

S L ≥ F ≥ T ≥ U

F(0)

F(E) G0 ≥ Gtight ≥ G∞

G(0)
0

↑

d
π π|T π|U

ε

π|
F(0)

d

Recall from Proposition 3.1.6 that the map ε : F(0) → F(E), such that

F 7→ ε(F ) = E ∩ F,

is a bijection with inverse ε−1 : F(E)→ F(0), such that

ξ 7→ ε−1(ξ) = ξ↑.

We first aim to show ε is a homeomorphism. Recall from Proposition 3.2.7
that (Fx:T )x∈S,T⊆finx↓ is a basis for a topology on F. Then, the collection
(F(0) ∩ Fx:T )x∈S,T⊆finx↓ is a basis for τpatch on F(0), but it will be helpful to
have a basis indexed by idempotents.
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Lemma 3.3.1. The collection (Fe:X)e∈E,X⊆fine↓ is a basis for τpatch on F(0).

Proof. We show that, for any open set A in F(0) and any filter F in A, there is
an element B of (Fe:X)e∈E,X⊆fine↓ such that F ∈ B ⊆ A. Then, it will follow
from [Mun00, Lemma 13.2] that (Fe:X)e∈E,X⊆fine↓ is a basis for the topology
on F(0). Since (F(0) ∩ Fs:T )s∈S,T⊆fins↓ is a basis, and open sets are unions of
basis elements, it suffices to check each of the basis elements.

Fix s ∈ S and let T ⊆fin s
↓, and consider F(0) ∩Fs:T . Let F ∈ F(0) ∩Fs:T .

We find e ∈ E and X ⊆fin e
↓ so that F ∈ Fe:X ⊆ F(0) ∩ Fs:T . Since F ∈ F(0),

F is an idempotent filter, so there is e ∈ E ∩ F . We assume without loss
of generality that e ≤ s because filters are down-directed and E↓ = E. Put
X := ed(T ). Notice X ⊆fin e

↓ by a rudiment from Lemma 2.1.14.
We show F ∈ Fe:X . Since e ∈ F , it remains to show F ⊆ S \X. Suppose

for a contradiction that there is t ∈ T such that et∗t ∈ F . We know e = es

because e ≤ s and idempotents are self-inverse. Also, t ∈ T ⊆fin s
↓ means

t ≤ s, so st∗t = t. Hence,

t ≥ et = e(st∗t) = (es)t∗t = et∗t ∈ F,

so t ∈ F ↑ = F , contradicting F ⊆ S \ T . Therefore, F ∈ Fe:X .
We show Fe:X ⊆ F(0) ∩ Fs:T . Fix G ∈ Fe:X . Since s ≥ e ∈ G, we

know s ∈ G, and G ∈ F(0) because e is an idempotent. It remains to show
G ⊆ S \ T . Suppose for a contradiction there is t ∈ G ∩ T , so

et∗t ∈ G · d(G) = G.

However, et∗t ∈ X and G ⊆ S\X. Hence, G ⊆ S\T , as required. Therefore,
F ∈ Fe:X ⊆ F(0) ∩ Fs:T .

Proposition 3.3.2. The map ε : F(0) → F(E) is a homeomorphism with
respect to τpatch, and ε|U(0) is a homeomorphism from U(0) to U(E).

Proof. Observe that ε(Fe:X) = Fe:X , for all e ∈ E and for all X ⊆fin e
↓. It

follows that ε : F(0) → F(E) is a homeomorphism because (Fe:X)e∈E,X⊆fine↓ is
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a basis for τpatch on F(0) by Lemma 3.3.1 and (Fe:X)e∈E,X⊆fine↓ is a basis for
τpatch on F(E) by Lemma 3.2.1.

We show ε|U(0) is a bijection from U(0) to U(E). It suffices to show
ε(U(0)) = U(E) because ε is a bijection from F(0) to F(E). Fix U ∈ U(0).
Suppose ε(U) ⊆ ξ ∈ F(E). Then, U ⊆ ε−1(ξ) but U is an ultrafilter, so
U = ε−1(ξ). Thus, ε(U) = ξ, and so ε(U) ∈ U(E). A similar argument yields
the reverse inclusion, so ε(U(0)) = U(E).

Furthermore, the unit space G(0)
0 is homeomorphic to F(E) via the map

ξ 7→ [e, ξ],

where e ∈ ξ, from F(E) to G(0)
0 [EP16, Equation (3.9)].

Proposition 3.3.3. The unit spaces F(0) and G(0)
0 are Hausdorff.

Proof. Recall from Section 3.2.1 that F(E) with τpatch is Hausdorff, and we
have seen in the present section that both F(0) and G(0)

0 are homeomorphic
to F(E).

The corollary below can be shown to hold by composing the above home-
omorphisms from F(0) to F(E) and from F(E) to G(0)

0 .

Corollary 3.3.4. The map

F 7→ [e, ε(F )],

where e is any element of ε(F ), from F(0) to G(0)
0 is a homeomorphism.

3.4 Filters isomorphic to germs

We extend the homeomorphism F 7→ [e, ε(F )] from F(0) to G(0)
0 in Corollary

3.3.4 to the topological isomorphism π : F → G0.
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S L ≥ F ≥ T ≥ U

F(0)

F(E) G0 ≥ Gtight ≥ G∞

G(0)
0

↑

d
π π|T π|U

ε

π|
F(0)

d

Given groupoids G and H, a bijection φ : G → H is called an isomorphism
if (g, h) ∈ G(2) implies (φ(g), φ(h)) ∈ H(2) and φ(gh) = φ(g)φ(h) [Sim18, §2,
pp. 8]. If G and H are topological and φ is both a homeomorphism and an
isomorphism, we say φ is a topological isomorphism.

Before stating the main result of this work, we recall key ingredients.
For all F ∈ F, we have ξF = ε(d(F )) = E ∩ d(F ) ∈ F(E) due to the
homeomorphism ε : F(0) → F(E) from Proposition 3.3.2. In Lemmas 3.1.7
and 3.1.8, we found that:

• for all F ∈ F and for all s, t ∈ F , [s, ξF ] = [t, ξF ]; and

• for all F ∈ F and for all s ∈ F , βs(ξF ) = ξF ∗ .

We noted in (3) and (4) of Lemma 3.2.14 that Fx is a local bisection and
Fx∗x = d(Fx), for all x ∈ S.

Theorem 3.4.1. The map π : F → G0 given by,

F 7→ π(F ) := [s, ξF ],

where s ∈ F , is a topological isomorphism, and the inverse π−1 : G0 → F is
given by π−1([s, ξ]) = (sξ)↑.

Proof. Since [s, ξF ] = [t, ξF ] for any s, t ∈ F , we know π is well defined.
We show π is injective. Fix F,G ∈ F and take f ∈ F and g ∈ G. Then,
π(F ) = [s, ξF ] and π(G) = [t, ξG]. Suppose [s, ξF ] = [t, ξG]. We show F = G.
By definition of the equivalence relation ∼ from Section 3.1.3, [s, ξF ] = [t, ξG]
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implies there is e ∈ ξF = ξG such that se = te. Observe ξF = ξG means
ε(d(F )) = ε(d(G)), so d(F ) = d(G) because ε is a bijection from F(0) to
F(E) by Proposition 3.3.2. Also,

F = F · d(F ) 3 se = te ∈ G · d(G) = G,

which means F,G ∈ Fse and d(F ) = d(G). Notice Fse is a local bisection
by Lemma 3.2.14(3). Lemma 3.2.10 says d is injective on Fse, so we have
F = G. Next we show π is surjective. Fix [s, ξ] ∈ G0. We know ξ ∈ Fs∗s, so
we have

ε−1(ξ) ∈ Fs∗s = d(Fs)

by Lemma 3.2.14(4). As ε−1(ξ) ∈ d(Fs), there is F ∈ Fs such that d(F ) =
ε−1(ξ). Then, s ∈ F and

ξF = ε(d(F )) = ε(ε−1(ξ)) = ξ.

It follows that π(F ) = [s, ξF ] = [s, ξ]. Therefore, π is a bijection. Further, the
reconstruction of filters from sources and members (Lemma 2.2.11) implies
F = (sd(F ))↑, so

π−1([s, ξ]) = π−1(π(F )) = F = (sd(F ))↑ = (sε−1(ξ))↑ = (sξ↑)↑ = (sξ)↑.

Now we show π is an isomorphism. Fix (F,G) ∈ F(2).
We show (π(F ), π(G)) ∈ G(2)

0 . Say s ∈ F and t ∈ G, so π(F ) = [s, ξF ]
and π(G) = [t, ξG]. Since d(F ) = r(G) = d(F ∗),

ξF = ε(d(F )) = ε(d(G∗)) = ξG∗ = βt(ξG)

by Lemma 3.1.8, so ξF = βt(ξG). It follows that (π(F ), π(G)) ∈ G(2)
0 by

definition of G(2)
0 .

We show π(F ·G) = π(F )π(G). Notice st ∈ F ·G and

ξF ·G = ε(d(F ·G)) = ε(d(G)) = ξG,

so
π(F ·G) = [st, ξF ·G] = [st, ξG] = [s, ξF ][t, ξG] = π(F )π(G).
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Therefore, π is an isomorphism.
We show π is continuous by showing basic open sets in G0 have open

preimages in F. Fix s ∈ S and take any open A ⊆ Fs∗s with respect to τpatch

for an arbitrary basic open set Θ0(s, A) in G0. We show π−1(Θ0(s, A)) =
Fs ∩ d−1(ε−1(A)). The earlier expression for π−1 gives us π−1(Θ0(s, A)) =
{(sξ)↑ : ξ ∈ A}. For any ξ ∈ A, notice s∗s ∈ ξ. It follows that d((sξ)↑) = ξ↑,
which implies ε(d((sξ)↑)) = ε(ξ↑) = ξ ∈ A. That is, (sξ)↑ ∈ d−1(ε−1(A)),
for all ξ ∈ A. Moreover, s = ss∗s ∈ (sξ)↑, so (sξ)↑ ∈ Fs, for all ξ ∈ A.
Hence, {(sξ)↑ : ξ ∈ A} ⊆ Fs ∩ d−1(ε−1(A)). Now fix F ∈ Fs ∩ d−1(ε−1(A)).
Then, s ∈ F and ξF = ε(d(F )) ∈ A, so π(F ) = [s, ξF ] ∈ Θ0(s, A). Thus,
F ∈ π−1(Θ0(s, A)). Therefore,

Fs ∩ d−1(ε−1(A)) ⊆ π−1(Θ0(s, A)) = {(sξ)↑ : ξ ∈ A} ⊆ Fs ∩ d−1(ε−1(A)),

so π−1(Θ0(s, A)) = Fs ∩ d−1(ε−1(A)). Now Proposition 3.3.2 says ε : F(0) →
F(E) is continuous, so ε−1(A) is open in F(0) because A is open in F(E). As
F is étale (Proposition 3.2.15), we know F(0) is open in F [Law12, Lemma
2.31(3)], so ε−1(A) is open in F. Since the groupoid F is topological, d : F →
F is continuous, so d−1(ε−1(A)) is open in F. Also, Fs is open, so

π−1(Θ0(s, A)) = Fs ∩ d−1(ε−1(A))

is open in F because finite intersections of open sets are open.
We show π : F → G0 is open. Fix s ∈ S and let T ⊆fin s

↓ for an arbitrary
basic open set Fs:T in F. Observe

π(Fs:T ) = Θ0(s, ε(d(Fs:T ))) = Θ0(s, ε(Fs∗s:s∗sd(T ))) = Θ0(s,Fs∗s:s∗sd(T )),

using Lemma 3.2.17.

In the next subsections we consider how π restricts to ultrafilters and
tight filters.
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3.4.1 Ultrafilters

We define groupoid reductions in order to relate U to a certain sub-
groupoid of G0 via π, and we find a nice basis for τpatch on U.

Given a groupoid G and a subset R of G(0), the reduction of G by R is

G|R := {γ ∈ G : d(γ), r(γ) ∈ R}

with the restricted operations in G, which is a subgroupoid of G [Ren80,
Defintion 1.4, pp. 8]. Recall we identify G(0)

0 with F(E) by ξ 7→ [e, ξ], where
e ∈ ξ. We denote by G∞ the reduction of G0 by the subset of G(0)

0 identifying
with U(E). The groupoid G∞ is endowed with the subspace topology, having
the collection of subsets of the form

Θ∞(x,A) := {[x, ξ] ∈ G∞ : ξ ∈ A},

where x ∈ S and A ⊆ Ux∗x is open in U(E), for a basis. Then, G∞ is
topological.

Corollary 3.4.2. The restriction π|U : U→ G∞ is a topological isomorphism.

Proof. We show π(U) = G∞. Fix U ∈ U. Then, π(U) = [s, ξU ], where s ∈ U .
Observe d(U) ∈ U(0), so ξU = ε(d(U)) ∈ U(E) by Proposition 3.3.2. Thus,
[s, ξU ] has source and range identifying with elements in U(E), so π(U) ∈ G∞.
Now take [s, ξ] ∈ G∞ ⊆ G0. As π maps F onto G0, there is U ∈ F such that
π(U) = [s, ξ]. Say t ∈ U , so π(U) = [t, ξU ] = [s, ξ]. In particular, ξ = ξU , so
U(E) 3 ξ = ξU = ε(d(U)) and Proposition 3.3.2 implies d(U) ∈ U(0). Then,
U = U · d(U) ∈ U because U is an ideal in F (Proposition 3.1.5). Thus,
[s, ξ] = π(U) ∈ π(U), and so π(U) = G∞

The corollary then follows from π(U) = G∞ since π is a topological iso-
morphism by Theorem 3.4.1.

We use Corollary 3.4.2 to generalise [LL13, Proposition 5.18], finding a
nice basis for τpatch on U. For all x ∈ S, let Ux := Fx ∩ U.
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Corollary 3.4.3. The collection (Ux)x∈S is a basis for τpatch on U.

Proof. By Corollary 3.4.2, π|U is a homeomorphism from U to G∞, so it
suffices to show (π(Ux))x∈S is a basis for the topology on G∞. Observe

π(Ux) = {[x, ξU ] : U ∈ Ux} = {[x, ξ] : ξ ∈ Ux∗x} = Θ∞(x,Ux∗x),

so (π(Ux))x∈S = (Θ∞(x,Ux∗x))x∈S.
We show (Θ∞(x,Ux∗x))x∈S is a basis for the patch topology on G∞. Fix

x ∈ S and take any A ⊆ Ux∗x so that A is in τpatch on U(E). Then, Θ∞(x,A)
is an arbitrary basic open subset of G∞. Recall from Lemma 3.2.6 that τpatch

coincides with τS on U(E), having (Ue)e∈E for a basis. Thus, A = ⋃
e∈X Ue for

some X ⊆ E, so Θ∞(x,A) = Θ∞(x,⋃e∈X Ue). Let [x, ξ] ∈ Θ∞(x,⋃e∈X Ue).
We find y ∈ S such that

[x, ξ] ∈ Θ∞(y,Uy∗y) ⊆ Θ∞
(
x,
⋃
e∈X

Ue

)
.

Notice ξ ∈ ⋃e∈X Ue means there is e ∈ X such that ξ ∈ Ue, so

[x, ξ] ∈ Θ∞(x,Ue) ⊆ Θ∞
(
x,
⋃
e∈X

Ue

)
.

By putting y := xe and observing that x∗xe ∈ ξ (Lemma 2.1.15), we can
show

[x, ξ] ∈ Θ∞(y,Uy∗y) ⊆ Θ∞(x,Ue) ⊆ Θ∞
(
x,
⋃
e∈X

Ue

)
⊆ Θ∞(x,A),

so
[x, ξ] ∈ Θ∞(y,Uy∗y) ⊆ Θ∞(x,A).

Therefore, (π(Ux))x∈S = (Θ∞(x,Ux∗x))x∈S is a basis.

3.4.2 Exel’s tight groupoid

Define T(E) to be the closure of U(E) in F(E) with respect to τpatch. The set
T(E) is that of [Law12, Proposition 2.25]. We denote by Gtight the reduction
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of G0 by the subset of G(0)
0 identifying with T(E). Then, Gtight is Exel’s tight

groupoid from [Exe08, Theorem 13.3].
Let T := π−1(Gtight). Since π : F → G0 is a topological isomorphism and

Gtight is a subgroupoid of G0, T is a topological subgroupoid of F, which is
topologically isomorphic to Exel’s tight groupoid Gtight. By [LL13, Lemma
5.9], T is the groupoid denoted by Gt(S) in [LL13]. Also, T is the ‘reduction’
of L with respect to a certain notion of coverage in [Cas20, Corollary 6.8].

3.5 Application to self-similar groups

In the remaining section of the thesis, we use π : F → G0 to show how de-
scribing filters in inverse semigroups is a matter of describing the filters of
idempotents. We apply our results to an inverse semigroup SG,X associated
to a given self-similar group (G,X), in which case we have the following
specific diagram, where the groupoids Gtight, T, G∞ and U are all isomorphic.

SG,X L ≥ F ≥ T = U

G0 ≥ Gtight = G∞

↑

π π|T π|U

3.5.1 Filters in terms of filters of idempotents

In general, describing filters is easier than describing germs. For example,
there is no equivalence relation necessary to define filters, unlike germs. How-
ever, in practice it can still be difficult to describe the filters in an inverse
semigroup because the natural partial order on the inverse semigroup may
not be well-behaved. We use π : F → G0 to simplify this problem. Recall
from Theorem 3.4.1 that the inverse π−1 : G0 → F of π is given by

[s, ξ] 7→ π−1([s, ξ]) = (sξ)↑.

Since π is a bijection, the set F of proper filters in S is given by

F = π−1(G0) = {(sξ)↑ : s ∈ S and ξ ∈ Fs∗s}. (3.2)
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Equation (3.2) demonstrates how π : F → G0 converts the problem of under-
standing the filters in an inverse semigroup into a problem of understanding
the filters of idempotents.

The set U of ultrafilters in S is given by

U = π−1(G∞) = {(sξ)↑ : s ∈ S and ξ ∈ Us∗s}, (3.3)

using Corollary 3.4.2 for U = π−1(G∞). Moreover, there is a notion of E
being compactable defined in [Law10a] such that E is compactable if, and
only if, U(E) = T(E) [Law10a, Theorem 2.5]. By definition of groupoid
reductions and because π is a bijection, we have

U = T ⇐⇒ U(E) = T(E) ⇐⇒ G∞ = Gtight. (3.4)

Therefore, when E is compactable, we have

T = U = π−1(G∞) = {(sξ)↑ : s ∈ S and ξ ∈ Us∗s}.

3.5.2 Filters associated to self-similar groups

For the remainder of the thesis, we utilise the results of the previous section
based on the topological isomorphism π : F → G0 in order to describe the
filters in inverse semigroups associated to self-similar groups. Recall from the
introduction that studying self-similar groups is interesting in part because
of the class of C*-algebras generated by self-similar groups.

Recall that an inverse semigroup is a group if, and only if, there is exactly
one idempotent, in which case the idempotent is called the identity and
denoted by e [Law98, Proposition 1.4.4, pp. 19]. We refer the reader to
[DF04] for the following rudiments of group theory. Let Y be a set. We denote
the set of bijections of Y by S(Y ). The set S(Y ) under function composition
forms a group. An action of a group G on the set Y is a homomorphism
φ : G → S(Y ). Given (g, y) ∈ G × Y , we write g · y := φ(g)(y). If φ is
injective, then we say φ is faithful.
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Let X be a finite set. We write Xn for the set of words in X of length
n (that is, n-tuples denoted by concatenation), with X0 = {∅}, and X∗ :=⋃
n≥0X

n. We denote by Xω the set of infinite words in X. For all α, β ∈ X∗,
we define α � β if there is ε ∈ X∗ such that αε = β. The relation � is a
partial order on X∗. A faithful group action of G on X∗ is self-similar if, for
all g ∈ G and all x ∈ X, there are h ∈ G and y ∈ X such that

g · (xα) = y(h · α),

for all α ∈ X∗ [Nek05, Definition 1.5.1, pp. 10]. As in [Lac+14, §2], we
assume g ·∅ = ∅, for all g ∈ G. We say such a pair (G,X) is a self-similar
group. The following results can be found in [Nek05; Lac+14].

Lemma 3.5.1. Let (G,X) be a self-similar group. There is a map from
G×X to G denoted by

(g, x) 7→ g|x

such that g · x ∈ X and g · (xα) = (g · x)(g|x · α), for all α ∈ X∗.

Proof. Fix (g, x) ∈ G×X. There exists (h, y) ∈ G×X such that g · (xα) =
y(h · α), for all α ∈ X∗. In order to define g|x we show (h, y) is unique.
Suppose also that (i, z) ∈ G × X satisfies g · (xα) = zi · α, for all α ∈ X∗.
Thus, yh ·α = zi ·α, for all α ∈ X∗. Since y, z ∈ X1, we have both y = z and
h ·α = i ·α, for all α ∈ X∗. Hence, φ(h) = φ(i), and the action is faithful by
definition, so h = i. Therefore, (h, y) = (i, z). We denote h by g|x, and we
can see y = g · x by setting w := ∅ because h ·∅ = ∅.

Due to Lemma 3.5.1, we can redefine self-similar groups as follows. A
faithful group action of G on X∗ is self-similar if there is a map (g, x) 7→ g|x
from G×X to G such that, for every (g, x) ∈ G×X,

g · (xα) = (g · x)(g|x · α),

for all α ∈ X∗. We extend (g, x) 7→ g|x from G×X to G in (G,X) to a map
from G ×X∗ as follows. Define g|∅ := g. Given w1w2 . . . wn ∈ X∗ for some
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n ∈ N, where each wi is in X, define

g|w1w2...wn := g|w1|w2 . . . |wn .

The map (g, α) 7→ g|α from G×X∗ to G is called the restriction.
We collate further properties of self-similar groups as in [Nek05; Lac+14].

Lemma 3.5.2. Let (G,X) be a self-similar group. Then, the following hold.

(1) For all g ∈ G, for all α ∈ X∗, g · (αβ) = (g ·α)(g|α ·β), for all β ∈ X∗.

(2) For all g ∈ G, g ·∅ = ∅ and g|∅ = g.

(3) For all α ∈ X∗, e · α = α and e|α = e.

(4) For all g ∈ G and for all α, β ∈ X∗, g|αβ = (g|α)|β.

(5) For all g, h ∈ G and for all α ∈ X∗, (gh)|α = g|h·αh|α.

(6) For all g ∈ G and for all α ∈ X∗, (g|α)−1 = (g−1)|g·α.

(7) For all g ∈ G and for all α ∈ X∗, |α| = |g · α|.

Proof. (1) This can be shown to hold by induction on the length of the
variable α.

(2) Recall g ·∅ = ∅ holds by definition of a self-similar group. Then, (1)
implies,

g · β = g · (∅β) = (g ·∅)(g|∅ · β) = g|∅ · β,

for all β ∈ X∗. As the group action is faithful, it follows that g = g|∅.
(3) The groupoid identity e in G gives the identity bijection of X∗ because

the group action is a homomorphism. Hence, e ·α = α. Using the above and
by (1), we have

α(e · β) = αβ = e · (αβ) = (e · α)(e|α · β) = α(e|α · β),

so e · β = e|α · β, for all β ∈ X∗. Since the action is faithful, it follows that
e|α = e.
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(4) This is immediate from our definition of the restriction.
(5) Observe that, for all β ∈ X∗,

((gh) · α)((gh)|α · β) = (gh) · (αβ)
= g · (h · (αβ))
= g · ((h · α)(h|α · β))
= (g · (h · α))(g|h·α · (h|α · β))
= ((gh) · α)((g|h·αh|α) · β).

Thus,
(gh)|α · β = (g|h·αh|α) · β,

for all β ∈ X∗. Because the action of G on X∗ is faithful, it follows that
(gh)|α = g|h·αh|α.

(6) Take any β ∈ X∗. Observe

(g−1)|g·α · β = ((g−1)|g·αe) · β = ((g−1)|g·α(g|α(g|α)−1)) · β

and g−1|g·αg|α = (g−1g)|α = e|α = e by (5) and (3). So

(g−1|g·αg|αg|−1
α ) · β = (eg|−1

α ) · β = g|−1
α · β.

Therefore, (g−1)|g·α ·β = (g|α)−1 ·β, for all β ∈ X∗. Because the group action
is faithful, we have (g−1)|g·α = (g|α)−1.

(7) Recall from Lemma 3.5.1 that g · x ∈ X, which implies |g · x| = |x|,
for all g ∈ G and for all x ∈ X. It follows from (1) and a proof by induction
on the size of α that |g · α| = |α|, for all g ∈ G and α ∈ X∗.

Given a self-similar group, we construct an inverse semigroup as per
[EP17, 4.1. Definition]. Let (G,X) be a self-similar group. We will de-
fine the set and binary operation that will be the inverse semigroup SG,X

associated to (G,X). Then, we will show SG,X is a regular semigroup whose
idempotents commute and conclude from Theorem 2.1.7 that SG,X is an in-
verse semigroup.
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Define
SG,X := (X∗ ×G×X∗) ∪ {0}.

The elements of X∗×G×X∗ are nonzero. For all nonzero (α, g, β), (γ, h, δ) ∈
SG,X , we define

(α, g, β)(γ, h, δ) :=


(αg · ε, g|εh, δ) if ∃ε ∈ X∗(βε = γ),

(α, g((h−1)|ε)−1, δ(h−1 · ε)) if ∃ε ∈ X∗(β = γε),

0 otherwise,

as per [EP17, Definition 4.1]. Consider the map SG,X×SG,X → SG,X defined
by

(s, t) 7→ s ◦ t :=

st if s and t are nonzero,

0 otherwise.
(3.5)

For brevity we will write st instead of s ◦ t.

Lemma 3.5.3. The set SG,X with (s, t) 7→ st is a semigroup.

Proof. We show s(tu) = (st)u, for all s, t, u ∈ SG,X . If any of s, t or u are
0, then s(tu) = 0 = (st)u. Otherwise, s, t, u ∈ X∗ × G × X∗, so we write
s = (α, g, β), t = (γ, h, δ) and u = (ε, i, κ). If neither β � γ nor γ � β, then
(st)u = 0u = 0, so we want s(tu) = 0. If tu = 0, then s(tu) = s0 = 0, so we
are done. If tu is nonzero, the first component of tu is either γ or γλ for some
λ ∈ X∗. When the first component of tu is γ, the fact that neither β � γ

nor γ � β means s(tu) = 0, as required; when the first component of tu is
γλ, each of β � γλ and γλ � β would imply either β � γ or γ � β. That is,
‘neither β � γ nor γ � β’ would not hold, which would be a contradiction.
Hence, neither β � γλ nor γλ � β, and so s(tu) = 0, as wanted. Therefore,
‘neither β � γ nor γ � β’ implies s(tu) = 0 = (st)u. Similarly, ‘neither δ � ε

nor ε � δ’ implies s(tu) = 0 = (st)u.
Having traversed the ‘trivial cases’, what remains is the situation where

both either β � γ or γ � β and either δ � ε or ε � δ. That is, one of the
following cases holds:
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(1) β � γ and δ � ε,

(2) β � γ and ε � δ,

(3) γ � β and δ � ε, or

(4) γ � β and ε � δ.

Suppose (1) holds. Let λ, µ ∈ X∗ satisfy βλ = γ and δµ = ε. Using λ and
µ, we can compute

(st)u = ((α, g, β)(γ, h, δ))(ε, i, κ) = (α(g · λ)((g|λh) · µ), (g|λh)|µi, κ), and
s(tu) = (α, g, β)((γ, h, δ)(ε, i, κ)) = (α(g · (λ(h · µ))), g|λ(h·µ)h|µi, κ).

To complete the proof, it suffices to show (g · λ)(g|λh · µ) = g · (λ(h · µ)) and
(g|λh)|µ = g|λ(h·µ)h|µ. Observe

g · (λ(h · µ)) = (g · λ)(g|λ · (h · µ)) = (g · λ)((g|λh) · µ),

using Lemma 3.5.2(1) for the first equality. Also,

(g|λh)|µ = g|λ|h·µh|µ = g|λ(h·µ)h|µ,

using Lemma 3.5.2(5) and 3.5.2(4), respectively.
The other cases are similar.

Lemma 3.5.4. The semigroup SG,X is regular.

Proof. Fix (α, g, β) ∈ SG,X . Using various properties from Lemma 3.5.2, we
have

(α, g, β)(β, g−1, α)(α, g, β) = (α(g ·∅), g|∅g−1, α)(α, g, β)
= (α∅, gg−1, α)(α, g, β)
= (α, e, α)(α, g, β)
= (α(e ·∅), e|∅g, β)
= (α∅, eg, β)
= (α, g, β),
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so
(α, g, β)(β, g−1, α)(α, g, β) = (α, g, β).

Similarly, we can show

(β, g−1, α)(α, g, β)(β, g−1, α) = (β, g−1, α).

Therefore, (β, g−1, α) is an inverse of (α, g, β). Moreover, 0 has itself for an
inverse. Thus, every element in SG,X has an inverse.

For all α ∈ X∗, define fα := (α, e, α).

Lemma 3.5.5 (Equation (4.4) of [EP17]). The set E(SG,X) of idempotents
in SG,X is

E(SG,X) = {fα : α ∈ X∗} ∪ {0}.

Proof. Properties of self-similar groups from Lemma 3.5.2 make it routine to
show E(SG,X) ⊇ {fα : α ∈ X∗} ∪ {0}.

Fix e ∈ E(SG,X). If e = 0, then we are done. Otherwise, write e =
(α, g, β). Then, (α, g, β)(α, g, β) = (α, g, β) 6= 0 implies either β � α or
α � β. Suppose β � α and find γ ∈ X∗ so that βγ = α. Thus,

(α, g, β) = (α, g, β)(α, g, β) = (α(g · γ), g|γg, β).

It follows that g · γ = ∅, so

γ = e · γ = (g−1g) · γ = g−1 · (g · γ) = g−1 ·∅ = ∅.

Hence, α = β. Moreover, g|γ = g|∅ = g, so g = g|γg = gg implies g = e.
Therefore, (α, g, β) = fα. A similar argument applies in case α � β, so we
have E(SG,X) ⊆ {fα : α ∈ X∗} ∪ {0}.

Lemma 3.5.6 (Proposition 4.6 of [EP17]). For all α, β ∈ X∗,

α � β ⇐⇒ fαfβ = fβfα = fβ.
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Proof. Suppose α � β. Find γ ∈ X∗ so that αγ = β. Compute

fαfβ = (α, e, α)(β, e, β) = (α(e · γ), e|γe, β) = (αγ, ee, β) = (β, e, β) = fβ.

A similar computation shows fβfα = fβ. Therefore, fαfβ = fβfα = fβ.
Suppose fαfβ = fβfα = fβ. In particular, fβfα = fβ, so fβfα is nonzero.

Then, either α � β or β � α. If the former holds, then we are done.
Otherwise β � α. Find γ ∈ X∗ so that βγ = α. Then, fβfα = fβ implies

fβ = fβfα = (β, e, β)(α, e, α) = (β(e · γ), e|γe, α) = fα,

so α = β. In particular, α � β because � is a partial order.

Proposition 3.5.7 (Proposition 4.3 of [EP17]). The semigroup SG,X is an
inverse semigroup with zero.

Proof. It is a consequence of Lemmas 3.5.5 and 3.5.6 that idempotents com-
mute. Moreover, Lemma 3.5.4 tells us that SG,X is a regular semigroup.
Thus, SG,X is an inverse semigroup with zero by the characterisation of in-
verse semigroups given in Theorem 2.1.7.

Recall filters in SG,X are nonempty down-directed up-sets with respect
to the natural partial order. Describing the natural partial order on SG,X

is messy, so filters in SG,X are hard to handle. We restrict our attention to
E(SG,X). Notice that Lemma 3.5.6 implies

α � β ⇐⇒ fβ ≤ fα,

for all α, β ∈ X∗ [EP16, Equation (4.7)]. That is, unlike SG,X , describing
the natural partial order on E(SG,X) is clean, so filters in E(SG,X) are easy
to handle.

Lemma 3.5.8 (§8 of [EP17]). The sets U(E(SG,X)) and T(E(SG,X)) satisfy

T(E(SG,X)) = U(E(SG,X)) = {(fξ|n)n∈N : ξ ∈ Xω}.
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Proof. The equation T(E(SG,X)) = U(E(SG,X)) is given in [EP17, pp. 1074].
We show U(E(SG,X)) = {(fξ|n)n∈N : ξ ∈ Xω}. Fix ξ ∈ F(E(SG,X)).

Recall from Section 2.2.2 that a chain is a totally ordered subset of a partially
ordered set. Using the down-directedness of ξ, we can show ξ is a chain.
Then, since ξ is an up-set, either ξ = (fα|n)n≤|α| for some α ∈ X∗ or ξ =
(fη|n)n∈N for some η ∈ Xω. Conversely, subsets of E(SG,X) of the former or
latter form are indeed in F(E(SG,X)). Therefore,

F(E(SG,X)) = {(fα|n)n≤|α| : α ∈ X∗} ∪ {(fη|n)n∈N : η ∈ Xω}.

It is then routine to show

U(E(SG,X)) = {(fη|n)n∈N : η ∈ Xω},

completing the proof.

We conclude by contributing to the study of self-similar groups a concrete
description of the tight filters and ultrafilters in the inverse semigroup of a
given self-similar group, which complements analogous efforts to describe
Gtight concretely using the germ approach in [EP17].

Given (α, ξ) ∈ X∗×Xω, we write α ≺ ξ if there is n ∈ N so that α = ξ|n.

Theorem 3.5.9. The sets U(SG,X) and T(SG,X) satisfy

T(SG,X) = U(SG,X) = {((α, g, β)(fξ|n)n∈N)↑ : (α, g, β) ∈ SG,X , β ≺ ξ ∈ Xω}.

Proof. Since T(E(SG,X)) = U(E(SG,X)) by Lemma 3.5.8, Equations (3.3)
and (3.4) imply

T(SG,X) = U(SG,X) = {((α, g, β)η)↑ : (α, g, β) ∈ SG,X and η ∈ Ufβ}.

Fix (α, g, β) ∈ SG,X . It remains to show η ∈ Ufβ if, and only if, η = (fξ|n)n∈N,
where β ≺ ξ ∈ Xω. Suppose η ∈ Ufβ . Lemma 3.5.8 gives us ξ ∈ Xω such that
η = (fξ|n)n∈N. Then, fβ ∈ (fξ|n)n∈N, so there is n ∈ N such that fβ = fξ|n ,
in which case β = ξ|n ≺ ξ. Now suppose η = (fξ|n)n∈N for some ξ ∈ Xω with
β ≺ ξ. Lemma 3.5.8 implies η is in U(E(SG,X)), and β ≺ ξ means β = ξ|n
for some k ∈ N. Then, fβ = fξ|k ∈ (fξ|n)n∈N = η. Therefore, η ∈ Ufβ .
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[Sie34] Sierpiński, W. F. Introduction to general topology. The Univer-
sity of Toronto Press, 1934.

[Sim18] Sims, A. Hausdorff étale groupoids and their C*-algebras. 2018.
arXiv: 1710.10897 [math.OA].

https://doi.org/10.1007/978-1-4612-1774-9
https://doi.org/10.1007/978-1-4612-1774-9
https://doi.org/10.1112/jlms/s1-29.4.396
https://doi.org/10.1112/jlms/s1-29.4.396
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.396
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.396
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.396
https://doi.org/10.1112/jlms/s1-29.4.404
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.404
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.404
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.404
https://doi.org/10.1112/jlms/s1-29.4.411
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.411
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.411
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s1-29.4.411
https://doi.org/10.1007/BFb0091072
https://arxiv.org/abs/1710.10897


BIBLIOGRAPHY 65

[UT18] Ultrafilter Theorem. 2018 (accessed 5 November 2020). url:
https://ncatlab.org/nlab/show/ultrafilter+theorem.

[Vag52] Vagner, V. V. Generalized groups. In: Doklady Akad. Nauk SSSR
(N.S.) 84 (1952), pp. 1119–1122.

[Vag53] Vagner, V. V. The theory of generalized heaps and generalized
groups. In: Mat. Sbornik N.S. 32(74) (1953), pp. 545–632.

https://ncatlab.org/nlab/show/ultrafilter+theorem

	Introduction
	Inverse semigroups
	Inverse semigroups
	Preliminaries
	Assuming zero exists
	Natural partial order

	Filters
	Trivial and proper filters
	Ultrafilters
	Idempotent filters and filters of idempotents
	Inverse semigroup of filters


	Groupoids
	Groupoids of filters and germs
	Groupoids associated to inverse semigroups
	Groupoids of filters
	Groupoids of germs

	Étale groupoids of filters and germs
	Topologies on filters of idempotents
	Patch topological groupoid of filters
	Étale groupoids

	Hausdorff unit spaces
	Filters isomorphic to germs
	Ultrafilters
	Exel's tight groupoid

	Application to self-similar groups
	Filters in terms of filters of idempotents
	Filters associated to self-similar groups



