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Abstract

The fundamental result in the theory of metric Diophantine approximation is

Dirichlet’s Theorem (1842) that gives an error of approximation for all irrational

numbers by rationals. In the literature this theorem is also referred to as the

uniform Diophantine approximation result. A weaker form of this theorem

sometimes known as the asymptotic Diophantine approximation result, is that

there are infinitely many integer solutions for any irrational number with an error

of approximation one over the denominator squared. Most of the developments

to date, such as the classical Khintchine (1924), Jarńık–Besicovitch (1928,

1934) and Jarńık (1931) theorems are concerned with the strengthening and

generalisations of the asymptotic version of Dirichlet’s Theorem rather than

Dirichlet’s Theorem itself. In this thesis, by building on recent results of

Kleinbock–Wadleigh (2018) we present a nearly complete metrical description

of the sets of Dirichlet non-improvable numbers.
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An overview of thesis

The thesis will proceed along the following lines.

In Chapter 1, we provide an introduction to the classical theory of Diophantine

approximation that will form the background of the thesis.

Chapter 2 is reserved for the auxiliary results and definitions. Some elementary

properties of continued fractions are also discussed that we will use in the sequel.

Specifically details are given for the pressure functions related with the Gauss dynamical

system and how solutions to such pressure functions give the Hausdorff dimension of

the corresponding sets.

In Chapter 3, we present the Lebesgue measure theory for the set of Dirichlet

non-improvable numbers as well as its Hausdorff measure analogue which are due to

Kleinbock–Wadleigh [34] and Hussain–Kleinbock–Wadleigh–Wang [27] respectively.

In Chapter 4, we present our first result. To state the result we introduce some

notation first. Let Ψ : [1,∞) → R+ be a non-decreasing function, an(x) the n-th

partial quotient of x and qn(x) the denominator of the n-th convergent. The set

G(Ψ) :=
{
x ∈ [0, 1) : an(x)an+1(x) > Ψ

(
qn(x)

)
for infinitely many n ∈ N

}
,

of Dirichlet non-improvable numbers is related with the classical set of 1
qΨ(q)

-well

approximable numbers K(Ψ) in the sense that K(3Ψ) ⊂ G(Ψ). Both of these sets

enjoy the same s-dimensional Hausdorff measure criterion for s ∈ (0, 1). We prove

that the set G(Ψ) \ K(3Ψ) is uncountable by proving that it has the same Hausdorff

dimension as that for the sets K(Ψ) and G(Ψ). This gives an affirmative answer to a

question raised by Hussain–Kleinbock–Wadleigh–Wang [27].

In Chapter 5, we calculate the Hausdorff dimension of the set

F(Φ) :=

{
x ∈ [0, 1) :

an+1(x)an(x) ≥ Φ(n) for infinitely many n ∈ N and

an+1(x) < Φ(n) for all sufficiently large n ∈ N

}
,

where Φ : N→ (1,∞) is any function with limn→∞ Φ(n) =∞. This in turn contributes

to the metrical theory of continued fractions and also gives insights about the set of

Dirichlet non-improvable numbers.
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An overview of thesis

In Chapter 6, for any r ∈ N, we investigate the Hausdorff dimension of the following

set

Rr(τ ;h) :=
{
x ∈ [0, 1) :

r∏
d=1

an+d(x) ≥ eτ(x)(Snh(x)) for infinitely many n ∈ N
}
,

where h and τ are positive continuous functions, Snh(x) := h(x) + · · ·+ h(T n−1(x)) is

the ergodic sum and T represents the Gauss map.

Chapter 7 summarises the results of this thesis discussed in previous chapters as well

as including some recent results arising in the one-dimensional uniform approximation

theory concerned with the metrical theory of the sets of Dirichlet non-improvable

numbers.

viii



Chapter 1

Introduction

In this chapter, we provide an introduction to the classical theory of Diophantine

approximation that will form the background of the thesis. Therein we start from the

basic notions. Throughout this chapter we state classical results from [6, 11, 31].

1.1 Diophantine approximation

The elementary objective of the theory of Diophantine approximation is to seek an

answer to the question ‘How rapidly can an irrational number be approximated by a

sequence of rational numbers?’.

There are two approaches to approximate a real number by rational numbers: the

qualitative approach and the quantitative approach.

A qualitative approach follows from the fact that the rationals Q are dense in the

reals R. To be more precise, given any real number x ∈ R we can always construct a

sequence of rational numbers {rn}n≥1 such that rn → x as n→∞. That is, we can

always find a rational in a δ-neighbourhood of x for any δ > 0.

Studying the quantitative approach leads to the theory of metric Diophantine

approximation. The theory quantifies the closeness (approximation) of irrational

numbers by rational numbers. If the denominator of a rational number p
q
, where q > 0

is fixed, then since the distance between two rationals with same denominator q is

exactly 1
q
, every real number can be approximated by a rational number with error of

approximation not exceeding 1
2q
.

Continued fraction expansions are considered as one of the important tools to study

problems in Diophantine approximation. The theory of continued fractions provides a

quick and efficient way of finding good rational approximations to irrational numbers.

Every irrational number admits a unique infinite continued fraction expansion. We

will start by defining a map T : [0, 1)→ [0, 1) known as the Gauss map. The Gauss

1



1. Introduction

map plays the role of operator in the continued fraction algorithm and is defined as

T (x) =


0 if x = 0,

1
x
−
[

1
x

]
if 0 < x < 1,

(1.1)

where [?] denotes the integer part. Each branch T is monotone, surjective and invertible

(see Figure ‘The Gauss map’ below).

0
x

T (x)

1

1

1/21/31/4

· · ·

· · ·

The Gauss map.

For each n ≥ 1, the n-th partial quotient ‘an(x)’ of x is defined as

an(x) :=
[ 1

T n−1(x)

]
∈ N.

As we are considering a0(x) = 0 and we get a unique continued fraction expansion

x =
1

a1(x) + T 1x
=

1

a1(x) +
1

a2(x) + T 2x

=
1

a1(x) +
1

a2(x) +
1

a3(x) + . . . 1
an(x)+Tnx

:= [a1(x), a2(x), . . . , an(x) + T nx].

2



1.1. Diophantine approximation

a1(x) > 2 a1(x) = 2 a1(x) = 1

0 1
3

1
2

1

The location of the first partial quotient in the unit interval.

The existence of the limit

x = [a1(x), a2(x), . . . , an(x), . . . ] = lim
n→∞

[a1(x), a2(x), . . . , an(x) + T nx]

is due to the principal convergents ‘pn(x)
qn(x)

’ that are obtained by truncating the continued

fraction expansion of x at level n.

Throughout the thesis, just for simplicity, sometimes we may write pn, qn, an for

pn(x), qn(x), an(x) respectively.

These principal convergents are defined by setting p−1 := 1, q−1 := 0, p0 := 0,

q0 := 1 and then followed by the recursively defined formulas

pn = an(x)pn−1 + pn−2, and qn = an(x)qn−1 + qn−2 for n ∈ N. (1.2)

Also,

pn−1qn − pnqn−1 = (−1)n, for all n ≥ 1. (1.3)

These convergents satisfy the inequalities

p2

q2

<
p4

q4

< · · · < x < · · · < p3

q3

<
p1

q1

.

For example, let’s have a look at convergents of π. A short computation shows that

the first few convergents of π are located as follows:

3

1
<

333

106
<

103993

33102
< · · · < π < · · · < 355

113
<

22

7
.

In fact, these rationals are considered as the best approximations to π. Thus continued

fractions help in providing good rational approximations to irrational numbers. In

fact, this observation is due to an important result by Lagrange (1770) that identifies

the convergents in the continued fraction representation of an irrational x with the

sequence of ‘good approximations.’ According to Lagrange’s Theorem, if x ∈ [0, 1) is

an irrational number with a sequence of convergents
{
pn
qn

}
n≥1

in its continued fraction

expansion, then

|q1x− p1| > |q2x− p2| > · · · > |qnx− pn| > · · · .

Further, if n ≥ 1, and p, q are integers with p
q
6= pn

qn
and 1 ≤ q ≤ qn. Then

|qx− p| > |qnx− pn| .

3



1. Introduction

Thus the above result by Lagrange, sometimes known as ‘Law of best approximation’

reveals that we cannot do better than approximating an irrational by its convergents.

Whereas according to Legendre’s Theorem if p, q are relatively prime integers with

q ≥ 1 and
∣∣∣x− p

q

∣∣∣ < 1
2q2

then p
q

is a convergent to x, i.e.,

p

q
=
pn
qn

for some n. (1.4)

Thus we need to focus on convergents in order to find good approximations to x.

In fact, for

x =
pn+1 + T n+1(x)pn
qn+1 + T n+1(x)qn

,

we have

1

3an+1(x)q2
n

<
∣∣∣x− pn

qn

∣∣∣ =
1

qn(qnT n+1(x) + qn+1)
<

1

an+1(x)q2
n

. (1.5)

From (1.5) it is obvious that we obtain good rational approximations when the partial

quotient an+1(x) is unbounded. Thus we can note that the Diophantine properties of

x can be determined by the growth rate of its partial quotients. In view of (1.5) as n

tends to infinity the sequence pn
qn

of convergents is approximating x better and better

and the increase in the accuracy of pn
qn

upon the previous convergents is proportional

to the next partial quotient an+1(x). Thus producing infinitely many solutions pn
qn

which satisfies (1.5). Together with the fact that the partial quotients an(x) are always

greater than or equal to one for each n ≥ 1 and from (1.5) it follows that.

Theorem 1.1.1 For an irrational x there exists infinitely many rationals p
q

such that∣∣∣x− p

q

∣∣∣ < 1

q2
. (1.6)

�

Thus by (1.5) the convergents to an irrational number x satisfy (1.6).

Returning to the trivial bound 1
2q
, where q is fixed, the natural question was can

we improve this bound? There are various approaches to improving this bound. The

key approach in this direction is due to Dirichlet (1805-1859).

His landmark result, also known as Dirichlet’s Theorem, which sits at the heart

of Diophantine approximation, is concerned with approximating the real numbers by

rationals having bounded denominators and is based on counting argument known as

the ‘Pigeonhole principle’.

Theorem 1.1.2 (Dirichlet, 1842) Given x ∈ R and t > 1, there exists (p, q) ∈ Z × N
such that

|qx− p| < 1

t
and 1 ≤ q ≤ t. (1.7)

�
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1.1. Diophantine approximation

Proof: Recall that [x] := {n ∈ Z : n ≤ x} denotes the integer part and {x} denotes

the fractional part of any x ∈ R.
Consider the t+ 1 numbers

{0x}, {x}, {2x}, ..., {tx}.

All these fractional parts are contained in the unit interval [0, 1) since 0 ≤ {x} < 1 for

any x ∈ R. Divide [0, 1) into t equal semi-open subintervals as

[0, 1) =
[
0,

1

t

)
∪
[1

t
,
2

t

)
∪ · · · ∪

[t− 1

t
, 1
)
. (1.8)

Since the t+ 1 fractional parts are situated in t subintervals (1.8), the Pigeonhole

principle guarantees that there are two integers 0 ≤ q1 < q2 ≤ t such that {q2x}, {q1x}
are contained in same interval. Since the length of each semi-open interval is t−1 we

have that

|{q2x} − {q1x}| <
1

t
.

Let qix = pi + {qix} where pi = [qix] for 1 ≤ i ≤ 2. Then

|{q2x} − {q1x}| = |(q2 − q1)x− (p2 − p1)| < 1

t
.

Now define q = q2 − q1 ∈ N and p = p2 − p1 ∈ Z. Since 0 ≤ q1, q2 ≤ t and q1 < q2 we

have 1 ≤ q ≤ t such that

|qx− p| < 1

t
,

which completes the proof. �

Thus from Dirichlet’s Theorem it is obvious that the trivial bound 1
2q

can be naturally

improved upon.

Dirichlet’s Theorem is the archetypal uniform Diophantine approximation result, so

called as it guarantees a non-trivial integer solution for all t. A weaker form guarantees

that such a system is solvable for an unbounded set of t, sometimes known as asymptotic

approximation – for example [43, 32]. For instance, Dirichlet’s Theorem implies that

(1.7) is solvable for an unbounded set of t, a fortiori. The following corollary which

follows trivially from this weaker statement and is the standard application of (1.7) is

an archetypal asymptotic approximation result.

Corollary 1.1.3 For any irrational x ∈ R, there exist infinitely many (p, q) ∈ Z× N
such that gcd (p, q) = 1 and

|qx− p| < 1

q
. (1.9)

�
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1. Introduction

Proof: Let us begin by assuming x is irrational and there are only finitely many

pairs (pi, qi) ∈ Z× N with gcd (pi, qi) = 1 such that

|qix− pi| <
1

qi
,

for each 1 ≤ i ≤ n. Since x is irrational the difference qix− pi will be non-zero and

therefore there exists t ∈ N such that

|qix− pi| >
1

t
for all i.

By Theorem 1.1.2 there exists a pair (p, q) ∈ Z× N with gcd(p, q) = 1 such that

|qx− p| < 1

qt
≤ 1

t
with 1 ≤ q ≤ t.

Therefore, (p, q) 6= (pi, qi) for any i but satisfies (1.9) which is a contradiction. �

Thus the two statements above show two possible ways to pose Diophantine ap-

proximation problems, as discussed earlier often referred to as uniform vs. asymptotic:

that is, looking for solvability of inequalities for all large enough values of certain

parameters vs. for infinitely many (a distinction between limsup and liminf sets).

The rate of approximation given in (1.7) and (1.9) works for all x, which serves as

the beginning of the metric theory of Diophantine approximation, a field concerned

with understanding sets of x satisfying similar conclusions but with the right hand

sides replaced by faster decaying functions of t and q respectively. Those sets are well

studied in the asymptotic set-up (1.9) long ago while the analogous questions about

the uniform set-up remain open.

We will start by giving an overview of what is known in asymptotic set-up including

the landmark results of Khintchine (1924), Jarńık–Besicovitch (1928, 1934) and Jarńık

(1931) theorem.

1.2 Improvements to asymptotic Diophantine

approximation result

In this section we give details about theorems by Hurwitz (1891), Khintchine (1924),

Jarńık (1931) and Jarńık–Besicovitch (1928, 1934).

The starting point for improving (1.9) is Hurwitz’s Theorem (1891). Hurwitz

sharpened (1.9) by showing that the rate 1
q

can be replaced by 1√
5q
.

Theorem 1.2.1 (Hurwitz, [26]) For any irrational x ∈ R, there exist infinitely

many pairs (p, q) ∈ Z× N satisfying

|qx− p| < 1√
5q
.

6



1.2. Improvements to asymptotic Diophantine approximation result

Moreover, the constant 1√
5

is the best possible. �

The latter part just means that Hurwitz’s statement becomes false if 1√
5

is replaced by

any smaller constant say 1√
5+δ

, for any arbitrary δ > 0. In particular for the Golden

ratio x1 = 1+
√

5
2
, the inequality

|qx1 − p| <
1

(
√

5 + δ)q

holds for only finitely many (p, q) ∈ Z× N.
If from the set of irrationals we exclude the Golden ratio then 1√

5
can be improved

by 1
2
√

2
which is the best possible for x2 = 1 +

√
2. Similarly, by ignoring the irrational

x2 = 1 +
√

2. The constant 1
2
√

2
can be reduced further to 5√

221
which is optimal

for x3 = 9+
√

221
10

. The story does not stop here, for a more extended list see [10].

Continuing in this way, we find successively smaller constants and the collection of

all such best constants is known as the Markoff spectrum. It is proved in [12] that

the sequence of associated best constants tends to 1
3

and cannot be reduced further

via the same method. To establish what happens when if we consider constant to be

smaller than 1
3

we require some more sophisticated theorems. This discussion shows

that there are real numbers x for which (1.9) cannot be improved beyond a constant,

thus leading us to the theory of badly approximable numbers.

A real number x is said to be badly approximable if there exist a constant C > 0

depending on x, such that

|qx− p| > C
q
,

for all (p, q) ∈ Z×N. Denote the set of badly approximable numbers by Bad. Clearly,

Bad 6= ∅, since 1+
√

5
2
∈ Bad.

Example 1.2.2
√

2 is badly approximable. �

Proof: Consider the polynomial,

P(α) := α2 − 2 = (α−
√

2)(α +
√

2) = (
√

2− α)(−
√

2− α).

Assume that, for some positive constant C,∣∣∣∣√2− p

q

∣∣∣∣ < Cq2
, (1.10)

holds for infinitely many (p, q) ∈ Z× N. Then∣∣∣∣P (pq
)∣∣∣∣ =

∣∣∣∣√2− p

q

∣∣∣∣ ∣∣∣∣√2 +
p

q

∣∣∣∣ =

∣∣∣∣√2− p

q

∣∣∣∣ ∣∣∣∣√2 +
p

q
−
√

2 +
√

2

∣∣∣∣
≤
∣∣∣∣√2− p

q

∣∣∣∣
(

2
√

2 +

∣∣∣∣√2− p

q

∣∣∣∣
)
<

2
√

2C
q2

+
C2

q4
.

7



1. Introduction

Since the polynomial P is irreducible, we get on the other side∣∣∣∣P (pq
)∣∣∣∣ =

|p2 − 2q2|
q2

≥ 1

q2
.

Comparing both estimates for P
(
p
q

)
, we obtain

1 < 2
√

2C +
C2

q2
.

This implies C ≥ 1
2
√

2
by letting q → ∞. Thus for C ≥ 1

2
√

2
, the inequality (1.10)

has infinitely many solutions and for C < 1
2
√

2
the inequality (1.10) has finitely many

solutions. �

In fact all quadratic irrationals are in Bad, (see Corollary 1.2) which is the consequence

of a beautiful characterisation that the set Bad can be completely determined in terms

of the theory of continued fractions.

According to a classical result a real number x is badly approximable if and only if

the partial quotients in its continued fraction expansion are bounded. More precisely

if x = [a0; a1, a2, a3, . . .] is the continued fraction representation of x then

x ∈ Bad ⇐⇒ ∃ K(x) > 0 : |an| ≤ K(x) for all n ≥ 1. (1.11)

A real number x is quadratic irrational if and only if it has periodic continued fraction

representation that is

x = [a0; a1, a2, a3, . . . , ai, ai+1, . . . , ai+n].

Moreover, if a real number is periodic then the partial quotients in its continued

fraction expansion are bounded by a constant. All these arguments along with (1.11)

lead to the following result.

Corollary 1.2.3 All quadratic irrationals are badly approximable. �

An obvious example is 1+
√

5
2

i.e., the Golden ratio, which is a root of the quadratic

equation x2 − x− 1 and has the simplest continued fraction representation

1 +
√

5

2
= [1; 1, 1, 1, · · · ],

which is periodic and thus bounded. In fact, we have a more general result as follows.

Theorem 1.2.4 Suppose x ∈ R is the root of an irreducible nonzero quadratic poly-

nomial c1X
2 + c2X + c3 where c1, c2, c3 ∈ Z. Then for any C < 1√

c22−4c1c3
the inequality

|qx− p| < C
q
,

has only finitely many solutions (p, q) ∈ Z× N. �

8



1.2. Improvements to asymptotic Diophantine approximation result

In contrast with the idea of badly approximable numbers we can consider irrationals

which are well approximated by rationals. That is, if we examine the exponent on the

denominator ‘q’ in the right hand side of (1.9) then exponent ‘1’ is best possible in

the sense that if it is replaced by any exponent τ > 1 then (1.9) will not be true for

all irrationals. To elaborate this situation consider a real number τ > 0 and let W(τ)

be the set of real numbers x such that there are infinitely many pairs (p, q) ∈ Z× N
satisfying

|qx− p| < 1

qτ
.

The members of the set W(τ) are known as τ -well approximable numbers. Thus,

the set of τ -well approximable numbers consist of the real numbers for which the

exponent τ > 1 in (1.9) can be improved. From Dirichlet’s Theorem trivially we have

W (τ) = R for τ ≤ 1.

Clearly, the inclusion W(τ1) ⊂ W(τ) is obvious for any τ < τ1. Further the quality

of approximation may be measured in terms of the so called irrationality exponent

which for any irrational x, is defined by

τ(x) = sup{τ ∈ R : x ∈ W(τ)}.

As a result of Dirichlet’s Theorem, τ(x) is always bounded below by one. The numbers

for which τ(x) is larger than one are known as τ -well approximable numbers.

Then there are Liouville numbers. Such numbers are very well approximable which

means they are contained in W (τ) for arbitrary large τ and the collection of such

numbers is denoted by L =
⋂
τ>0W(τ). The set L is non-empty since

∞∑
n=1

10−n! = 0.11000100000000000000000100 . . . ∈ W(τ).

The sets Bad and W (τ) provide good points of reference as they represent two

extremes of approximation. So the natural question is how large are the sets Bad and

W (τ). Equivalently, we ask how likely it is that a given real number is contained in

one of these sets. In simple words we are interested in the ‘size’ of these sets.

Metric Diophantine approximation: Lebesgue measure

One of the primary ideas of ‘size’ which can be considered to measure sets like W(τ)

is Lebesgue measure. Loosely speaking, we say that a set of real numbers has ‘full’

Lebesgue measure if a randomly chosen real number lies in the set with probability one.

Throughout the thesis, for any measurable set U ⊂ R, we will denote its Lebesgue

measure by λ(U).

Next we generalise the idea of τ -well approximable numbers. For this consider

a decreasing function ψ : N → R+, such that ψ(q) → 0 as q → ∞ and call it an

9



1. Introduction

approximating function. The approximating function ψ controls the rate at which

irrationals are approximated by rationals.

Denote by W (ψ) the set of all real numbers x which satisfy the inequality

|qx− p| < ψ(q)

for infinitely many (p, q) ∈ Z× N. The members of W (ψ) are usually referred to as

ψ-well approximable numbers.

Obviously, when ψ : q 7→ ψ(q) := q−τ the set W (ψ) is simply the set W (τ) of

τ -well approximable numbers.

Further, note that as a consequence of Corollary 1.1.3,

W (ψ) = R if ψ (q) =
1

q
.

The structure of sets like W(ψ) and Bad look almost similar to fractals. Therefore

the foremost problem of the metrical theory of Diophantine approximation was to

explore the sizes of sets Bad and W(ψ) in terms of Lebesgue measure and later in

terms of Hausdorff measure and dimension. Without any loss of generality, we will

focus on real numbers in the unit interval [0, 1) unless mentioned otherwise.

Note that the set W(ψ) can be viewed as a limsup set of balls. Let q ∈ N be fixed,

then

W(ψ) = lim sup
q→∞

Uq =
∞⋂
N=1

∞⋃
q=N

Uq(ψ) (1.12)

where

Uq(ψ) :=

q⋃
p=0

{
x ∈ [0, 1) : |qx− p| < ψ(q)

}
:=

q⋃
p=0

B

(
p

q
,
ψ(q)

q

)
∩ [0, 1)

=

q⋃
p=0

[p− ψ(q)

q
,
p+ ψ(q)

q

]
∩ [0, 1)

Also observe that,

λ(Uq(ψ)) = 2
ψ(q)

q
≤ 2ψ(q), (1.13)

signifying the disjointness of the intervals in Uq(ψ) for ψ(q) < 1
2
.

( )) (

ψ(q)
q

0 1
q

2
q

p−1
q

p
q

p+1
q

1

10



1.2. Improvements to asymptotic Diophantine approximation result

Clearly from the figure we have q − 1 full intervals of length 2ψ(q)
q

whereas on the end

of the line we have two half intervals. From (1.12) for any N ∈ N,

W(ψ) ⊆
∞⋃
q=N

Uq(ψ).

Thus (1.13) implies

λ(W(ψ)) ≤ 2
∞∑
q=N

ψ(q). (1.14)

Next assume
∞∑
q=N

ψ(q) <∞.

Then for any δ > 0, there exists N0 such that for all N ≥ N0, we have

∞∑
q=N

ψ(q) <
δ

2
.

Then from (1.14),

λ(W(ψ)) < δ,

and from the arbitrariness of δ it follows that

λ(W(ψ)) = 0.

Thus we have the following corollary.

Corollary 1.2.5 Let ψ be same as defined above and
∑∞

q=1 qψ(q) <∞. Then λ(W(ψ)) = 0.�

The above statement which is generally known as the convergence case for Kh-

intchine’s Theorem is a consequence of the Borel–Cantelli Lemma from probability

theory.

Lemma 1.2.6 (Borel–Cantelli) Let (X ,Σ, µ) be a measure space with probability

measure µ(X ) <∞, and let {Uq}q≥1 ⊆ Σ be a sequence of events in Σ. If

∞∑
q=1

µ(Uq) <∞, (1.15)

�

then

µ

(
lim sup
q→∞

Uq

)
= 0.

Proof: For any N ≥ 1, lim supq→∞ Uq is contained in
⋃∞
q=N Uq. Therefore,

µ

(
lim sup
q→∞

Uq

)
= µ

( ∞⋂
N=1

∞⋃
q=N

Uq
)
≤ µ

( ∞⋃
q=N

Uq
)
≤

∞∑
q=N

µ(Uq). (1.16)

In view of (1.15), the last inequality in (1.16) tends to 0 as N →∞. �

11



1. Introduction

Next if we consider the situation where
∑∞

q=1 µ(Uq) diverges. Then does this

implies µ(lim supq→∞ Uq) > 0 or µ(lim supq→∞ Uq) = 0? Unfortunately, in general it

is not true as there is a possibility of constructing nested intervals {Uq}q≥1 such that

the sum diverges but the measure is zero as demonstrated by the following example.

Example 1.2.7 Consider Uq :=
(
0, 1

q

)
and assume probability measure ‘µ’ to be

Lebesgue measure. Then
∞∑
q=1

λ(Uq) =
∞∑
q=1

1

q
=∞.

Whereas, for any N ∈ N we have

lim sup
q→∞

Uq =
∞⋂
N=1

∞⋃
q=N

(
0,

1

q

)
=

∞⋂
N=1

(
0,

1

N

)
= ∅. �

Therefore,

λ(lim sup
q→∞

Uq) = 0.

Recall that Corollary 1.2.5 implies that if ψ decreases rapidly enough such that the

‘measure’ sum converges then the set of ψ-well approximable numbers is an exceptional

set (i.e., of Lebesgue measure zero). Next think of the case when the measure sum

diverges, then what will be the ‘size’ of the set W(ψ)?

The following groundbreaking measure-theoretic result by Khintchine in 1924

sits at the heart of metric Diophantine approximation and is known as Khintchine’s

Theorem. It gives an elegant ‘zero-full’ law for the ‘size’ of W (ψ) expressed in terms

of one-dimensional Lebesgue measure.

Theorem 1.2.8 (Khintchine, [30]) Let ψ : N→ R+ be a decreasing function with

ψ(q)→ 0 as q →∞ . Then

λ(W(ψ)) =


0 if

∞∑
q=1

ψ(q) <∞,

1 if
∞∑
q=1

ψ(q) =∞.

�

The divergence case plays the foremost role in Khintchine’s Theorem and that is where

the decreasing (monotonic) condition for ψ is compulsory. It is noteworthy that in the

original statement Khintchine imposed the stricter assumption that qψ(q) is decreasing.

The fact that this extra assumption is not required is because of [5]. However the

condition that ψ is decreasing is considered essential for the divergent case. This point

was highlighted by Duffin–Schaeffer in [18]. To support this argument they established

a counterexample which involved a non-monotonic function υ : N → R+ such that

λ(W(υ)) = 0 but
∑∞

q=1 υ(q) =∞.

12



1.2. Improvements to asymptotic Diophantine approximation result

The counterexample produced by Duffin–Schaeffer was built on the fact that the

following product taken over all primes p diverges, i.e.,∏
p

(
1 +

1

p

)
=∞.

Thus there is a sequence {zi}i≥1 of positive square free integers such that (zi, zk) = 1

for i 6= k, and ∏
p|zi

(
1 +

1

p

)
> 2i + 1.

Let

υ(q) :=


2−i−1q
zi

if q | zi for some i and q > 1

0 if q - zi, or q = 1,

and define Uq by

Uq := Uq(υ) =

q⋃
p=0

[p− υ(q)

q
,
p+ υ(q)

q

]
∩ [0, 1).

For q > 1, if q | zi then Uq ⊆ Uzi and so⋃
q|zi

Uq = Uzi .

Also for this case

λ(Uq) = 2
υ(q)

q
=

2−i

zi
.

Therefore,

λ
(⋃
q|zi

Uq
)

= λ(Uzi) = 2υ(zi) = 2−i for i = 1, 2, . . . .

Consider an arbitrary n ∈ N such that

W(υ) ⊆
∞⋃
i=n

⋃
q|zi

Uq,

then

λ(W(υ)) ≤
∞∑
i=n

2−i = 2−n+1.

Consequently,

λ(W(υ)) = 0.

13



1. Introduction

Next observe that,

∞∑
q=1

υ(q) =
∞∑
i=1

2−i−1 1

zi

∑
q>1, q|zi

q

=
∞∑
i=1

2−i−1 1

zi

∏
p|zi

(1 + p)

=
∞∑
i=1

2−i−1
(∏
p|zi

(1 +
1

p
)
)

≥
∞∑
i=1

2−i−1(2i + 1) =∞.

However, in the same paper [18], Duffin–Schaffer proposed a more suitable statement

for any arbitrary function ψ. They started by defining the set of real number x such

that

|qx− p| < ψ(q), (1.17)

for infinitely many (p, q) ∈ Z× N with (p, q) = 1. Let W ′(ψ) represent the collection

of all such points x. Then clearly, W ′(ψ) ⊂ W(ψ). Therefore λ(W (ψ)) = 0 implies

λ(W ′(ψ)) = 0 so the convergence case for Khintchine’s Theorem stays valid for W ′(ψ)

replacing W(ψ). Further it is straightforward to deduce that

λ(W ′(ψ)) = 0 if
∞∑
q=1

Θ(q)
ψ(q)

q
<∞,

where Θ is the Euler function, (in number theory, Euler’s function counts the positive

integers up to a given integer n that are relatively prime to n). The co-primality

condition imposed on p and q in (1.17) guarantees that the rational p
q

to x with rate

of approximation ψ(q)
q

are in reduced form. Then the conjecture is as follows.

Conjecture 1.2.9 (Duffin–Schaeffer, [18]) For any function ψ : N→ R+,

λ(W ′(ψ)) = 1 if
∞∑
q=1

Θ(q)
ψ(q)

q
=∞.

The profound Duffin–Schaeffer Conjecture 1941, which remained open until solved by

Koukoulopoulos–Maynard [37] in 2019.

Theorem 1.2.10 (Koukoulopoulos–Maynard, [37]) Let ψ : N → R+ be any

function. Then

λ(W ′(ψ)) = 1 if
∞∑
q=1

Θ(q)
ψ(q)

q
=∞.

14



1.2. Improvements to asymptotic Diophantine approximation result

Returning briefly to the set Bad. From Khintchine’s Theorem and by a simple

observation

Bad ⊆ [0, 1)\W
(
ψ : q 7→ 1

q log q

)
.

Thus it follows that

λ(Bad) = 0.

Similarly, the set of very well approximable numbers has Lebesgue measure zero.

If we jump back to the set W (τ) of τ -well approximable numbers then recall that

the convergence case of Khintchine’s Theorem implies that λ(W (τ)) = 0 for any

τ > 1. Heuristically, one would expect that as τ increases the ‘size’ of W (τ) will

decrease. Particularly, it is expected that the set say W (200) is smaller than the

set W (20) , since W (200) ⊂ W (20). But both of them are exceptional sets. Thus

Lebesgue measure fails to distinguish between them from a metric point of view.

Therefore we might be interested in more elegant notion of measuring size. One such

method is Hausdorff measure and dimension.

Metric Diophantine Approximation: Hausdorff measure and

dimension

Hausdorff dimension is the refinement of our intuitive idea of dimension but it

does not necessarily takes integer value and therefore gives us a method for allocating

reasonable values of dimension to, say, fractal sets. It depends on covering a set by

small sets.

To define the Hausdorff dimension of the set we need to know the concept of Hausdorff

measure. Hausdorff measure generalises the familiar notions of length, area, volume, etc.

It might be demonstrated that for a subsets of Rn, the n-dimensional Hausdorff measure

is, to within a constant multiple, just an n-dimensional Lebesgue measure. Thus

Hausdorff measure is a generalisation of Lebesgue measure and Hausdorff dimension is

a generalisation of Euclidean (integer) dimension.

In what follows, a dimension function is an increasing continuous function f : R+ → R+

such that f(r)→ 0 as r → 0 and V is an arbitrary subset of Rn. For ρ > 0, a ρ-cover

for a set V is defined as the countable collection {Ui}i≥1 of sets in Rn with diameters

0 < diam(Ui) ≤ ρ such that V ⊂
⋃∞
i=1 Ui for each i. Then for each ρ > 0 define

Hf
ρ(V) = inf

{
∞∑
i=1

f
(
diam(Ui)

)
: {Ui} is a ρ -cover of V

}
.

15



1. Introduction

Note thatHf
ρ(V) increases as ρ decreases and therefore approaches a limit. Accordingly,

the f -dimensional Hausdorff measure of V is defined as

Hf (V) := lim
ρ→0
Hf
ρ(V).

This limit could be zero or infinity, or take a finite positive value.

If f(r) = rs where s ≥ 0, then Hf is the s-dimensional Hausdorff measure and

is represented by Hs. It can be easily verified that Hausdorff measure is monotonic,

countably sub-additive, and Hs(∅) = 0.

The following property

Hs(V) <∞ =⇒ Hs′(V) = 0 if s′ > s,

implies that there is a unique real point s at which the Hasudorff s-measure drops

from infinity to zero (unless V is finite so that Hs(V) is never finite). The value taken

by s at this discontinuity is referred to as the Hausdorff dimension of a set V and is

defined as

dimH V := inf{s ≥ 0 : Hs(V) = 0}.

(0, 0)
s

Hs(V)

∞

HdimH V (V)

dimH V

Graph of Hausdorff measure Hs(V) against the exponent s.

From the definition of dimH V , we have

Hs(V) =

0 if s > dimH V ,

∞ if s < dimH V .

16



1.2. Improvements to asymptotic Diophantine approximation result

If s = dimH V , then Hs may be 0 or ∞ or may take a finite value i.e., Hs ∈ (0,∞).

When s = n, Hn coincides with standard Lebesgue measure on Rn.

Computing the Hausdorff dimension of a set (say dimH V = s) is typically accom-

plished in two steps: obtaining the upper bounds i.e., showing dimH V ≤ s and the

lower bounds i.e., dimH V ≥ s, separately. In most cases upper bounds are easier to

obtain since it is enough to provide specific covers as ρ→ 0. Usually lower bounds are

harder to establish as one needs to work with all possible ρ-covers of V in order to get

the infimum value.

The Jarńık–Besicovitch Theorem

Recall that W(ψ) for the approximating function ψ(q) = q−τ is the set W(τ). From

the convergence case of Theorem 1.2.8, for any τ > 1 we have λ(W(τ)) = 0. One would

expect that as we increase τ the ‘size’ ofW (τ) decreases. The following result by Jarńık

[29] and then independently proved by Besicovitch [8], known as Jarńık–Besicovitch

Theorem tells that for any τ ≥ 1,

dimHW(τ) =
2

1 + τ
.

From this result it is obvious that

dimHW (20) =
2

21
and dimHW (200) =

2

201

and soW (200) is ‘smaller’ thanW (20) as expected. Thus for sets likeW(τ) Hausdorff

dimension is a source to distinguish between their sizes. Lebesgue measure fails to do.

Jarńık–Besicovitch Theorem is a fantastic dimension result however it does not

gives any additional informations regards to Hs at the critical value ℘ := 2
1+τ

. By

definition

Hs(W(τ)) =

0 if s > ℘,

∞ if s < ℘,

but

Hs(W(τ)) = ? if s = ℘.

That is, it fails to differentiate between sets having same dimension. Take, for example,

the approximating functions

ψ1(q) =
1

q10
and ψ2(q) =

1

q10 log q
.

Then from the Jarńık–Besicovitch Theorem we have

dimHW (ψ1) =
2

11
and dimHW (ψ2) =

2

11
.

Briefly we are interested to seek the Hausdorff measure analogue of Theorem 1.2.8.
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Jarńık’s Theorem

The following elegant statement by Jarńık is concerned with the Hausdorff measure

of W(ψ).

Theorem 1.2.11 (Jarńık, [29]) Let ψ be an approximating function and s ∈ (0, 1).

Then

Hs(W(ψ)) =


0 if

∞∑
q=1

q
(
ψ(q)
q

)s
< ∞,

∞ if
∞∑
q=1

q
(
ψ(q)
q

)s
= ∞.

�

With ψ(q) = q−τ (τ > 1), Theorem 1.2.11 not only tells that dimHW(τ) = 2
1+τ

but also reveals the critical exponent at which the Hausdorff measure is infinite, i.e.

Hs(W(τ)) =∞ at s =
2

1 + τ
.

The case s = 1 can be naturally excluded since

H1(W(ψ)) � λ(W(ψ)) = 1.

1.3 Improvements to uniform Diophantine

approximation result

The previous discussion demonstrates that generalisations of Corollary 1.1.3 have

been well studied over the years. As discussed earlier Khintchine’s Theorem gives

precise conditions for the Lebesgue measure of W(τ). Quite surprisingly no such clean

statement has been proved (until 2018) in the set-up of Theorem 1.1.2. In connection

with Theorem 1.1.2 we have the set of Dirichlet improvable numbers.

From now onwards let ψ : [t0,∞)→ R+ be a decreasing function with t0 ≥ 1 fixed

and let tψ(t) < 1 for all t ≥ t0. Define the set D(ψ) of ψ-Dirichlet improvable numbers

by

D(ψ) :=

{
x ∈ R :

∃N such that the system |qx− p| < ψ(t), |q| < t

has a nontrivial integer solution for all t > N

}
. (1.18)

Note that this definition emerges from (1.7) by replacing ‘≤ 1
t
’ with ‘< ψ(t)’ and

aiming for the existence of nontrivial integer solution for all large t except those

belonging to a bounded set. The members of the complementary set D(ψ)c are known

as ψ-Dirichlet non-improvable numbers. Since Theorem 1.1.2 was proved by a simple

pigeon-hole argument, there should be a large room for improvement. So the natural

question is what is the metrical theory associated with the set D(ψ)c?
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Chapter 2

Auxiliary results

In this chapter we mention some elementary results and various techniques which

will be helpful in establishing the main results of this thesis. Just to avoid confusion,

throughout the thesis we can also use an, pn and qn in place of an(x), pn(x) and qn(x),

respectively.

2.1 Continued fractions and Diophantine

approximation

From Chapter 1, it is obvious that continued fractions play a very important role in

the metrical theory of Diophantine approximation. In this section we will recall some

basic properties of continued fractions in connection with Diophantine approximation.

They are explained in the standard texts [28, 31].

For any integer vector (a1, . . . , an) ∈ Nn with n ≥ 1, define

In(a1, . . . , an) := {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an}

and call it the basic cylinder of order n. Note that In simply represents the set of all

real numbers in [0, 1) whose continued fraction expansions begin with (a1, . . . , an).

Proposition 2.1.1 For any positive integers a1, . . . , an, let pn = pn(a1, . . . , an) and

qn = qn(a1, . . . , an) be defined recursively by (1.2). Then:

1.

In(a1, a2, . . . , an) =


[
pn
qn
, pn+pn−1

qn+qn−1

)
if n is even;(

pn+pn−1

qn+qn−1
, pn
qn

]
if n is odd ,

(2.1)

and by using (1.3) we have

1

2q2
n

≤ |In(a1, . . . , an)| = 1

qn(qn + qn−1)
≤ 1

q2
n

, (2.2)
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2. Auxiliary results

where throughout the thesis | ? | represents the length of any interval.

2. For any n ≥ 1, we have

qn ≥ 2(n−1)/2 (2.3)

and for any 1 ≤ k ≤ n

ak + 1

2
≤ qn(a1, . . . , an)

qn(a1, . . . , ak−1, ak+1 . . . , an)
≤ ak + 1.

3. For any n ≥ 1
qn−1

qn
= [an, an−1, . . . , a1].

and k ≥ 1, we have

qn+k(a1, . . . , an, an+1 . . . , an+k) ≥ qn(a1, . . . , an)qk(an+1, . . . , an+k), (2.4)

qn+k(a1, . . . , an, an+1 . . . , an+k) ≤ 2qn(a1, . . . , an)qk(an+1, . . . , an+k). (2.5)

4. A simple fact on continued fraction gives that∣∣qn−1(x)x− pn−1(x)
∣∣ =

1

qn(x) + T n(x) · qn−1(x)
=

1

qn(x)(1 + T n(x) · qn−1(x)
qn(x)

)
,

5. Speed of approximation is given by the following formula,

1

3an+1(x)q2
n(x)

<
∣∣∣x− pn(x)

qn(x)

∣∣∣ =
1

qn(x)(qn+1(x) + T n+1(x)qn(x))
<

1

an+1(x)q2
n(x)

,

(2.6)

and the derivative of T n is given by

(T n)′(x) =
(−1)n

(xqn−1(x)− pn−1(x))2
.

Further,

q2
n(x) ≤

n−1∏
k=0

|T ′(T k(x))| ≤ 4q2
n(x). (2.7)

�

From (1.2) note that qn is determined by a1, . . . , an for any n ≥ 1. Therefore, we can

write qn = qn(a1, . . . , an).

The next proposition describe the positions of cylinders In+1 of order n+ 1 inside

the nth order cylinder In.

Proposition 2.1.2 ([31]) Let In = In(a1, . . . , an) be a basic cylinder of order n,

which is partitioned into sub-cylinders {In+1(a1, . . . , an, an+1) : an+1 ∈ N}. When n is

odd, these sub-cylinders are positioned from left to right, as an+1 increases from 1 to

∞; when n is even, they are positioned from right to left. �
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2.2. Pressure function and Hausdorff dimension

As discussed in Chapter 1, according to Legendre’s Theorem if an irrational x is

well approximated by a rational p
q
, then this rational must be a convergent of x. Thus

in order to find good rational approximates to an irrational number we only need to

focus on its convergents. Note that from (2.6), a real number x is well approximated

by its convergent pn
qn

if its (n+ 1)th partial quotient is sufficiently large.

The next result is due to  Luczak [39].

Lemma 2.1.3 ( Luczak, [39]) For any a, b > 1, the sets{
x ∈ [0, 1) : an(x) ≥ ab

n

for infinitely many n ∈ N
}

and {
x ∈ [0, 1) : an(x) ≥ ab

n

for all sufficiently large n ∈ N
}

are of the same Hausdorff dimension 1
1+b

. �

The mass distribution principle

As discussed earlier deriving the Hausdorff dimension for any set, normally consists of

two parts: obtaining the upper and the lower bounds separately. The upper bound

usually follows by using a suitable covering argument whereas estimation of lower

bounds needs clever synthesis of the set supporting a certain outer measure on the set

under study. The next simple but crucial result, which will be the main ingredient

for finding the lower bounds of sets in this thesis, is commonly known as the mass

distribution principle [19, §4.2].

Proposition 2.1.4 (Mass Distribution Principle) Let U ⊂ [0, 1) have a positive

measure µ(U) > 0 and suppose that for some s > 0 there exists a constant c > 0 such

that if for any x ∈ [0, 1), we have

µ(B(x, r)) ≤ crs,

where B(x, r) denotes an open ball centred at x and radius r. Then dimH U ≥ s. �

2.2 Pressure function and Hausdorff dimension

In this section we recall the definition of a pressure function and go through some of

its basic properties. It plays an important role for finding Hausdorff dimension of sets

connected with the properties of continued fractions.

The general idea of pressure function, specially the topological pressure, is comprehens-

ively explained in Walters’ [44] book. For the requirement of this thesis we just need

to focus on that area which specialises in the settings of continued fraction. Directing
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2. Auxiliary results

the reader through the references, the end game is to produce a function, from which

we can produce a lower bound for the Hausdorff dimension of our sets of interest.

The pressure function naturally gets involved in the dimension theory for conformal

iterated function systems (for examples, see [40]).

Mauldin–Urbański [41] presented a form of pressure function in conformal iterated

function systems with applications to the geometry of continued fractions, for more

thorough details we refer to [40, 41, 42].

Consider a finite or infinite subset A of natural numbers and define

ZA = {x ∈ [0, 1) : for all n ≥ 1, an(x) ∈ A}.

Then (ZA, T ) is a subsystem of ([0, 1), T ) where T is a Gauss map as defined in (1.1).

Let ϕ : [0, 1) → R be a real function. Then the pressure function with respect to

potential ϕ and restricted to the system (ZA, T ) is defined as

PA(T, ϕ) := lim
n→∞

1

n
log

∑
a1,··· ,an∈A

sup
x∈ZA

eSnϕ([a1,··· ,an+x]), (2.8)

where Snϕ(x) denotes the ergodic sum ϕ(x) + · · ·+ϕ(T n−1(x)). For A = N we denote

PN(T, ϕ) by P(T, ϕ).

The nth variation of a function ϕ, denoted by Varn(ϕ), is defined as

Varn(ϕ) := sup
x,z : In(x)=In(z)

|ϕ(x)− ϕ(z)|,

where In(x) represents the basic cylinder of order n.

A function ϕ is said to satisfies the tempered distortion property if

Var1(ϕ) <∞ and lim
n→∞

Varn(ϕ) = 0. (2.9)

Throughout the thesis, we consider potential ϕ : [0, 1) → R to be a function

satisfying the tempered distortion property. Since ϕ satisfy the tempered distortion

property (2.9) it follows that removing the supremum from (2.8) will not effect the

value of PA(T, ϕ).

The existence of the limit in (2.8) is due to the following result.

Proposition 2.2.1 (Walters, [44]) The limit defining PA(T, ϕ) exists. Moreover if

ϕ : [0, 1) → R is a function satisfying (2.9), then the value of PA(T, ϕ) remains

unchanged even without taking the supremum over x ∈ ZA in (2.8). �

To avoid confusion, from now on, if we want to take any point z from the basic

cylinder In(a1, . . . , an), we can always take it as z = pn
qn

= [a1, . . . , an].
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2.2. Pressure function and Hausdorff dimension

As all the potentials in this thesis satisfies (2.9), by Proposition 2.2.1, we can

present (2.8) as

PA(T, ϕ) := lim
n→∞

1

n
log

∑
a1,··· ,an∈A

eSnϕ([a1,··· ,an]). (2.10)

The next result which is by Hanus–Mauldin–Urbański [23] shows that when the

Gauss system ([0, 1), T ) is approximated by its subsystems (ZA, T ) then in the system

of continued fractions the pressure function has a continuity property (for an elementary

proof see [38] or [23, Proposition 2]).

Proposition 2.2.2 (Hanus–Mauldin–Urbański, [23]) Let ϕ : [0, 1) → R be a

real function satisfying (2.9). Then

P(T, ϕ) = sup{PA(T, ϕ) : A is a finite subset of N}. �

Notation: To simplify the presentation, we start by fixing some notation. We use

a � b to indicate that |a/b| is sufficiently large, and a � b to indicate that |a/b| is

bounded between unspecified positive constants. We can also use i.m. for infinitely

many.
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Chapter 3

Metrical theory associated with the

set D(ψ)c

As discussed in Chapter 1, most metric theories are intended to strengthen the

asymptotic Diophantine approximation result (Corollary 1.1.3) instead of uniform

Diophantine approximation result (Theorem 1.1.2). In this chapter, the Lebesgue

measure criterion for the set D(ψ)c which is attributed to Kleinbock–Wadleigh [34] and

the Hausdorff measure of the set D(ψ)c which is due to Hussain–Kleinbock–Wadleigh–

Wang [27] are discussed in detail.

Throughout the thesis, for the decreasing function ψ : [t0,∞)→ R+ with t0 ≥ 1

fixed, the functions ψ and Ψ will always be related by the following auxiliary function

Ψ(t) :=
1

1− tψ(t)
− 1. (3.1)

3.1 Lebesgue measure of the set D(ψ)c

The contents in this section are mostly taken from [34].

From Theorem 1.1.2 it is obvious that D
(

1
t

)
= R. Also since |q| < t in (1.18),

therefore D(ψ) ⊂ W(ψ) whenever ψ is decreasing. However D(ψ) is considerably

different than W(ψ) for functions ψ which are decaying faster than 1
t
.

As noticed by Davenport–Schmidt [13], for any δ > 0, the set D
(

1−δ
t

)
is a subset

of the union of Q and the set of badly approximable numbers. Thus

λ

(
D
(

1− δ
t

))
= 0

and consequently

λ

(
D
(

1− δ
t

)c)
= 1.

It is worth mentioning that even prior to Davenport–Schmidt’s work, in regards

to improving Dirichlet’s Theorem, there were some contributions made by Divǐs in
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3.1. Lebesgue measure of the set D(ψ)c

the papers [14, 15] and some are made recently by Haas [22]. But beyond some

particular choices of ψ, nothing was known until when Kleinbock–Wadleigh [34] proved

a dichotomy law on the Lebesgue measure of the set D(ψ)c. Since then this set has

gained much attention from many researchers. As observed by Kleinbock–Wadleigh

[34], the set of ψ-Dirichlet non-improvable numbers is non-empty whenever ψ is

decreasing. In fact, the starting point is the observation that Dirichlet’s Theorem is

sharp in the sense that if ψ(t) < 1/t for all sufficiently large t, then there exists x ∈ R
which is not ψ-Dirichlet improvable.

Kleinbock–Wadleigh [34, Lemma 2.1] noted by a straightforward proof that a real

number x is ψ-Dirichlet improvable if and only if

|qn−1x− pn−1| < ψ(qn) (3.2)

for sufficiently large n. On the other hand, Cassels [11, §II.2] considered complete quo-

tients of the form θn+1 = [an+1(x), an+2(x), . . . ] and φn = [an(x), an−1(x), . . . , a1(x)]

and derived the following beautiful relation

(1 + θn+1φn)−1 = qn|qn−1x− pn−1|. (3.3)

By combining the relation (3.3) with the ψ-Dirichlet property (3.2) of x, Kleinbock–

Wadleigh proved the following important ψ-Dirichlet improvability criterion which, in

other words, rephrases the ψ-Dirichlet improvability of x in terms of the growth of

product of consecutive partial quotients.

Lemma 3.1.1 (Kleinbock–Wadleigh, [34]) Let x ∈ [0, 1) \ Q and ψ : [t0,∞) →
R+ with tψ(t) < 1 for all t ≥ t0. Then

(i) x ∈ D(ψ) if an+1(x)an(x) ≤ Ψ(qn)
4

for all sufficiently large n,

(ii) x ∈ D(ψ)c if an+1(x)an(x) > Ψ(qn) for infinitely many n. �

From the above lemma it is obvious that an irrational number x satisfies the condition

of ψ-Dirichlet improvability if and only if the product of two consecutive partial

quotients of x do not grow rapidly.

Consequently, Kleinbock–Wadleigh [34] proved the following zero-one law for the

Lebesgue measure of the set D(ψ)c.

Theorem 3.1.2 (Kleinbock–Wadleigh, [34]) Let ψ : [t0,∞) → R+ be a decreas-

ing function and Ψ as defined in (3.3) (i.e., the function t 7→ tψ(t) is increasing) with

tψ(t) < 1 for all t ≥ t0. If

∞∑
t=t0

log Ψ(t)

tΨ(t)
<∞ (resp. =∞)
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3. Metrical theory associated with the set D(ψ)c

then

λ(D(ψ)c) = 0 (resp. λ(D(ψ)) = 0). �

Example 3.1.3

λ(D(ψ)c) =

 0, if ψ(t) = 1
t

(
1− 1

log t(log log t)2+δ

)
for any δ > 0;

full , if ψ(t) = 1
t

(
1− 1

log t(log log t)2

)
.

3.2 Hausdorff measure of the set D(ψ)c

Note that for ψ decreasing sufficiently slow, Theorem 3.1.2 tells that λ(D(ψ)c) = 0

but gives no further information about the size of these null sets. Keeping in view the

importance of Hausdorff measure and dimension as discussed in Chapter 1, Hussain–

Kleinbock–Wadleigh–Wang [27] have established the Hausdorff measure theoretic

results for Dirichlet’s improvability and they showed that the Hausdorff measure of

D(ψ)c satisfy a zero-infinity law for a wide range of dimension functions.

Throughout this section the results and material have been taken from [27]. For

completeness we will include the proofs discussed in [27].

Theorem 3.2.1 (Hussain–Kleinbock–Wadleigh–Wang, [27]) Let ψ : [t0,∞)→
R+ be a decreasing function with tψ(t) < 1 for all t ≥ t0. Then for any s ∈ [0, 1)

Hs(D(ψ)c) =


0 if

∞∑
t=t0

t
(

1
t2Ψ(t)

)s
< ∞;

∞ if
∞∑
t=t0

t
(

1
t2Ψ(t)

)s
= ∞.

�

Note that if we take s = 1 than this is the scope of Theorem 3.1.2 since H1 is the

Lebesgue measure, therefore Hussain–Kleinbock–Wadleigh–Wang [27] pointed that

the condition s < 1 is necessary.

Recall from Chapter 1, the f -dimensional Hausdorff measure Hf is a generalisation

of the s-dimensional Hausdorff measure Hs. A dimension function f is said to be

essentially sub-linear if there exists C > 1 such that

lim sup
x→0

f(Cx)

f(x)
< C. (3.4)

It was pointed out in [27] that condition (3.4) fails for f(x) = x or f(x) = x log(1/x).

Whereas it holds for f(x) = xs when 0 ≤ s < 1.
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3.2. Hausdorff measure of the set D(ψ)c

The following theorem implies Theorem 3.2.1.

Theorem 3.2.2 (Hussain–Kleinbock–Wadleigh–Wang, [27]) Let ψ be as defined

in Theorem 3.2.1 and let f be an essentially sub-linear dimension function. Then

Hf
(
D(ψ)c

)
=


0 if

∞∑
t=t0

tf
(

1
t2Ψ(t)

)
< ∞;

∞ if
∞∑
t=t0

tf
(

1
t2Ψ(t)

)
= ∞.

It is noteworthy that in [27], as a consequence of Lemma 3.1.1, the following

significant inclusion was observed

G(Ψ) ⊂ D(ψ)c ⊂ G

(
Ψ

4

)
, (3.5)

where

G(Ψ) =
{
x ∈ [0, 1) : an(x)an+1(x) ≥ Ψ(qn) for i.m. n ∈ N

}
,

which served as the basis for the proof of Theorem 3.2.2. Thus as a result of inclusion

(3.5) the proof of the following theorem, implies the proof of Theorem 3.2.2.

Theorem 3.2.3 (Hussain–Kleinbock–Wadleigh–Wang, [27]) Let ψ : [t0,∞)→ R+

be a decreasing function with tψ(t) < 1 for all t ≥ t0 and Ψ satisfying relation (3.1).

Also let f be an essentially sub-linear dimension function. Then

Hf
(
G(Ψ)

)
=


0 if

∑
t

tf
(

1
t2Ψ(t)

)
< ∞;

∞ if
∑
t

tf
(

1
t2Ψ(t)

)
= ∞.

Consider a set

K(Ψ) :=

{
x ∈ [0, 1) :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q2Ψ(q)
for i.m. (p, q) ∈ Z× N

}
.

Just to avoid confusion, note that the set K(Ψ) is just the set of ψ-well approximable

numbers (defined in Chapter 1) if we take ψ(q) = 1
qΨ(q)

.

The following refined form of Jarńık’s Theorem was the key ingredient for proving

Theorem 3.2.3 as discussed in [27].

Theorem 3.2.4 (Hussain–Kleinbock–Wadleigh–Wang, [27]) Let Ψ be as defined

above and let f be a dimension function satisfying the following conditions:

lim
x→0

f(x)

x
=∞, (3.6)
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3. Metrical theory associated with the set D(ψ)c

and

∃C ≥ 1 such that
f(x2)

x2

≤ C
f(x1)

x1

whenever x1 < x2 � 1. (3.7)

Then

Hf
(
K(Ψ)

)
=


0 if

∞∑
t=t0

tf
(

1
t2Ψ(t)

)
< ∞;

∞ if
∞∑
t=t0

tf
(

1
t2Ψ(t)

)
= ∞.

�

It is worth mentioning here that for proving the divergence case of Theorem 3.2.3,

Hussain–Kleinbock–Wadleigh–Wang [27] observed an obvious inclusion

G(Ψ) ⊃ {x ∈ [0, 1) : an+1(x) > Ψ(qn) for i.m. n ∈ N} =: G1(Ψ).

Further they assumed that Ψ(t) ≥ 1 for all t � 1. Otherwise, Ψ(t) < 1 for all t

large enough since it is assumed that Ψ is non-decreasing. Then clearly G1(Ψ) and

consequently G(Ψ) consists of all irrationals in [0, 1], and that the sum in Theorem

3.2.3 diverges.

Additionally, they noticed that K(3Ψ) is properly contained in G1(Ψ). For the

requirement of this thesis we will rewrite the proof from [27] for completeness.

In fact, if there are infinitely many pairs (p, q) with∣∣∣∣x− p

q

∣∣∣∣ < 1

3Ψ(q)q2
<

1

2q2
,

then by Legendre’s Theorem (1.4) and by the monotonicity of Ψ,∣∣∣∣x− pn
qn

∣∣∣∣ =

∣∣∣∣x− p

q

∣∣∣∣ < 1

3Ψ(q)q2
≤ 1

3Ψ(qn)q2
n

.

On the other hand by (2.6), ∣∣x− pn
qn

∣∣ ≥ 1

3an+1q2
n

.

Thus, for infinitely many n

an+1 > Ψ(qn),

verifying the claim.

Thus by Theorem 3.2.4 one will have

Hf
(
G(Ψ)

)
≥ Hf

(
G1(Ψ)

)
≥ Hf

(
K(3Ψ)

)
=∞,

whenever one can show that the dimension function f satisfies conditions (3.6) and

(3.7), and that
∞∑
t=t0

tf

(
1

3t2Ψ(t)

)
=∞.

This is done via the following lemma.

Lemma 3.2.5 (Hussain–Kleinbock–Wadleigh–Wang, [27]) Let f be an essen-

tially sub-linear dimension function. Then both (3.6) and (3.7) hold. �
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3.3. Hausdorff dimension of the set D(ψ)c

3.3 Hausdorff dimension of the set D(ψ)c

In the previous sections we have mentioned measure theoretic results related with

the set D(ψ)c which will be helpful for proving the main results of this thesis. The

Hausdorff dimension of the set D(ψ)c follows directly from Theorem 3.2.1 as shown by

Hussain–Kleinbock–Wadleigh–Wang [27] as follows.

dimHD(ψ)c =
2

2 + τ
, where τ = lim inf

t→∞

log Ψ(t)

log t
.

As an example,

dimHD(ψ)c =
2

2 + τ
, for ψ(t) =

1− at−τ

t
(a > 0, τ > 0).

3.4 Natural Question

From the discussion in Section 3.2, we know that

K(3Ψ) ⊂ G(Ψ). (3.8)

If we consider the the s-dimensional Hausdorff measure statement for the set K(Ψ)

where s ∈ (0, 1). Then

Hs(K(Ψ)) =


0 if

∞∑
t=t0

t
(

1
t2Ψ(t)

)s
< ∞;

∞ if
∞∑
t=t0

t
(

1
t2Ψ(t)

)s
= ∞,

readily gives the divergence statement for K(3Ψ). To be precise,

Hs(K(3Ψ)) =∞ =⇒ Hs(G(Ψ)) =∞.

It is thus clear that when the sum
∞∑
t=t0

t
(

1
t2Ψ(t)

)s
diverges, both the sets G(Ψ) and

K(3Ψ) have full measure. However, since the inclusion (3.8) is proper, it is natural to

expect that the set G(Ψ) \ K(3Ψ) is non-trivial. From a measure theoretic point of

view there is no new information, however, from a dimension point of view there is

more to ask.

This raises the natural question.

Question 3.4.1 How big is the set G(Ψ) \ K(3Ψ)? �

In the next chapter we answer the above question. To be more specific, using a

Cantor-type construction and the mass distribution principle we will determine the

Hausdorff dimension of the set G(Ψ) \ K(CΨ) for any C > 0. We will that this set is

uncountable.
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Chapter 4

Well approximable versus Dirichlet

improvable numbers

In this chapter we aim to answer Question 3.4.1.

4.1 Statement of the main result

Recall that

G(Ψ) =
{
x ∈ [0, 1) : an(x)an+1(x) ≥ Ψ(qn) for infinitely many n ∈ N

}
and

K(Ψ) :=

{
x ∈ [0, 1) :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q2Ψ(q)
for infinitely many (p, q) ∈ Z× N

}
.

We will completely determine the Hausdorff dimension for the set G(Ψ) \ K(CΨ) for

any C > 0.

Theorem 4.1.1 Let Ψ : [1,∞)→ R+ be a non-decreasing function and C > 0. Then

dimH

(
G(Ψ) \ K(CΨ)

)
=

2

τ + 2
= dimHG(Ψ), where τ = lim inf

q→∞

log Ψ(q)

log q
.

�

The term τ gives information regarding how a function Ψ grows near infinity

and is known as the lower order at infinity. It appears naturally in determining the

Hausdorff dimension of exceptional sets, when general distance functions are involved,

see [16, 17].

Recall from Chapter 2, the process to obtain the Hausdorff dimension of a set

normally consists of finding the upper and the lower bounds separately. Therefore we

will divide the proof of Theorem 4.1.1 into two parts: the upper bound and the

lower bound.
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4.2. Proof of Theorem 4.1.1: the upper bound

4.2 Proof of Theorem 4.1.1: the upper bound

For ease of calculations, we choose C = 1 throughout the remainder of this chapter.

As

(G(Ψ) \ K(Ψ)) ⊆ G(Ψ) ⊂ D(ψ)c.

Therefore the upper bound for the Hausdorff dimension of the set G(Ψ) \K(Ψ) follows

directly from the dimH G(Ψ), thus from Section 3.3, we have

dimH

(
G(Ψ) \ K(Ψ)

)
≤ dimH G(Ψ) ≤ 2

τ + 2
.

Thus the proof of Theorem 4.1.1 follows from establishing the complementary lower

bound.

4.3 Proof of Theorem 4.1.1: the lower bound

Notice that the set E := G(Ψ) \ K(Ψ) can be written as

E =

{
x ∈ [0, 1) :

an+1(x)an(x) ≥ Ψ(qn) for infinitely many n ∈ N and

an+1(x) < Ψ(qn) for all sufficiently large n ∈ N

}
.

To illustrate the main ideas, we first prove the result for a specific choice of the

approximating function Ψ(qn) := qτn for any τ > 0. Proving the result for the general

approximating function Ψ(qn) instead of qτn will require a slight modification to the

arguments presented below but essentially the process is the same. We will briefly

sketch this process in the last section.

The set E can now be written as

E =

{
x ∈ [0, 1) :

an+1(x)an(x) ≥ qτn for infinitely many n ∈ N and

an+1(x) < qτn for all sufficiently large n ∈ N

}
.

We aim to show that

dimH E ≥
2

τ + 2
.

Fix a large integer L, and define S = S(L,M) to be the solution to the equation∑
1≤ai≤M
1≤i≤L

(
1

q2+τ
L (a1, · · · , aL)

)S
= 1. (4.1)

It follows from the definition of the pressure function, as L,M →∞, that S → 2
2+τ

.

The process of proving this follows as in [45, Lemma 2.6], therefore we skip it. So, it

remains to show that

dimH E ≥ S.

As discussed in Section 2.1 the main strategy in obtaining the lower bound is to use

the mass distribution principle i.e., Proposition 2.1.4. To employ it, we systematically

divide the process into the following subsections.
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4. Well approximable versus Dirichlet improvable numbers

Cantor subset construction

Choose a rapidly increasing sequence of integers {nk}k≥1 such that nk � nk−1, for all

k. For convenience define n0 = 0.

Define the subset EM of E as follows

EM =

x ∈ [0, 1) :

1

4
qτnk−1 ≤ ank(x) ≤ 1

2
qτnk−1 and ank−1(x) = 4

and 1 ≤ aj(x) ≤M, for all j 6= nk − 1, nk

 .

For any n ≥ 1, define strings (a1, . . . , an) by

Dn =

(a1, . . . , an) ∈ Nn :

1

4
qτnk−1 ≤ ank(x) ≤ 1

2
qτnk−1 and ank−1(x) = 4

and 1 ≤ aj(x) ≤M, for all 1 ≤ j 6= nk − 1, nk ≤ n

 .

For any n ≥ 1 and (a1, . . . , an) ∈ Dn, we call In (a1, . . . , an) a basic cylinder of order

n and

Jn := Jn (a1, . . . , an) :=
⋃
an+1

In+1(a1, . . . , an, an+1) (4.2)

a fundamental cylinder of order n, where the union in (4.2) is taken over all an+1

such that (a1, . . . , an, an+1) ∈ Dn+1.

Summary: We will consider three distinct cases for Jn according to the limitations

on the partial quotients. The following table (commencing from k = 1), summarises

our Cantor set construction such that for (a1, . . . , an, an+1) ∈ Dn+1:

nk ≤ n ≤ nk+1 − 3, Jn =
⋃

1≤an+1(x)≤M

In+1(a1, . . . , an, an+1),

n = nk+1 − 2, Jn = In+1(a1, . . . , an, 4),

n = nk+1 − 1, Jn =
⋃

1
4
qτn≤an+1(x)≤ 1

2
qτn

In+1(a1, . . . , an, an+1).

It is now clear that

EM =
∞⋂
n=1

⋃
(a1,...,an)∈Dn

Jn (a1, . . . , an) .

Lengths of fundamental intervals

We now calculate lengths of fundamental cylinders split into three distinct cases,

following from the construction of EM and the definition of fundamental cylinders.

Case I. When nk ≤ n ≤ nk+1 − 3 for any k ≥ 1, we have

Jn(a1, . . . , an) =
⋃

1≤an+1(x)≤M

In+1(a1, . . . , an, an+1).
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4.3. Proof of Theorem 4.1.1: the lower bound

Therefore,

|Jn(a1, . . . , an)| = M

(qn + qn−1)((M + 1)qn + qn−1)
(4.3)

and
1

6q2
n

≤ |Jn(a1, . . . , an)| ≤ 1

q2
n

.

In particular for n = nk, we have 1
4
qτn−1 ≤ an(x) ≤ 1

2
qτn−1. Therefore,

|Jn(a1, . . . , an)| ≤ 1

q2
n

=
1

(anqn−1 + qn−2)2
≤ 1

(anqn−1)2
=

1
1
16
q2+2τ
n−1

,

and

|Jn(a1, . . . , an)| ≥ 1

6q2
n

=
1

6(anqn−1 + qn−2)2
≥ 1

3
2
q2+2τ
n−1

.

Therefore for n = nk, we have

1
3
2
q2+2τ
n−1

≤ |Jn(a1, . . . , an)| ≤ 1
1
16
q2+2τ
n−1

.

Case II. When n = nk+1 − 2, we have

Jn = In(a1, . . . , an, 4).

Therefore,

|Jn(a1, . . . , an)| = 1

(4qn + qn−1)(5qn + qn−1)
(4.4)

and
1

60q2
n

≤ |Jn(a1, . . . , an)| ≤ 1

16q2
n

.

Case III. When n = nk+1 − 1, we have

Jn =
⋃

1
4
qτn≤an+1(x)≤ 1

2
qτn

In+1 (a1, . . . , an, an+1) .

Therefore,

|Jn(a1, . . . , an)| =
1
4
qτn + 1

(1
4
qτ+1
n + qn−1)(1

2
qτ+1
n + qn + qn−1)

(4.5)

and
1

3
2
q2+τ
n

≤ |Jn(a1, . . . , an)| ≤ 1
1
4
q2+τ
n

.
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4. Well approximable versus Dirichlet improvable numbers

Gap estimation

In this section we estimate the gap between Jn(a1, . . . , an) and its adjoint fundamental

cylinder of the same order n. These gaps are helpful for estimating the measure on

general balls.

Let Jn−1(a1, . . . , an−1) be the mother fundamental cylinder of Jn(a1, . . . , an). Without

loss of generality, assume that n is even, since if n is odd we can carry out the estim-

ation in almost the same way. Let the left and the right gap between Jn(a1, . . . , an)

and its adjoint fundamental cylinder at each side be represented by g`n(a1, . . . , an) and

grn(a1, . . . , an) respectively.

Denote by gn(a1, . . . , an) the minimum distance between Jn(a1, . . . , an) and its

adjacent cylinder of the same order n, that is,

gn(a1, . . . , an) = min{g`n(a1, . . . , an), grn(a1, . . . , an)}.

Since n is even, the right adjoint fundamental cylinder to Jn, which is contained in

Jn−1, is

J ′n = Jn(a1, . . . , an−1, an + 1) (if it exists)

and the left adjoint fundamental cylinder to Jn, which is contained in Jn−1, is

J ′′n = Jn(a1, . . . , an−1, an − 1) (if it exists).

We distinguish three cases according to the range of n defined for EM . The

estimation is based on the distribution of cylinders, as described in the summary in

Section 4.3.

Gap I. For the case nk ≤ n ≤ nk+1 − 3, we have

Jn =
⋃

1≤an+1(x)≤M

In+1 (a1, . . . , an, an+1) ,

J ′n =
⋃

1≤an+1(x)≤M

In+1 (a1, . . . , an + 1, an+1) ,

J ′′n =
⋃

1≤an+1(x)≤M

In+1 (a1, . . . , an − 1, an+1) .

Then by Proposition 2.1.2, for the right gap

grn(a1, . . . , an) ≥ 1

(qn + qn−1)((M + 1)(qn + qn−1) + qn−1)

and for the left gap

gln(a1, . . . , an) ≥ 1

qn((M + 1)qn + qn−1)
.

So

gn(a1, . . . , an) =
1

(qn + qn−1)((M + 1)(qn + qn−1) + qn−1)
. (4.6)
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4.3. Proof of Theorem 4.1.1: the lower bound

Also from (4.3) and (4.6) we have

gn(a1, . . . , an) ≥ 1

2M
|Jn(a1, . . . , an)|.

Gap II. For the case n = nk+1 − 2, we have

Jn = In+1(a1, . . . , an, 4) ⊂ In(a1, . . . , an),

J ′n = In+1(a1, . . . , an + 1, 4) ⊂ In(a1, . . . , an + 1),

J ′′n = In+1(a1, . . . , an − 1, 4) ⊂ In(a1, . . . , an − 1).

Since Jn lies in the middle of In(a1, . . . , an) and J ′n lies on the right to In(a1, . . . , an)

therefore the right gap is larger than the distance between the right endpoint of Jn

and that of In. Also, as J ′′n lies on the left to In(a1, . . . , an) therefore the left gap is

larger than the distance between the left endpoint of Jn and that of In.

Hence, for the right gap

grn(a1, . . . , an) ≥ pn + pn−1

qn + qn−1

− 4pn + pn−1

4qn + qn−1

=
3

(qn + qn−1)(4qn + qn−1)
.

and for the left gap

gln(a1, . . . , an) ≥ 5pn + pn−1

5qn + qn−1

− pn
qn

=
1

(5qn + qn−1)qn
.

Therefore,

gn(a1, . . . , an) ≥ 1

(5qn + qn−1)(qn + qn−1)
. (4.7)

Also, from (4.4) and (4.7) we, we notice that

gn(a1, . . . , an) ≥ 4

3
|Jn(a1, . . . , an)|.

Gap III. For the case n = nk+1 − 1, we have

Jn =
⋃

1
4
qτn≤an+1(x)≤ 1

2
qτn

In+1(a1, . . . , an, an+1),

J ′n =
⋃

1
4
qτn≤an+1(x)≤ 1

2
qτn

In+1(a1, . . . , an + 1, an+1),

J ′′n =
⋃

1
4
qτn≤an+1(x)≤ 1

2
qτn

In+1(a1, . . . , an − 1, an+1).

In this case also the gap position description is the same as the case when n = nk+1−2.

Hence, for the right gap

grn(a1, . . . , an) ≥
(1

4
qτn − 1)

(1
4
qτnqn + qn−1)(qn + qn−1)

,
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4. Well approximable versus Dirichlet improvable numbers

and for the left gap

gln(a1, . . . , an) ≥ 1

((1
2
qτn + 1)qn + qn−1)qn

.

Therefore,

gn(a1, . . . , an) ≥ 1

((1
2
qτn + 1)qn + qn−1)(qn + qn−1)

. (4.8)

By comparing (4.5) with (4.8), we obtain

gn(a1, . . . , an) ≥ 1

3
|Jn(a1, . . . , an)|.

Mass Distribution on EM
We define a measure µ supported on EM . For this we start by defining the measure

on the fundamental cylinders of order nk − 2, nk − 1 and nk. The measure on other

fundamental cylinders can be obtained by using the consistency of a measure. Because

the sparse set {nk}k≥1 is of our choosing, we may let mk+1L = nk+1 − 2− nk for any

k ≥ 0. This simplifies calculations without loss of generality.

Note that the sum in (4.1) induces a measure µ on a basic cylinder of order L

µ(IL(a1, . . . , aL)) =

(
1

q2+τ
L

)S
,

for each 1 ≤ a1, . . . , aL ≤M.

Step I. Let 1 ≤ i ≤ m1. We first define a positive measure for the fundamental

cylinders JiL(a1, . . . , aiL) i.e.,

µ (JiL(a1, . . . , aiL)) =
i−1∏
t=0

(
1

q2+τ
L (atL+1, . . . , a(t+1)L)

)S
and then we distribute this measure uniformly over its next offspring.

Step II. For Jn1−1 and Jn1−2, define a measure

µ (Jn1−1(a1, . . . , an1−1)) = µ (Jn1−2(a1, . . . , an1−2))

=

m1−1∏
t=0

(
1

q2+τ
L (atL+1, . . . , a(t+1)L)

)S
.

Step III. For Jn1 , define a measure

µ (Jn1(a1, . . . , an1)) =
1

1
4
qτn1−1

µ (Jn1−1(a1, . . . , an1−1) .

In other words, the measure of Jn1−1 is uniformly distributed on its next offspring Jn1 .

Measure of other levels. The measure of fundamental cylinders for other levels can

be defined inductively.
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4.3. Proof of Theorem 4.1.1: the lower bound

To define the measure on general fundamental cylinders Jnk+1−2 and Jnk+1−1, we

assume that µ (Jnk) has been defined. Then define

µ
(
Jnk+1−1(a1, . . . , ank+1−1)

)
= µ

(
Jnk+1−2(a1, . . . , ank+1−2)

)
= µ (Jnk(a1, . . . , ank)) ·

mk+1−1∏
t=0

(
1

q2+τ
L (ank+tL+1, . . . , ank+(t+1)L)

)S
.

Next, we equally distribute the measure of the fundamental cylinder Jnk+1−1 among

its next offspring which is a fundamental cylinder of order nk+1 i.e.,

µ
(
Jnk+1

(a1, . . . , ank+1
)
)

=
1

1
4
qτnk+1−1

µ
(
Jnk+1−1(a1, . . . , ank+1−1)

)
.

The measure of other fundamental cylinders of level less than nk+1 − 2, is given using

the consistency of the measure. Therefore, for n = nk + iL where 1 ≤ i ≤ mk+1, we

define

µ (Jnk+iL(a1, . . . , ank+iL)) = µ (Jnk(a1, . . . , ank))

·
i−1∏
t=0

(
1

q2+τ
L (ank+tL+1, . . . , ank+(t+1)L)

)S
.

The Hölder exponent of the measure µ

For the lower bound, in order to apply the mass distribution principle to the Cantor

subset EM , we need the measure of a general ball. So far we have only calculated

µ (Jn(a1, . . . , an)). We show that there is a Hölder condition between µ (Jn(a1, . . . , an))

and |Jn(a1, . . . , an)| and another Hölder condition between the ball µ(B(x, r)) and

radius r. The derived inequalities continue the program of establishing our lower

bound.

Estimation of µ (Jn(a1, . . . , an))

First, we estimate the Holder exponent of µ (Jn(a1, . . . , an)) in relation to |Jn(a1, . . . , an)|.
In simple words we want to compare the measure of fundamental cylinders with their

lengths.

Step I. When n = iL, for some 1 ≤ i < m1,

µ (JiL (a1, . . . , aiL)) =
i−1∏
t=0

(
1

q2+τ
L (atL+1, . . . , a(t+1)L)

)S
(2.5)

≤ 2(2+τ)(i−1)

(
1

q2+τ
iL (a1, . . . , aiL)

)S
(4.9)
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4. Well approximable versus Dirichlet improvable numbers

(2.4)

≤
(

1

q2+τ
iL (a1, . . . , aiL)

)S−2/L

� |JiL (a1, . . . , aiL) |S−2/L.

Step II(a). When n = m1L = n1 − 2,

µ (Jn1−2 (a1, . . . , an1−2)) =

m1−1∏
t=0

(
1

q2+τ
L (atL+1, . . . , a(t+1)L)

)S
(4.9)

≤ 2(2+τ)(m1−1)

(
1

q2+τ
m1L

(a1, . . . , am1L)

)S

≤ 2(2+τ)(m1−1)

(
1

q2+τ
n1−2(a1, . . . , an1−2)

)S
≤
(

1

q2+τ
n1−2(a1, . . . , an1−2)

)S− 2
L

(4.10)

� |Jn1−2 (a1, . . . , an1−2) |S−2/L.

Step II(b). When n = n1 − 1 = m1L+ 1,

µ (Jn1−1 (a1, . . . , an1−1)) = µ (Jn1−2(a1, . . . , an1−2))

(4.10)

≤
(

1

q2+τ
n1−2(a1, . . . , an1−2)

)S− 2
L

�
(

1

q2+τ
n1−1(a1, . . . , an1−1)

)S− 2
L

(4.11)

≤ c|Jn1−1 (a1, . . . , an1−1) |S−
2
L ,

where c = 3
2

and inequality (4.11) is obtained from the relation

qnk+1−1(a1, . . . , ank+1−2, 4) � qnk+1−2(a1, . . . , ank+1−2)

defined for any k.

Step III. For n = n1, using inequality (4.11), we have

µ (Jn1(a1, . . . , an1)) =
1

1
4
qτn1−1

µ (Jn1−1(a1, . . . , an1−1))

≤ 1
1
4
qτn1−1

c

(
1

q2+τ
n1−1(a1, . . . , an1−1)

)S− 2
L

≤ 1
1
4

c

(
1

q2+2τ
n1−1(a1, . . . , an1−1)

)S− 2
L

� |Jn1(a1, . . . , an1)|S−
2
L .

Next we find Hölder exponent for the general fundamental cylinder Jnk+1−1. The

Hölder exponent for cylinders of other levels can be carried out in the same way.
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4.3. Proof of Theorem 4.1.1: the lower bound

Let n = nnk+1−1. Recall that

µ
(
Jnk+1−1(a1, . . . , ank+1−1

)
) = µ

(
Jnk+1−2(a1, . . . , ank+1−2

)
)

=

k−1∏
j=0

 1
1
4
qτnj+1−1

mj+1−1∏
t=0

(
1

q2+τ
L (anj+tL+1, . . . , anj+(t+1)L)

)S


·
mk+1−1∏
t=0

(
1

q2+τ
L (ank+tL+1, . . . , ank+(t+1)L)

)S
.

By arguments similar to Step I and Step II, we obtain

µ
(
Jnk+1−1(a1, . . . , ank+1−1)

)
≤

k−1∏
j=0

 1
1
4
qτnj+1−1

(
1

q2+τ
mj+1L

(anj+1, . . . , anj+(mj+1)L)

)S− 2
L


·

(
1

q2+τ
mk+1L

(ank+1, . . . , ank+(mk+1)L)

)S− 2
L

≤ 22k ·

(
1

q2+τ
nk+1−2

)S− 6
L

≤

(
1

q2+τ
nk+1−2

)S− 10
L

�

(
1

q2+τ
nk+1−1

)S− 10
L

≤ c3 |Jnk+1−1|S−
10
L ,

where c3 = 3
2
. Here for the third inequality, we use

q
2(2+τ)
nk+1−2 ≥ q2

nk+1−2 ≥ 2nk+1−3 ≥ 2L(m1+...+mk+1) ≥ 2L(k+1) ≥ 2Lk = 22k·L
2 .

Consequently,

µ
(
Jnk+1

(
a1, . . . , ank+1

))
=

1
1
4
qτnk+1−1

µ
(
Jnk+1−1(a1, . . . , ank+1−1)

)
≤ 1

1
4

(
1

q2+2τ
nk+1−1

)S− 10
L

� |Jnk+1

(
a1, . . . , ank+1

)
|S−

10
L .

In summary, we have shown that, for any n ≥ 1 and (a1, . . . , an),

µ (Jn (a1, . . . , an))� |Jn (a1, . . . , an) |S−
10
L .

Estimation of a general ball µ(B(x, r))

Assume that x ∈ EM and B(x, r) is a ball centred at x with radius r small enough.

For each n ≥ 1, let Jn = Jn(a1, . . . , an) contain x and

gn+1(a1, . . . , an+1) ≤ r < gn(a1, . . . , an).
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4. Well approximable versus Dirichlet improvable numbers

Clearly, by the definition of gn, we see that

B(x, r) ∩ EM ⊂ Jn(a1, . . . , an).

Case I. n = nk+1 − 1.

(i) r ≤ |Ink+1
(a1, . . . , ank+1

)|. In this case the ball B(x, r) can intersect at most

four basic cylinders of order nk+1, which are

Ink+1
(a1, . . . , ank+1

− 1), Ink+1
(a1, . . . , ank+1

),

Ink+1
(a1, . . . , ank+1

+ 1), Ink+1
(a1, . . . , ank+1

+ 2).

Thus we have

µ(B(x, r)) ≤ 4µ(Jnk+1
(a1, . . . , ank+1

))

≤ 4c0|Jnk+1
(a1, . . . , ank+1

)|S−
10
L

≤ 8c0Mg
S− 10

L
nk+1

≤ 8c0MrS−
10
L .

(ii) r > |Ink+1
(a1, . . . , ank+1

)|. In this case, since

|Ink(a1, . . . , ank)| =
1

qnk+1
(qnk+1

+ qnk+1−1)
≥ 1

2q2+2τ
nk+1−1

,

the number of fundamental cylinders of order nk+1 contained in Jnk+1−1(a1, . . . , ank+1−1)

that the ball B(x, r) intersects is at most

4rq2+2τ
nk+1−1 + 2 ≤ 8rq2+2τ

nk+1−1.

Thus we have

µ(B(x, r)) ≤ min
{
µ(Jnk+1−1), 8rq2τ

nk+1−1q
2
nk+1−1µ(Jnk+1

)
}

≤ µ(Jnk+1−1) min
{

1, 8rq2τ
nk+1−1q

2
nk+1−1

1

qτnk+1−1

}
≤ c|Jnk+1−1|S−

10
L min

{
1, 8rq2+τ

nk+1−1

}
≤ c

(
1

q2+τ
nk+1−1

)S− 10
L

min
{

1, 8rq2+τ
nk+1−1

}

≤ c

(
1

q2+τ
nk+1−1

)S− 10
L

(8rq2+τ
nk+1−1)S−

10
L

≤ CrS−
10
L , where C = c8S−

10
L .

Here we use min{a, b} ≤ a1−sbs for any a, b > 0 and 0 ≤ s ≤ 1.
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4.3. Proof of Theorem 4.1.1: the lower bound

Case II. n = nk+1 − 2.

For r > |Ink+1−1(a1, . . . , ank+1−1)|, since

|Ink+1−1(a1, . . . , ank+1−1)| ≥ 1

128q2
nk+1−2

,

the number of fundamental cylinders of order nk+1 − 1 contained in Jnk+1−2(a1, . . . , ank+1−2)

that the ball B(x, r) intersects, is at most

2(128)rq2
nk+1−2 + 2 ≤ 256rq2

nk+1−2.

Thus

µ(B(x, r)) ≤ min
{
µ(Jnk+1−2), 256rq2

nk+1−2µ(Jnk+1−1)
}

� min
{
µ(Jnk+1−2), c1rq

2
nk+1−2µ(Jnk+1−2)

}
= µ(Jnk+1−2) min

{
1, 256rq2

nk+1−1

}
≤ c

(
1

q2+τ
nk+1−1

)S− 10
L

min
{

1, 256rq2
nk+1−1

}

≤ c

(
1

q2
nk+1+1

)S− 10
L

min
{

1, 256rq2
nk+1+1

}
≤ CrS−

10
L , where C = c256S−

10
L .

Case III. When nk ≤ n ≤ nk+1−3. In such a range for n, we know that 1 ≤ an ≤M

and |Jn| � 1/q2
n. So,

µ(B(x, r)) ≤ µ(Jn) ≤ c|Jn|S−
10
L

≤ c

(
1

q2
n

)S− 10
L

≤ c4M2

(
1

q2
n+1

)S− 10
L

�M2|Jn+1|S−
10
L

≤M3g
S− 10

L
n+1

≤M3rS−
10
L .

Conclusion

Finally, by combining all of the above cases with the mass distribution principle

(Proposition 2.1.4), we have proved that

dimH EM ≥ S − 10/L.

Letting L→∞, we conclude that

dimHE ≥ dimH EM ≥ S.
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4.4 Final remarks: the general case

The case for the general approximating function Ψ follows almost exactly the same

line of investigations as for the case Ψ(qn) = qτn for any τ > 0. There are some added

subtleties which we will outline and then direct the reader to mimic the proof for the

particular approximating function, qτn, earlier.

Consider a rapidly increasing sequence {Qn}n≥1 of positive integers. For a fixed

ε > 0, let δ ≥ 3ε. Define the approximating function Ψ to be

Qτ−ε
n ≤ Ψ(Qn) ≤ Qτ+ε

n for all n ≥ 1,

where

τ = lim inf
n→∞

log Ψ(Qn)

log(Qn)
.

Let

AM = {x ∈ [0, 1) : 1 ≤ an (x) ≤M, for all n ≥ 1} .

For all x ∈ AM , there exists a large n1 ∈ N such that

qn1−2 ≤ Q1−δ
1 =⇒ qn1−2 ≤ Q1−δ

1 ≤ 2Mqn1−2.

Let

an1−1(x) =
1

4
Qδ

1 and
1

2
qτ−εn1−1 ≤ an1(x) ≤ qτ−εn1−1.

Then the basic cylinders of order n1 − 2, n1 − 1 and n1 can be defined as,

In1−2 (a1, . . . , an1−2) : x ∈ AM ,

In1−1

(
a1, . . . , an1−2,

1

4
Qδ

1

)
: x ∈ AM ,

In1

(
a1, . . . , an1−2,

1

4
Qδ

1, an1

)
: x ∈ AM and

1

2
qτ−εn1−1 ≤ an1(x) ≤ qτ−εn1−1.

Now fix the basic cylinder In1(a1, · · · , an1), that is, choose it to be an element in the

first level of the Cantor set. Consider the set of points

{[a1, · · · , an1 , b1, b2, · · · ], 1 ≤ bi ≤M for all i ≥ 1} .

Then do the same as for the definition of n1. That is, for each x, find n2 such that

qn2−2 is almost Q2.

Continuing in this way, define nk recursively as follows. Collect the nk ∈ N
satisfying

qnk−2 ≤ Q1−δ
k ≤ 2Mqnk−2.

Define the subset E∗M of G(Ψ) \ K(Ψ) as
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4.5. Natural Question

E∗M =

x ∈ [0, 1) :

1

2
qτ−εnk−1 ≤ ank(x) ≤ qτ−εnk−1 and ank−1(x) =

1

4
Qδ
k

and 1 ≤ aj(x) ≤M , for all j 6= nk − 1, nk

 .

For any n ≥ 1, define strings (a1, . . . , an) by

D∗n =

(a1, . . . , an) ∈ Nn :

1

2
qτ−εnk−1 ≤ ank(x) ≤ qτ−εnk−1 and ank−1(x) =

1

4
Qδ
k and

1 ≤ aj(x) ≤M , for all 1 ≤ j 6= nk − 1, nk ≤ n

 .

For any n ≥ 1 and (a1, . . . , an) ∈ D∗n, define

Jn (a1, . . . , an) :=
⋃
an+1

In+1(a1, . . . , an, an+1) (4.12)

to be the fundamental cylinder of order n, where the union in (4.12) is taken over all

an+1 such that (a1, . . . , an, an+1) ∈ D∗n+1. Then

E∗M =
∞⋂
n=1

⋃
(a1,...,an)∈D∗n

Jn (a1, . . . , an) .

As can be seen, the Cantor type structure of the set E∗M , for the general approx-

imating function Ψ(Qn), includes similar steps as for particular function, Ψ(qn) = qτn,

from the earlier sections. Also, the process of finding the dimension for this set follows

similar steps and calculations to those for finding the dimension of the Cantor set EM .

However, the calculations involve lengthy expressions and complicated constants. In

order to avoid unnecessary intricacy, we will not produce these expressions.

4.5 Natural Question

Notice that in the set G(Ψ) \ K(Ψ) the growth rate depends on the denominator of

the nth convergent ‘qn’. But if we consider the approximating function to be just a

function of the index n, i.e.,

F(Φ) =

{
x ∈ [0, 1) :

an+1(x)an(x) ≥ Φ(n) for infinitely many n ∈ N and

an+1(x) < Φ(n) for all sufficiently large n ∈ N

}
where Φ : N → (1,∞) is any function with limn→∞Φ(n) = ∞, then we have the

following natural question.

Question 4.5.1 How big is the set F(Φ) in terms of Hausdorff dimension? �

The reason for selecting the function Φ here is just to differentiate it from function Ψ

which depends on (3.1). Answering this question is more challenging as it embarks on

the theory of pressure functions in determining the Hausdorff dimension. We aim to

answer this question in the next chapter.
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Chapter 5

A gap result in the metric theory of

continued fractions

In this chapter we aim to answer Question 4.5.1.

The metrical theory of continued fractions which focuses on investigating the

properties of partial quotients for almost all x ∈ [0, 1) is one of the important areas

of research in the study of continued fractions and is closely connected with the

Diophantine approximation. As discussed in Chapter 1, the main connection is that

the convergents of a real number x are good rational approximates for x. In fact by

using Legendre’s Theorem and (2.6), the set of τ -well approximable numbers for any

τ > 1, can be rewritten in the following form,{
x ∈ [0, 1) : an(x) ≥ qτ−1

n (x) for infinitely many n ∈ N
}
, (5.1)

which can be easily computed from elementary properties of continued fractions. For

further details about this connection, we refer to [21]. Thus, a real number x is τ -well

approximable if the partial quotients in its continued fraction expansion are growing

fast. Therefore the growth rate of the partial quotients reveals how well a real number

can be approximated by rationals.

Borel–Bernstein’s Theorem [7, 9] which gives an analogue of Borel–Cantelli ‘zero-

one’ law with respect to Lebesgue measure for the set of real numbers with large

partial quotients, has significant role in the metrical theory of continued fractions. A

lot of work has been done in the direction of improving the Borel–Bernstein’s Theorem,

for example, estimation of the Hausdorff dimension of sets when the partial quotient

an(x) obeys different conditions has been studied in [20, 21, 39].

Throughout this chapter, we will consider Φ : N → (1,∞) to be an arbitrary

function such that limn→∞Φ(n) = ∞.
Next consider the following set,

E1(Φ) := {x ∈ [0, 1) : an(x) ≥ Φ(n) for infinitely many n ∈ N} .
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Theorem 5.0.1 (Borel–Bernstein, [9]) The Lebesgue measure of E1(Φ) is either

zero or full according as the series
∑∞

n=1
1

Φ(n)
converges or diverges respectively.

The Borel–Bernstein’s Theorem is a remarkably simple dichotomy result but it fails

to distinguish between exceptional sets, that is, it gives Lebesgue measure zero for

sets E1(Φ) for rapidly increasing functions Φ. Recall that to distinguish between sets

having Lebesgue measure zero, the notion of Hausdorff measure and dimension are

the appropriate tools. Keeping this in view, Wang–Wu [45] completely determined the

Hausdorff dimension of the set E1(Φ).

Theorem 5.0.2 (Wang–Wu, [45]) Let Φ : N → R+ be an arbitrary positive func-

tion. Suppose

logB = lim inf
n→∞

log Φ(n)

n
and log b = lim inf

n→∞

log log Φ(n)

n
.

Then

dimH E1(Φ) =



sB := inf{s ≥ 0 : P (T,−s logB − s log |T ′|) ≤ 0} if 1 < B <∞;

1
1+b

if B =∞;

1 if B = 1,

where T is the Gauss map, T ′ denotes the derivative of Tand P represents the pressure

function defined in Section 2.2. �

The following result illustrates the continuity of the dimensional number sB and shows

that its limit exists.

Proposition 5.0.3 (Wang–Wu, [45]) The parameter sB is continuous with respect

to B, and

lim
B→1

sB = 1, lim
B→∞

sB =
1

2
. �

The set E1(Φ) is connected with the set (5.1) in the sense that in (5.1) the approximating

function depends on ‘qn(x)’ whereas in E1(Φ) the approximating function Φ is a function

of index ‘n.’ Note that the set E1(Φ) consists of those real numbers such that one

partial quotient in their continued fraction expansion grows very fast but as we move

towards the product of two consecutive partial quotients, the corresponding set of real

numbers is linked with the set of Dirichlet non-improvable numbers (as observed by

Kleinbock–Wadleigh [34]).
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5. A gap result in the metric theory of continued fractions

Recall from Chapter 3, Kleinbock–Wadleigh proved a zero-one law for the Lebesgue

measure of D(ψ)c. With a change of notation and Φ as defined above, we consider the

set

E2(Φ) := {x ∈ [0, 1) : an(x)an+1(x) ≥ Φ(n) for infinitely many n ∈ N} .

Theorem 5.0.4 (Kleinbock–Wadleigh, [34]) The Lebesgue measure of E2(Φ) is

either zero or full according as the series
∑∞

n=1
log Φ(n)

Φ(n)
converges or diverges respect-

ively. �

5.1 Statement of the main result

Note that the E1(Φ) is properly contained in E2(Φ). Since the inclusion is proper, this

raises a natural question of the size of the set F(Φ) := E2(Φ) \ E1(Φ). In other words,

a natural question is to estimate the size of the set

F(Φ) =

{
x ∈ [0, 1) :

an+1(x)an(x) ≥ Φ(n) for infinitely many n ∈ N and

an+1(x) < Φ(n) for all sufficiently large n ∈ N

}
,

in terms of Hausdorff dimension.

We prove that the set F(Φ) is quite big in a sense that it is uncountable by proving

that its Hausdorff dimension is positive.

Theorem 5.1.1 Let Φ : N→ (1,∞) be any function with lim
n→∞

Φ(n) =∞. Suppose

logB = lim inf
n→∞

log Φ(n)

n
and log b = lim inf

n→∞

log log Φ(n)

n
. (5.2)

Then

dimHF(Φ) =


tB := inf{s ≥ 0 : P (T,−s2 logB − s log |T ′|) ≤ 0} if 1 < B <∞;

1
1+b

if B =∞,
�

where T is the Gauss map and P represents the pressure function defined in Section 2.2.

Note that if we take B = 1 then from the definition of F(Φ) we have an+1(x) < 1

which is a contradiction to the assumption that an+1(x) ≥ 1. Therefore, B is strictly

greater than 1.

Throughout this chapter we consider the specific potential, that is,

ϕ1(x) = −s2 logB − s log |T ′(x)|,

where 1 < B < ∞, s ≥ 0 and T ′ is the derivative of Gauss map T. By applying

Proposition 2.2.2 to ϕ1, it is easy to check that ϕ1 satisfies the variation condition.
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5.2. Proof of Theorem 5.1.1

Therefore, by considering the value of potential ϕ1 in definition of pressure function

(2.10), we have

PA(T,−s2 logB − s log |T ′|) = lim
n→∞

1

n
log

∑
a1,...,an∈A

eSnϕ1(x)

= lim
n→∞

1

n
log

∑
a1,...,an∈A

(
1

Bnsq2
n

)s
.

Let n ≥ 1. For the requirement of this chapter, define

tn,B (A) := inf

{
s ≥ 0 :

∑
a1,...,an∈A

1

(Bnsq2
n)s
≤ 1

}
;

tB(A) := inf{s ≥ 0 : PA(T,−s2 logB − s log |T ′|) ≤ 0};

tB(N) := inf{s ≥ 0 : P(T,−s2 logB − s log |T ′|) ≤ 0}.

For any M ∈ N, take AM = {1, 2, . . . ,M}. For simplicity, write tn,B (M) for tn,B (AM),

tB (M) for tB (AM), tn,B for tn,B (N) and tB for tB (N). From Proposition 2.2.2 and

by the definition of tn,B(M), we have

lim
n→∞

tn,B(M) = tB(M), lim
M→∞

tB(M) = tB. (5.3)

Since B belongs to (1,∞), therefore the dimensional number tB is continuous with

respect to B and

lim
B→1

tB = 1, lim
B→∞

tB =
1

2
.

Also, from (2.2) and the definition of tn,B(M), we have 0 ≤ tB(M) ≤ 1.

5.2 Proof of Theorem 5.1.1

Proof: The proof of Theorem 5.1.1 consist of two cases.

Case 1: 1 < B <∞.

By supposition (5.2) in the statement of Theorem 5.1.1, one can easily note that

dimH F(Φ) = dimHF(Φ : n→ Bn) when 1 < B <∞.

Therefore, we can simply take the approximating function Φ(n) := Bn and rewrite the

set F(Φ) as

F(B) :=

{
x ∈ [0, 1) :

an(x)an+1(x) ≥ Bn for infinitely many n ∈ N and

an+1(x) < Bn for all sufficiently large n ∈ N

}
.

The aim is to show dimH F(B) = tB. The details of the proof of Theorem 5.1.1 are

divided into two further subsections. That is finding the upper bound dimHF(B) ≤ tB;

and the lower bound dimHF(B) ≥ tB, separately. Taken together, this will conclude

our proof for Case 1.
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5. A gap result in the metric theory of continued fractions

The upper bound for F(B)

For the upper bound of dimHF(B), we consider two sets:

F1(B) =
{
x ∈ [0, 1) : an(x) ≥ Bn for infinitely many n ∈ N

}
and

F2(B) =

{
x ∈ [0, 1) :

1 ≤ an(x) ≤ Bn, an+1(x) ≥ Bn/an(x) for infinitely many

n ∈ N and an+1(x) < Bn for all sufficiently large n ∈ N

}
.

From the definition of Hausdorff dimension it follows that

dimHF(B) ≤ max{dimHF1(B), dimHF2(B)}.

The Hausdorff dimension of F1(B) follows from Theorem 5.0.2. So it remains to

obtain the upper bound for the Hausdorff dimension of F2(B). Recall that the pressure

function P (T, .) is monotonic with respect to the potential which implies then sB ≤ tB.

So, once we can show dimHF2(B) ≤ tB, the upper bound for dimHF(B) follows.

Fix ε > 0 and let s = tB + 2ε. We will show that dimHF2(B) ≤ s.

By the definition of tB, one has for any n large,∑
a1,··· ,an−1∈N

(
1

Bnsq2
n−1

)s
≤

∑
a1,··· ,an−1∈N

(
1

Bn(tB+ε)q2
n−1

)tB+ε

·B−nε2 ≤ B−nε
2

. (5.4)

Recall that

F2(B) =

{
x ∈ [0, 1) :

1 ≤ an(x) ≤ Bn, an+1(x) ≥ Bn/an(x) for infinitely many

n ∈ N and an+1(x) < Bn for all sufficiently large n ∈ N

}

⊂

{
x ∈ [0, 1) :

1 ≤ an(x) ≤ Bn, (Bn/an(x)) ≤ an+1(x) < Bn

for infinitely many n ∈ N

}

=
∞⋂
N=1

⋃
n≥N

{
x ∈ [0, 1) :

1 ≤ an(x) ≤ Bn,

(Bn/an(x)) ≤ an+1(x) < Bn

}

=
∞⋂
N=1

⋃
n≥N

FI ∪ FII (5.5)

where

FI = {x ∈ [0, 1) : 1 ≤ an(x) < αn, (Bn/an(x)) ≤ an+1(x) < Bn}

FII = {x ∈ [0, 1) : αn ≤ an(x) ≤ Bn, (Bn/an(x)) ≤ an+1(x) < Bn}

and αn > 1. Here we have assumed that α ∈ R with α > 1 and therefore αn > 1, for

all n ∈ N.
Next we will separately find suitable coverings for sets FI and FII . Then the union

of the coverings for both these sets will serve as an appropriate covering for F2(B). To

proceed, assume that for some some s, we have α = Bs.
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5.2. Proof of Theorem 5.1.1

The set FI can be covered by collections of fundamental cylinders Jn of order n:

FI ⊂ {x ∈ [0, 1) : 1 ≤ an(x) ≤ αn, (Bn/an(x)) ≤ an+1(x)}

=
⋃

a1,··· ,an−1∈N

{
x ∈ [0, 1) :

ak(x) = ak, 1 ≤ k ≤ n− 1, 1 ≤ an(x) ≤ αn,

(Bn/an(x)) ≤ an+1(x)

}
=

⋃
a1,··· ,an−1∈N

⋃
1≤an<αn

⋃
an+1≥Bn/an

In+1(a1, · · · , an+1)

=
⋃

a1,··· ,an−1∈N,
1≤an≤αn

Jn(a1, · · · , an).

Note that since

Jn(a1, · · · , an) =
⋃

an+1≥Bn/an

In+1(a1, · · · , an+1),

we have

|Jn(a1, · · · , an)| � 1

Bnanq2
n−1

.

Cover the set FII by the collection of fundamental cylinders J ′n−1 of order n− 1:

FII ⊂
{
x ∈ [0, 1) : an(x) ≥ αn

}
=

⋃
a1,··· ,an−1∈N

{
x ∈ [0, 1) : ak(x) = ak, 1 ≤ k ≤ n− 1, an(x) ≥ αn

}
=

⋃
a1,··· ,an−1∈N

⋃
an≥αn

In(a1, · · · , an)

=
⋃

a1,··· ,an−1∈N

J ′n−1(a1, · · · , an−1).

Since

J ′n−1(a1, · · · , an−1) =
⋃

an≥αn
In(a1, · · · , an),

we have

|J ′n−1(a1, · · · , an−1)| � 1

αnq2
n−1

.

Now we consider the s-volume of the cover of FI
⋃
FII :∑

a1,··· ,an−1∈N

∑
1≤an≤αn

(
1

Bnanq2
n−1

)s
+

∑
a1,··· ,an−1∈N

(
1

αnq2
n−1

)s
�

∑
a1,··· ,an−1∈N

αn(1−s)
(

1

Bnq2
n−1

)s
+

∑
a1,··· ,an−1∈N

(
1

αnq2
n−1

)s
(integrating on an)

=
∑

a1,··· ,an−1∈N

[(
1

αnq2
n−1

)s
+

(
1

αnq2
n−1

)s ]
(by α = Bs)
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5. A gap result in the metric theory of continued fractions

�
∑

a1,··· ,an−1∈N

(
1

Bnsq2
n−1

)s
.

Therefore, from equation (5.5), we obtain

F2(B) ⊂
∞⋂
N=1

⋃
n≥N


⋃

a1,··· ,an−1∈N
1≤an≤αn

Jn(a1, · · · , an) ∪
⋃

a1,··· ,an−1∈N

J ′n−1(a1, · · · , an−1)

 .

(5.6)

Thus from equations (5.6) and (5.4), we obtain the s-dimensional Hausdorff measure

of F2(B) as

Hs(F2(B)) ≤ lim inf
N→∞

∞∑
n≥N

∑
a1,··· ,an−1∈N

(
1

Bnsq2
n−1

)s
≤ lim inf

N→∞

∞∑
n≥N

1

Bnε2
= 0.

This gives dimHF2(B) ≤ s = tB + 2ε. Since ε > 0 is arbitrary, we have dimHF2(B) ≤
tB. Consequently,

dimHF(B) ≤ tB. (5.7)

The lower bound for F(B)

In this subsection we will determine the lower bound for dimHF(B). Here the pressure

function material will be utilised.

To prove dimHF(B) ≥ tB, from (5.3) it is sufficient to show that dimHF(B) ≥ tL,B(M)

for all large enough M and L. To proceed we will construct a subset FM(B) ⊂ F(B)

and use the lower bound for the Hausdorff dimension of FM(B) to approximate that

of F(B).

Fix s < tL,B(M). Let α = Bs where α ≤ B and α > 1. Choose a rapidly increasing

sequence of integers {nk}k≥1 and for convenience, we let n0 = 0.

Define the subset FM(B) of F(B) as follows

FM(B) =

x ∈ [0, 1) :

Bnk

2αnk
≤ ank+1(x) ≤ Bnk

αnk
, ank(x) = 2αnk for all k ≥ 1

and 1 ≤ aj(x) ≤M, for all j 6= nk, nk + 1

 .

(5.8)

Structure of FM(B)

For any n ≥ 1, define the set of strings

Dn =

(a1, . . . , an) ∈ Nn :

Bnk

2αnk
≤ ank+1(x) ≤ Bnk

αnk
, ank(x) = 2αnk

and 1 ≤ aj(x) ≤M, j 6= nk, nk + 1

 .
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5.2. Proof of Theorem 5.1.1

Recall that for any n ≥ 1 and (a1, . . . , an) ∈ Dn, we call In (a1, . . . , an) a basic

cylinder of order n and

Jn := Jn (a1, . . . , an) :=
⋃
an+1

In+1(a1, . . . , an, an+1) (5.9)

a fundamental cylinder of order n, where the union in (5.9) is taken over all an+1 such

that (a1, . . . , an, an+1) ∈ Dn+1.

Note that in (5.8) according to the limitations on the partial quotients we have

three distinct cases for Jn. For (a1, . . . , an, an+1) ∈ Dn+1:

nk−1 + 1 ≤ n ≤ nk − 2, Jn =
⋃

1≤an+1≤M

In+1(a1, . . . , an, an+1), (5.10)

n = nk − 1, Jn =
⋃

an+1=2αn

In+1(a1, . . . , an, an1+1), (5.11)

n = nk, Jn =
⋃

Bn

2αn
≤an+1≤B

n

αn

In+1(a1, . . . , an, an+1). (5.12)

Then,

FM(B) =
∞⋂
n=1

⋃
(a1,...,an)∈Dn

Jn (a1, . . . , an) .

Lengths of fundamental cylinders

In the following subsection we will estimate the lengths of the fundamental cylinders

defined in last subsection.

I. If nk−1 + 1 ≤ n ≤ nk − 2 then from (5.10) and using (2.2), we have

|Jn(a1, . . . , an)| =
∑

1≤an+1≤M

|In+1 (a1, . . . , an, an+1)|

=
∑

1≤an+1≤M

1

qn+1 (qn+1 + qn)
(5.13)

=
M∑

an+1=1

1

qn

(
1

qn+1

− 1

qn+1 + qn

)

=
1

qn

M∑
an+1=1

(
1

an+1qn + qn−1

− 1

(an+1 + 1) qn + qn−1

)
=

1

qn

(
1

qn + qn−1

− 1

(M + 1) qn + qn−1

)
=

M

((M + 1) qn + qn−1) (qn + qn−1)
. (5.14)

Also, from (5.13), we have

1

6q2
n

≤ |Jn(a1, · · · , an)| ≤ 1

q2
n

. (5.15)
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5. A gap result in the metric theory of continued fractions

In particular for n = nk + 1,

1

24B2nq2
n−2

≤ |Jn(a1, · · · , an)| ≤ 1

4B2nq2
n−2

. (5.16)

II. If n = nk − 1 then from (5.11) and following the same steps as for I ,we have

|Jn(a1, . . . , an)| = 1

(2αnqn + qn−1)((2αn + 1)qn + qn−1)
(5.17)

and
1

12αn+1q2
n

≤ |Jn(a1, · · · , an)| ≤ 1

2αn+1q2
n

. (5.18)

III. If n = nk then from (5.12) and following the similar steps as for I, we obtain

|Jn(a1, . . . , an)| =
Bn

2αn
+ 1

( B
n

2αn
qn + qn−1)((B

n

αn
+ 1)qn + qn−1)

(5.19)

and
αn

6Bnq2
n

≤ |Jn(a1, · · · , an)| ≤ 2αn

Bnq2
n

.

Further,
1

32αnBnq2
n−1

≤ |Jn(a1, · · · , an)| ≤ 1

2αnBnq2
n−1

. (5.20)

Supporting measure on FM(B)

To construct a suitable measure supported on FM(B) first recall that tL,B(M) is the

solution to ∑
a1,...,aL∈AM

(
1

BLsq2
L

)s
= 1.

For α = Bs this sum becomes ∑
a1,...,aL∈AM

(
1

αLq2
L

)s
= 1.

Let mkL = nk − nk−1 − 1 for any k ≥ 1. Note that m1L = n1 − 1 since we have

assumed n0 = 0. Define

w =
∑

a1,...,aL∈AM

(
1

αLq2
L(ank−1+t+1, · · · , ank−1+(t+1)L)

)s
where 0 ≤ t ≤ mk − 1.

Step I. Let 1 ≤ m ≤ m1. We first define a positive measure for the fundamental

cylinder JmL(a1, . . . , amL) as

µ(JmL(a1, . . . , amL)) =
m−1∏
t=0

1

w

(
1

αLq2
L(atL+1, . . . , a(t+1)L)

)s
,
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5.2. Proof of Theorem 5.1.1

and then we distribute this measure uniformly over its next offspring.

Step II. When n = m1L = n1 − 1 then define a measure

µ(Jm1L(a1, . . . , am1L)) =

m1−1∏
t=0

1

w

(
1

αLq2
L(atL+1, . . . , a(t+1)L)

)s
.

Step III. When n = m1L+ 1 = n1 then for Jn1(a1, . . . , an1), define a measure

µ(Jn1(a1, . . . , an1)) =
1

2αn1
µ(Jn1−1(a1, . . . , an1−1)).

In other words, the measure of Jn1−1 is uniformly distributed on its next offspring Jn1 .

Step IV. When n = n1 + 1, define

µ(Jn1+1(a1, . . . , an1+1)) =
2αn1

Bn1
µ(Jn1(a1, . . . , an1)).

The measure of other fundamental cylinders of level less than n1 − 1 is given by

the consistency of a measure. To be more precise, for any n < n1 − 1, suppose

µ(Jn(a1, · · · , an)) =
∑

Jm1L
⊂Jn

µ(Jm1L).

So for any m < m1, the measure of fundamental cylinder JmL is given by

µ(JmL(ank−1+t+1, · · · , ank−1+(t+1)L)) =
∑

Jm1L
⊂JmL

µ(Jm1L)

=
m−1∏
t=0

1

w

(
1

αLq2
L(atL+1, . . . , a(t+1)L)

)s
.

The measure of fundamental cylinders for other levels can be defined inductively.

For k ≥ 2 define,

µ(Jnk−1(a1, . . . , ank−1)) = µ
(
Jnk−1+1(a1, . . . , ank−1+1)

)
·
mk−1∏
t=0

1

w

(
1

αLq2
L(ank−1+tL+1, . . . , ank−1+(t+1)L)

)s
,

µ(Jnk(a1, . . . , ank)) =
1

2αnk
µ
(
Jnk−1

(a1, . . . , ank−1
)
)

and

µ(Jnk+1(a1, . . . , ank+1)) =
2αnk

Bnk
µ (Jnk(a1, . . . , ank)) ·

The Hölder exponent of the measure µ

Similar to last chapter, first we estimate the Hölder exponent of µ (Jn(a1, . . . , an)) in

relation to |Jn(a1, . . . , an)| and then Hölder condition between the ball µ(B(x, r)) and

radius r.

Estimation of µ(Jn(a1, . . . , an)).

53



5. A gap result in the metric theory of continued fractions

In this subsection we will estimate the measure µ of the fundamental cylinders

for several cases defined in Section 5. For this we split the process into several cases.

Recall that α > 1 which implies αL > 1, for any L large enough. For sufficiently large

k0 choose ε0 >
nk−1

nk
+ 1

nk
such that

mkL

nk
= 1− nk−1

nk
− 1

nk
≥ 1− ε0, for all k > k0. (5.21)

Case I. n = mL for some 1 ≤ m < m1.

µ(JmL(a1, . . . , amL)) ≤
m−1∏
t=0

(
1

αLq2
L(atL+1, . . . , a(t+1)L)

)s
(2.5)

≤ 4m−1 ·
(

1

q2
mL(a1, . . . , amL)

)s
(2.3)

≤
(

1

q2
mL(a1, . . . , amL)

)s− 2
L

(5.15)

≤ 6|JmL(a1, . . . , amL)|s−
2
L .

Case 2. n = m1L = n1 − 1.

µ(Jm1L(a1, . . . , am1L)) ≤
m1−1∏
t=0

(
1

αLq2
L(atL+1, . . . , a(t+1)L)

)s
≤
( 1

αm1L

)s( 1

q2
m1L

(a1, . . . , am1L)

)s− 2
L

(5.21)

≤
( 1

α1−ε0

)sn1
(

1

q2
m1L

(a1, . . . , am1L)

)s− 2
L

≤
(

1

αn1q2
n1−1

)s− 2
L
−ε0

(5.22)

(5.18)

≤ 12|Jm1L(a1, . . . , am1L)|s−
2
L
−ε0 .

Case 3. n = m1L+ 1 = n1.

µ(Jn1(a1, . . . , an1)) =
1

2αn1
µ(Jn1−1(a1, . . . , an1−1))

(5.22)

≤ 1

2αn1

(
1

αn1q2
n1−1

)s− 2
L
−ε0

=
1

2Bsn1

(
1

αn1q2
n1−1

)s− 2
L
−ε0

( α = Bs)

≤ 1

2

(
1

Bn1αn1q2
n1−1

)s− 2
L
−ε0

(5.20)

≤ 16|Jn1(a1, . . . , an1)|s−
2
L
−ε0 .
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Case 4. n = n1 + 1.

µ(Jn1+1(a1, . . . , an1+1)) =
2αn1

Bn1
µ(Jn1(a1, . . . , an1))

≤ 2αn1

2Bn1

(
1

Bn1αn1q2
n1−1

)s− 2
L
−ε0

≤
(

1

B2n1αn1q2
n1−1

)s− 2
L
−ε0

(5.16)

≤ 24|Jn1+1(a1, . . . , an1+1)|s−
2
L
−ε0 .

Here for the second inequality, we use B/α ≥ (B/α)s which is always true for α ≤ B

and s ≤ 1.

For a general fundamental cylinder, we only give the estimation on the measure of

cylinder Jnk−1(a1, . . . , ank−1). The estimation for other fundamental cylinders can be

carried out similarly. Recall that

µ(Jnk−1(a1, . . . , ank−1)) =µ
(
Jnk−1+1(a1, . . . , ank−1+1)

)
·
mk−1∏
t=0

1

w

(
1

αLq2
L(ank−1+tL+1, . . . , ank−1+(t+1)L)

)s
.

This further implies,

µ (Jnk−1(a1, . . . , ank−1)) ≤

[
k−1∏
j=1

(
1

Bnj

mj−1∏
t=0

(
1

αLq2
L(anj−1+tL+1, . . . , anj−1+(t+1)L)

)s)]

·
mk−1∏
t=0

(
1

αLq2
L(ank−1+tL+1, . . . , ank−1+(t+1)L)

)s
≤

[
k−1∏
j=1

(
1

Bnj

mj−1∏
t=0

(
1

αLq2
L(anj−1+tL+1, . . . , anj−1+(t+1)L)

)s)]

·
mk−1∏
t=0

(
1

αLq2
L(ank−1+tL+1, . . . , ank−1+(t+1)L)

)s
.

By similar arguments as used in Case 4 for the first product and Case 2 for the

second product, we obtain

µ (Jnk−1(a1, . . . , ank−1)) ≤
k−1∏
j=1

(
1

B2njq2
mjL

(anj−1+tL+1, . . . , anj−1+(t+1)L)

)s− 2
L
−ε0

·
(

1

αnkq2
mkL

(ank−1+tL+1, . . . , ank−1+(t+1)L)

)s− 2
L
−ε0

≤ 42k

(
1

αnkq2
nk−1

)s− 2
L
−ε0
≤
(

1

αnkq2
nk−1

)s− 2
L
−ε0− 4

L
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(5.18)

≤ 12|Jnk−1(a1, . . . , ank−1)|s−
6
L
−ε0 .

Consequently,

µ(Jnk(a1, . . . , ank)) =
1

2αnk
µ
(
Jnk−1

(a1, . . . , ank−1
)
)

≤ 1

2Bsnk

(
1

αnkq2
nk−1

)s− 2
L
−ε0− 4

L

≤ 1

2

(
1

Bnkαnkq2
nk−1

)s− 2
L
−ε0− 4

L

(5.20)

≤ 16|Jnk(a1, . . . , ank)|s−
6
L
−ε0 .

In summary, we have shown that for any n ≥ 1 and (a1, . . . , an) ∈ Dn, we get

µ (Jn (a1, . . . , an))� |Jn (a1, . . . , an) |s−
2
L
−ε0− 4

L .

Gap estimation.

First we estimate the gaps between the adjoint fundamental cylinders of same order

which will be useful for estimating µ(B(x, r)).

Let us start by assuming n is even (similar steps can be followed when n is odd).

Then for (a1, . . . , an) ∈ Dn, given a fundamental cylinder Jn (a1, . . . , an) , represent the

distance between Jn (a1, . . . , an) and its left (respectively right) adjoint fundamental

cylinder say

J ′n = J ′n(a1, · · · , an−1, an − 1) (if it exists)

(respectively, J ′′n = J ′′n(a1, · · · , an−1, an + 1) if it exits) of order n by

gl(a1, . . . , an)

(respectively, gr(a1, . . . , an)). Let

Gn (a1, . . . , an) = min
{
gr (a1, . . . , an) , gl (a1, . . . , an)

}
.

We will consider three different cases according to the range of n as in (5.10)-(5.12) for

FM (B) in order to estimate the lengths of gaps on both sides of fundamental cylinders

Jn (a1, . . . , an) .

Gap I. nk−1 + 1 ≤ n ≤ nk − 2, for all k ≥ 1.

There exists a basic cylinder of order n contained in In−1 (a1, . . . , an−1) which

lies on the left of In (a1, . . . , an) and also there exists a basic cylinder of order n

contained in In−1 (a1, . . . , an−1) which lies on the right of In (a1, . . . , an). In this case,

(a1, . . . , an − 1) ∈ Dn and (a1, . . . , an + 1) ∈ Dn, whereas gl (a1, . . . , an) is just the
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distance between the right endpoint of J ′n (a1, . . . , an − 1) and the left endpoint of

Jn (a1, . . . , an) .

The right endpoint of J ′n (a1, . . . , an − 1) is the same as the left endpoint of In (a1, . . . , an).

Since n is even, from equation (2.1) this has formula pn
qn
.

Note that the left endpoint of Jn (a1, . . . , an) lies on the extreme left of all the con-

stituent cylinders {In+1 (a1, . . . , an+1) : 1 ≤ an+1 ≤M}. This tells us that an+1 = M .

Since n+ 1 is odd, again from equation (2.1) this has formula

(Mpn + pn−1) + pn
(Mqn + qn−1) + pn

=
(M + 1) pn + pn−1

(M + 1) qn + qn−1

.

Therefore, we have

gl (a1, . . . , an) =
(M + 1) pn + pn−1

(M + 1) qn + qn−1

− pn
qn

=
pn−1qn − qn−1pn

((M + 1) qn + qn−1) qn
=

1

((M + 1) qn + qn−1) qn
.

In this case gr (a1, . . . , an) is just the distance between the right endpoint of Jn (a1, . . . , an)

and the left endpoint of J ′′n (a1, . . . , an + 1).

The right endpoint of Jn (a1, . . . , an) is the same as the right endpoint of In (a1, . . . , an).

Since n is even, again using equation (2.1) this has formula

pn + pn−1

qn + qn−1

.

Also, the left endpoint of J ′′n (a1, . . . , an + 1) lies on the extreme left of all the constituent

cylinders {In+1 (a1, . . . , an−1, an + 1, an+1) : 1 ≤ an+1 ≤M}. This tells us that an+1 =

M . Since n+ 1 is odd, we have

(M + 1) [(an + 1) pn−1 + pn−2] + pn−1

(M + 1) [(an + 1) qn−1 + qn−2] + qn−1

=
(M + 1) (pn + pn−1) + pn−1

(M + 1) (qn + qn−1) + qn−1

.

Therefore,

gr (a1, . . . , an) =
(M + 1) (pn + pn−1) + pn−1

(M + 1) (qn + qn−1) + qn−1

− pn + pn−1

qn + qn−1

=
1

((M + 1) (qn + qn−1) + qn−1) (qn + qn−1)
.

Hence

Gn (a1, . . . , an) =
1

((M + 1) (qn + qn−1) + qn−1) (qn + qn−1)

and from (5.14), we notice that

Gn(a1, . . . , an) ≥ 1

2M
|Jn(a1, . . . , an)|.

Gap II. n = nk − 1.
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In this case the gl (a1, . . . , an) is larger than the distance between the left endpoint

of In (a1, . . . , an) and the left endpoint of Jn (a1, . . . , an) whereas gr (a1, . . . , an) is

larger than the distance between the right endpoint of In (a1, . . . , an) and the right

endpoint of Jn (a1, . . . , an).

Thus proceeding in the similar way as in Gap I, we obtain

gl (a1, . . . , an) ≥ (2αn + 1) pn + pn−1

(2αn + 1) qn + qn−1

− pn
qn

=
1

((2αn + 1) qn + qn−1) qn
,

and

gr (a1, . . . , an) ≥ pn + pn−1

qn + qn−1

− (2αn + 1) pn + pn−1

(2αn + 1) qn + qn−1

=
1

((2αn + 1) qn + qn−1) (qn + qn−1)
.

Therefore,

Gn (a1, . . . , an) ≥ 1

((2αn + 1) qn + qn−1) (qn + qn−1)
,

and from (5.17),

Gn(a1, . . . , an) ≥ 1

2
|Jn(a1, . . . , an)|.

Gap III. n = nk.

Following the similar arguments as in Gap II, we have

gl (a1, a2, . . . , an) ≥
(
Bn

αn
+ 1
)
pn + pn−1(

Bn

αn
+ 1
)
qn + qn−1

− pn
qn

=
1((

Bn

αn
+ 1
)
qn + qn−1

)
qn
,

and

gr (a1, a2, . . . , an) ≥ pn + pn−1

qn + qn−1

−
(
Bn

2αn
+ 1
)
pn + pn−1(

Bn

2αn
+ 1
)
qn + qn−1

=
Bn

2αn((
Bn

2αn
+ 1
)
qn + qn−1

)
(qn + qn−1)

.

Thus,

Gn (a1, a2, . . . , an) ≥ 1((
Bn

αn
+ 1
)
qn + qn−1

)
(qn + qn−1)

,

and from (5.19), we have

Gn(a1, . . . , an) ≥ 1

4
|Jn(a1, . . . , an)|.
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Estimation of µ(B(x, r)).

Now we are in a position to estimate the measure µ on a general ball B(x, r). Fix

x ∈ FM (B) and let B(x, r) be a ball centered at x with radius r small enough. There

exists a unique sequence a1, · · · , an such that x ∈ Jn(a1, · · · , an) for each n ≥ 1 and

Gn+1(a1, . . . , an+1) ≤ r < Gn(a1, . . . , an).

It is clear, by the definition of Gn that B(x, r) can intersect only one fundamental

cylinder of order n, i.e., Jn(a1, . . . , an).

Case I. n = nk. Since in this case

|Ink+1(a1, . . . , ank+1)| = 1

qnk+1(qnk+1 + qnk)
≥ 1

6a2
nk+1

q2
nk

≥ α2nk

6B2nkq2
nk

,

the number of fundamental cylinders of order nk + 1 contained in Jnk(a1, . . . , ank) that

the ball B(x, r) intersects is at most

2r
6B2nk

α2nk
q2
nk

+ 2 ≤ 24r
B2nk

α2nk
q2
nk
.

Therefore,

µ(B(x, r)) ≤ min
{
µ(Jnk(a1, . . . , ank)), 24r

B2nk

α2nk
q2
nk
µ(Jnk+1(a1, . . . , ank+1))

}
≤ µ(Jnk(a1, . . . , ank)) min

{
1, 48r

Bnk

αnk
q2
nk

}
≤ c|Jnk(a1, . . . , ank)|s−

6
L
−ε0 min

{
1, 48r

Bnk

αnk
q2
nk

}
≤ c
( 2αnk

Bnkq2
nk

)s− 6
L
−ε0

(48r
Bnk

αnk
q2
nk

)s−
6
L
−ε0

≤ c0r
s− 6

L
−ε0 .

Here we use min{a, b} ≤ a1−sbs for any a, b > 0 and 0 ≤ s ≤ 1.

Case II. n = nk − 1. In this case, since

|Ink(a1, . . . , ank)| =
1

qnk(qnk + qnk−1)
≥ 1

6a2
nk
q2
nk−1

≥ 1

24α2nkq2
nk−1

,

the number of fundamental cylinders of order nk contained in Jnk−1(a1, . . . , ank−1) that

the ball B(x, r) intersects is at most

48rα2nkq2
nk−1 + 2 ≤ 96rα2nkq2

nk−1.

Therefore,

µ(B(x, r)) ≤ min
{
µ(Jnk−1(a1, . . . , ank−1)), 96rα2nkq2

nk−1µ(Jnk(a1, . . . , ank))
}
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≤ µ(Jnk−1(a1, . . . , ank−1)) min
{

1, 48rαnkq2
nk−1

}
≤ 12|Jnk−1(a1, . . . , ank−1)|s−

6
L
−ε0 min

{
1, 48rαnkq2

nk−1

}
≤ 12

( 1

2αnkq2
nk−1

)s− 6
L
−ε0

(48rαnkq2
nk−1)s−

6
L
−ε0 ≤ c0r

s− 6
L
−ε0 .

Case III. nk−1+1 ≤ n ≤ nk−2. As in this case 1 ≤ an(x) ≤M and |Jn(a1, . . . , an)| �
1
q2n
, we have

µ(B(x, r)) ≤ µ(Jn(a1, . . . , an)) ≤ c|Jn(a1, . . . , an)|s−
6
L
−ε0

≤ c

(
1

q2
n

)s− 6
L
−ε0

≤ c4M2

(
1

q2
n+1

)s− 6
L
−ε0

≤ c24M2|Jn+1(a1, . . . , an+1)|s−
6
L
−ε0

≤ c48M3(Gn+1(a1, . . . , an+1))s−
6
L
−ε

≤ c48M3rs−
6
L
−ε.

Conclusion for the lower bound: Thus combining all the above cases and

applying the mass distribution principle we have shown that dimHFM (B) ≥ s− 6
L
−ε0.

Now letting L → ∞, M → ∞, by the choice of ε0 for all large enough k and since

s < tB is arbitrary, we have s− 6
L
− ε0 → tB.

Therefore,

dimHF(B) ≥ dimHFM(B) ≥ tB. (5.23)

Taken together, results (5.7) and (5.23) complete the proof of the Theorem 5.1.1 for

the case 1 < B <∞.
Next we prove Theorem 5.1.1 for the case when B =∞.

Case 2: B =∞.

One can easily note that

an(x)an+1(x) ≥ Φ(n) =⇒ an(x) ≥ Φ(n)
1
2 or an+1(x) ≥ Φ(n)

1
2 .

Thus

F(Φ) ⊆ E2(Φ) ⊂ (V1(Φ) ∪ V2(Φ)), (5.24)

where

V1(Φ) :=
{
x ∈ [0, 1) : an(x) ≥ Φ(n)1/2 for infinitely many n ∈ N

}
and

V2(Φ) :=
{
x ∈ [0, 1) : an+1(x) ≥ Φ(n)1/2 for infinitely many n ∈ N

}
.
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2a. If b = 1, then for any δ > 0, we have log log Φ(n)
n

≤ log(1 + δ) that is Φ(n) ≤ e(1+δ)n

for infinitely many n ∈ N. Since{
x ∈ [0, 1) : an(x) ≥ e(1+δ)n for all sufficiently large n ∈ N

}
⊂ F(Φ).

Therefore, by using Lemma 2.1.3,

dimHF(Φ) ≥ lim
δ→0

1

1 + 1 + δ
=

1

2
.

Note that as B =∞, for any C > 1, we have Φ(n) ≥ Cn for all sufficiently large

n ∈ N. Thus by (5.24),

F(Φ) ⊆ E2(Φ) ⊂ {x ∈ [0, 1) : an(x) ≥ Cn for infinitely many n ∈ N} .

By Proposition 5.0.3 and Theorem 5.0.2, we have

dimHF(Φ) ≤ lim
C→∞

sC =
1

2
.

2b. If 1 < b <∞ then for any δ > 0, we have log log Φ(n)
n

≤ log(b+ δ), that is Φ(n) ≤
e(b+δ)n for infinitely many n ∈ N, whereas Φ(n) ≥ e(b−δ)n for all sufficiently large

n ∈ N. Since{
x ∈ [0, 1) : an(x) ≥ e(1+δ)n for all sufficiently large n ∈ N

}
⊂ F(Φ).

Therefore, by using Lemma 2.1.3

dimHF(Φ) ≥ lim
δ→0

1

1 + b+ δ
=

1

1 + b
.

Further note that from the definition of the set Vi(Φ) where i = 1, 2, it is clear

that

F(Φ) ⊆ E2(Φ) ⊂
{
x ∈ [0, 1) : an(x) ≥ e

1
2

(b−δ)(n−1)

for infinitely many n ∈ N
}
.

By Lemma 2.1.3,

dimHF(Φ) ≤ lim
δ→0

1

1 + b− δ
=

1

1 + b
.

2c. If b =∞ then by using the same argument as for showing the upper bound in

case 2b, for any C > 1, we have Φ(n) ≥ eC
n

for all sufficiently large n ∈ N. By

(5.24), we have

F(Φ) ⊆ E2(Φ) ⊂
{
x ∈ [0, 1) : an(x) ≥ eC

n

for infinitely many n ∈ N
}
.

Also, by Proposition 5.0.3 and Theorem 5.0.2,

dimHF(Φ) ≤ lim
C→∞

1

C + 1
= 0.
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This completes the proof of Theorem 5.1.1. �

Finally, we remark that it is possible to generalise the set F(Φ) for any d ≥ 2, to

the following

Fd(Φ) =


x ∈ [0, 1) :

d−1∏
k=1

an+k−1(x) ≥ Φ(n) for infinitely many n ∈ N and

d−1∏
k=1

an+k−1(x) < Φ(n) for all sufficiently large n ∈ N


.

By following the same method as we have used for the proof of Theorem 5.1.1, we can

show that.

Theorem 5.2.1 Let Φ : N→ (1,∞) be any function with lim
n→∞

Φ(n) =∞. Define B, b

as in Theorem 5.1.1. Then

1. dimHFd(Φ) = inf{s ≥ 0 : P(T,−gd logB − s log |T ′|) ≤ 0} when 1 < B < ∞,

where g1 = s, gd = sgd−1(s)

1−s+gd−1(s)
for d ≥ 2;

2. dimHFd(Φ) = 1
(1+b)

when B =∞.

More general setup

In the next chapter we will give a natural generalisation of classical Jarńık–Besicovitch

Theorem (1928, 1934).
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Chapter 6

Generalised metrical properties of

continued fractions

In this chapter we introduce the set of points x ∈ [0, 1) for which the product of an

arbitrary block of consecutive partial quotients in their continued fraction expansion

are growing. In fact we aim to compute the Hausdorff dimension of the set of x ∈ [0, 1)

such that for any r ∈ N,

log(an+1(x) · · · an+r(x)) ≥ τ(x)(h(x) + · · ·+ h(T n−1(x)))

for infinitely many n ∈ N, where h and τ are positive continuous functions, T is the

Gauss map and an(x) denote the nth partial quotient of x in its continued fraction

expansion. Later in this chapter we will see that by appropriate choices of r, τ(x) snd

h(x) we obtain the classical Jarńık–Besicovitch Theorem as well as more recent results

by Wang–Wu–Xu [46], Wang–Wu [45], Huang–Wu–Xu [25] and Hussain–Kleinbock–

Wadleigh–Wang [27].

Recall from Chapter 1, that the metrical aspect of the theory of continued fractions

has been very well studied due to its close connections with Diophantine approximation.

From Section 1.1 it can be observed that this theory can be viewed as arising from

the Gauss transformation (1.1).

For the requirement of this chapter we reformulate the set of τ -well approximable

points as follows, calling it the Jarńık–Besicovitch set,{
x ∈ [0, 1) :

∣∣∣∣x− p

q

∣∣∣∣ < 1

qτ
for infinitely many (p, q) ∈ Z× N

}
.

Clearly, Jarńık–Besicovitch Theorem [29, 8] gives the Hausdorff dimension of this set

to be 2
τ
, for any τ ≥ 2.

Recall that for any irrational x ∈ [0, 1), the irrationality exponent of x is defined as

ϑ(x) := sup

{
τ :

∣∣∣∣x− p

q

∣∣∣∣ < 1

qτ
for infinitely many (p, q) ∈ Z× N

}
.
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From Theorem 1.1.1, it is known that ϑ(x) ≥ 2 for any irrational x ∈ [0, 1). Moreover

for any τ ≥ 2, Jarńık–Besicovitch Theorem [29, 8] states that

dimH{x ∈ [0, 1) : ϑ(x) ≥ τ} = dimH{x ∈ [0, 1) : ϑ(x) = τ} =
2

τ
.

Observe that the exponent τ in the above sets is constant. Barral–Seuret [4]

generalised Jarńık–Besicovitch Theorem by considering the set of points for which the

irrationality exponent is not fixed in advance but may vary with x in a continuous

way. More precisely, Barral–Seuret [4] showed that for a continuous function τ(x),

dimH{x ∈ [0, 1) : ϑ(x) ≥ τ(x)} = dimH{x ∈ [0, 1) : ϑ(x) = τ(x)}

=
2

min{τ(x) : x ∈ [0, 1]}
.

They called such a set the localised Jarńık–Besicovitch set. Their result was further

generalised by Wang–Wu–Xu [46] who refashioned the problem in terms of continued

fractions and took a dynamical approach. To refer their result, first denote by

Snf(x) := f(x) + · · · + f(T n−1(x)) the ergodic sum of any function f and then by

using the facts (1.4), (2.6), and (2.7), the Jarńık–Besicovitch set in terms of growth

rate of partial quotients can be restated as,

J(τ) :=
{
x ∈ [0, 1) : an(x) ≥ e(

τ−2
2 )·Sn(log |T ′(x)|) for infinitely many n ∈ N

}
.

Note that the set J(τ), in terms of entries of continued fractions, contains the approx-

imating function that involves the ergodic sum

Sn(log |T ′(x)|) = log |T ′(x)|+ · · ·+ log |T ′(T n−1(x))|

and this sum is growing fast as n→∞. Therefore having the approximating function

in terms of the ergodic sum and the fact that partial quotients of any real number

x ∈ [0, 1) completely determines its Diophantine properties, the Jarńık–Besicovitch

set (and its related variations which we will see in this chapter) in terms of the growth

rate of partial quotients gives us better approximation results. In fact, Wang–Wu–Xu

[46] introduced the generalised version of J(τ) as

J(τ ;h) :=
{
x ∈ [0, 1) : an(x) ≥ eτ(x)·Snh(x) for infinitely many n ∈ N

}
,

where h(x) and τ(x) are positive continuous functions defined on [0, 1]. They called

such points the localised (τ ;h) approximable points. Further, they proved that

dimH J(τ, h) = s
(1)
N := inf{s ≥ 0 : P(T,−sτminh− s log |T ′|) ≤ 0},

where τmin = min{τ(x) : x ∈ [0, 1]}, P denotes the pressure function and T ′ is the

derivative of the Gauss map T.

64



6.1. Statement of main result

In this chapter we introduce the set of points x ∈ [0, 1) for which the product of an

arbitrary block of consecutive partial quotients, in their continued fraction expansion,

are growing. In fact we determine the size of such a set in terms of Hausdorff dimension.

Motivation for considering the growth of product of consecutive partial quotients arose

from the work of Kleinbock–Wadleigh [34] where they considered improvements to

Dirichlet’s Theorem. We refer the reader to [3, 2, 27, 33, 34, 35] for comprehensive

metric theory associated with the set of points improving Dirichlet’s Theorem.

6.1 Statement of main result

We prove the following main result of this chapter. Note that tempered distortion

property (2.9) is defined in Chapter 2.

Theorem 6.1.1 Let h : [0, 1]→ (0,∞) and τ : [0, 1]→ [0,∞) be positive continuous

functions with h satisfying the tempered distortion property. For r ∈ N define the set

Rr(τ ;h) :=

{
x ∈ [0, 1) :

r∏
d=1

an+d(x) ≥ eτ(x)·Snh(x) for infinitely many n ∈ N

}
.

Then

dimHRr(τ ;h) = s
(r)
N := inf{s ≥ 0 : P(T,−gr(s)τminh− s log |T ′|) ≤ 0},

where τmin = min{τ(x) : x ∈ [0, 1]}, g1(s) = s and gr(s) = sgr−1(s)
1−s+gr−1(s)

for all r ≥ 2. �

Theorem 6.1.1 is more general as for different τ(x) and h(x) it implies various

classical results as we now see.

• When r = 1, τ(x) = c where c is a constant and h(x) = log |T ′ |, then we obtain

the classical Jarńık–Besicovitch Theorem [8, 29] .

Corollary 6.1.2 For any τ ≥ 2,

dimH J(τ) =
2

τ
. �

• When r = 1, we obtain the result by Wang–Wu–Xu [46] .

Corollary 6.1.3

dimH

{
x ∈ [0, 1) : an+1(x) ≥ eτ(x)Snh(x) for infinitely many n ∈ N

}
= s

(1)
N . �

• When r = 1, τ(x) = 1 and h(x) = logB, we obtain Theorem 5.0.2 i.e. the result

by Wang–Wu [45].
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6. Generalised metrical properties of continued fractions

Corollary 6.1.4 For any B > 1,

dimH {x ∈ [0, 1) : an+1(x) ≥ Bn for infinitely many n ∈ N} = s
(1)
B

where

s
(1)
B = inf{s ≥ 0 : P(T,−s logB − s log |T ′|) ≤ 0}. �

• When τ(x) = 1 and h(x) = logB, we obtain the result by Huang–Wu–Xu [25].

Corollary 6.1.5 For any B > 1,

dimH {x ∈ [0, 1) : an+1(x) · · · an+r(x) ≥ Bn for infinitely many n ∈ N} = s
(r)
B ,

where

s
(r)
B = inf{s ≥ 0 : P(T,−gr(s) logB − s log |T ′|) ≤ 0}. �

• When r = 2, τ(x) = c where c is a constant and h(x) = log |T ′|, we obtain the

result by Hussain–Kleinbock–Wadleigh–Wang [27].

Corollary 6.1.6

dimH

{
x ∈ [0, 1) : an+1(x)an+2(x) ≥ qτ+2

n+1(x) for infinitely many n ∈ N
}

=
2

2 + τ
. �

The pressure function and s
(r)
N

Consider a finite or infinite subset A of the set of natural numbers and for every n ≥ 1

and s ≥ 0, let

fn,A (s) =
∑

a1,...,an∈A

1

egr(s)τminSnh(z)q2s
n

, (6.1)

where z ∈ In(a1, · · · , an) and gr(s) is defined by the formula

g1(s) = s and gr(s) =
sgr−1(s)

1− s+ gr−1(s)
for all r ≥ 2. (6.2)

It can be easily checked that for any s ∈ (1
2
, 1) we have gr+1(s) ≤ gr(s), for all r ≥ 1.

For the requirement of this chapter we consider a particular potential, that is,

ϕs(x) := −gr(s)τminh− s log |T ′(x)|.

From the definition of pressure function (2.10) and using equations (2.7), (6.1) and

(6.2) we have

PA(T, ϕs) = lim
n→∞

1

n
log

∑
a1,...,an∈A

1

egr(s)τminSnh(z)q2s
n

.
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6.2. Proof of Theorem 6.1.1

Define

s
(r)
n,A = inf {s ≥ 0 : fn,A (s) ≤ 1} ,

and let

s
(r)
A = inf{s ≥ 0 : PA(T,−gr(s)τminh− s log |T ′|) ≤ 0},

s
(r)
N = inf{s ≥ 0 : P(T,−gr(s)τminh− s log |T ′|) ≤ 0}.

When A is a finite subset of N, then s
(r)
n,A and s

(r)
A are the unique solutions to

fn,A (s) = 1 and PA(T,−gr(s)τminh − s log |T ′(x)|) = 0, respectively (for details see

[45]). If A = {1, · · · ,M} for any M ∈ N, write s
(r)
n,M for s

(r)
n,A and s

(r)
M for s

(r)
A .

From Proposition 2.2.2 and since the potential ϕs satisfies the variation property

we have the following result.

Corollary 6.1.7 For any integer r ≥ 1,

s
(r)
N = sup{s(r)

A : A is a finite subset of N}.

Furthermore, the dimensional term s
(r)
N is continuous with respect to ϕs, i.e.,

lim
ε→0

inf{s ≥ 0 : PA(T, ϕs + ε) ≤ 0} = inf{s ≥ 0 : PA(T, ϕs) ≤ 0}. (6.3)

�

From the definition of pressure function and by Corollary 6.1.7 for any M ∈ N and

0 < ε < 1, we have

lim
n→∞

s
(r)
n,M = s

(r)
M , lim

n→∞
s

(r)
n,N = s

(r)
N , lim

M→∞
s

(r)
M = s

(r)
N and |s(r)

n,M − s
(r)
M | ≤ ε. (6.4)

6.2 Proof of Theorem 6.1.1

The proof of Theorem 6.1.1 is divided into two main parts:

(i) the upper bound for dimHRr(τ ;h) and

(ii) the lower bound for dimHRr(τ ;h).

Proof of Theorem 6.1.1: the upper bound

For the upper bound we will find a natural covering for the set Rr(τ ;h). To do this,

recall that h is assumed to be a positive continuous function satisfying tempered

distortion property (2.9). Consequently,

1

n

n∑
j=1

Varj(h)→ 0 as n→∞.
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6. Generalised metrical properties of continued fractions

Thus for any fixed λ > 0 there exist N(λ) ∈ N such that for any n ≥ N(λ) we have∑n
j=1 Varj(h) ≤ nλ. Therefore, for any x, z ∈ [0, 1) with In(x) = In(z) we have

|Snh(x)− Snh(z)| =

∣∣∣∣∣
n−1∑
j=0

h(T jx)−
n−1∑
j=0

h(T jz)

∣∣∣∣∣
≤

n−1∑
j=0

∣∣h(T jx)− h(T jz)
∣∣

≤
n−1∑
j=0

Varn−j(h) ≤ nλ.

Then it follows that

Rr(τ ;h) ⊂ Cr(τ)

where

Cr(τ) :=

{
x ∈ [0, 1) :

r∏
d=1

an+d(x) ≥ eτminSn(h−λ)(z) for infinitely many n ∈ N

}

and z ∈ In(a1, · · · , an). Thus for the upper bound of dimHRr(τ ;h) it is sufficient to

calculate the upper bound for dimH Cr(τ) i.e., to show

dimH Cr(τ) ≤ inf{s ≥ 0 : P(T,−gr(s)τmin(h− λ)− s log |T ′|) ≤ 0}, (6.5)

which we will prove by induction on r.

For r = 1, the result is proved by Wang–Wu–Xu [46].

Suppose that (6.5) is true for r = k. We need to show that (6.5) holds for r = k+1.

Note that

Ck+1(τ) ⊆

{
x ∈ [0, 1) :

k∏
d=1

an+d(x) ≥ eτminSn(h−λ)(z) for infinitely many n ∈ N

}

∪

x ∈ [0, 1) :

1 ≤
k∏
d=1

an+d(x) ≤ eτminSn(h−λ)(z),

an+k+1(x) ≥ eτminSn(h−λ)(z)∏k
d=1 an+d(x)

for infinitely many n ∈ N

 .

Further, for any 1 < γ ≤ e,

Ck+1(τ) ⊆ I(τ) ∪ J (τ),

where

I(τ) :=

{
x ∈ [0, 1) :

k∏
d=1

an+d(x) ≥ γτminSn(h−λ)(z) for infinitely many n ∈ N

}
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6.2. Proof of Theorem 6.1.1

and

J (τ) :=

x ∈ [0, 1) :

1 ≤
k∏
d=1

an+d(x) ≤ γτminSn(h−λ)(z),

an+k+1(x) ≥ eτminSn(h−λ)(z)∏k
d=1 an+d(x)

for infinitely many n ∈ N

 .

Therefore,

dimH Ck+1(τ) ≤ inf
1<γ≤e

max {dimH I(τ), dimH J (τ)}.

By using induction hypothesis and since γτminSn(h−λ)(z) ≤ eτminSn(h−λ)(z), we have

dimH I(τ) ≤ tkγ := inf{s ≥ 0 : P(T,−gk(s)τmin(h− λ) log γ − s log |T ′|) ≤ 0}.

For the upper bound of dimH J (τ) we proceed by finding a natural covering for this

set. In terms of lim sup nature of the set J (τ), can be rewritten as

J (τ) =
∞⋂
N=1

∞⋃
n=N

J ∗(τ) :=
∞⋂
N=1

∞⋃
n=N

x ∈ [0, 1) :

1 ≤
k∏
d=1

an+d(x) ≤ γτminSn(h−λ)(z),

an+k+1(x) ≥ eτminSn(h−λ)(z)∏k
d=1 an+d(x)

 .

Thus for each n ≥ N, the cover for J ∗(τ) will serve as a natural cover for J (τ).

Clearly,

J ∗(τ) ⊆
⋃

a1,··· ,an∈N

⋃
1≤

∏k
d=1 an+d≤γτminSn(h−λ)(z)

Jn+k(a1, · · · , an+k)

where

Jn+k(a1, · · · , an+k) =
⋃

an+k+1≥ e
τminSn(h−λ)(z)∏k

d=1
an+d

In+k+1(a1, · · · , an+k+1).

By using (2.2), we have

|Jn+k(a1, . . . , an+k)| =
∑

an+k+1≥ e
τminSn(h−λ)(z)∏k

d=1
an+d

|In+k+1 (a1, . . . , an+k, an+k+1)|

≤
∑

an+k+1≥ e
τminSn(h−λ)(z)∏k

d=1
an+d

1

an+k+1q2
n+k(a1, · · · , an+k)

�
∑

an+k+1≥ e
τminSn(h−λ)(z)∏k

d=1
an+d

1

an+k+1

(∏k
d=1 an+d

)2

q2
n(a1, · · · , an)

� 1

eτminSn(h−λ)(z)
(∏k

d=1 an+d

)
q2
n(a1, · · · , an)

. (6.6)
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6. Generalised metrical properties of continued fractions

Fixing δ > 0 and taking the (s+ δ)-volume of the cover of J∗(τ), we obtain

∑
a1,··· ,an∈N

∑
1≤an+1···an+k≤γτminSn(h−λ)(z)

(
1

eτminSn(h−λ)(z)(an+1 · · · an+k)q2
n(z)

)s+δ
≤

∑
a1,··· ,an∈N

∑
1≤an+1···an+k≤γτminSn(h−λ)(z)

(
1

eτminSn(h−λ)(z)(an+1 · · · an+k)q2
n(z)

)s
e−δτminSn(h−λ)(z)

�
∑

a1,··· ,an∈N

(log γτminSn(h−λ)(z))k−1

(k − 1)!
γ(1−s)τminSn(h−λ)(z)·

(
1

eτminSn(h−λ)(z)q2
n(z)

)s
e−δτminSn(h−λ)(z)

≤
∑

a1,··· ,an∈N

(log eτminSn(h−λ)(z))k−1

(k − 1)!
γ(1−s)τminSn(h−λ)(z)·

(
1

eτminSn(h−λ)(z)q2
n(z)

)s
e−δτminSn(h−λ)(z)

≤
∑

a1,··· ,an∈N

γ(1−s)τminSn(h−λ)(z)

(
1

eτminSn(h−λ)(z)q2
n(z)

)s
.

Therefore, the (s+ δ)-dimensional Hausdorff measure of J (τ) is

Hs+δ(J (τ))

≤ lim inf
N→∞

∞∑
n=N

∑
a1,··· ,an∈N

∑
1≤

∏k
d=1 an+d≤γτminSn(h−λ)(z) 1

eτminSn(h−λ)(z)
(∏k

d=1 an+d

)
q2
n(z)

s+δ

≤ lim inf
N→∞

∞∑
n=N

∑
a1,··· ,an∈N

γ(1−s)τminSn(h−λ)(z)

(
1

eτminSn(h−λ)(z)q2
n(z)

)s
.

Since δ > 0 is arbitrary, it follows that

dimH J (τ) ≤ uk+1
γ ,

where uk+1
γ is defined as

inf{s ≥ 0 : P(T, (1 − s)τmin(h − λ) log γ − sτmin(h − λ) − s log |T ′|) ≤ 0}.

Hence,

dimH Ck+1(τ) ≤ inf
1<γ≤e

max{tkγ, uk+1
γ }.

As the pressure function P(T, ϕs) is increasing with respect to the potential ϕs we

know tkγ is increasing and uk+1
γ is decreasing with respect to γ. Therefore the infimum

is obtained at the value γ where

−gk(s)τmin(h− λ) log γ−s log |T ′| = (1−s)τmin(h−λ) log γ−sτmin(h−λ)−s log |T ′|.

This implies that

γ(1−s)τmin(h−λ)e−sτmin(h−λ) = γ−gk(s)τmin(h−λ)
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6.2. Proof of Theorem 6.1.1

⇐⇒ − s

(1− s) + gk(s)
= − log γ

⇐⇒ − gk+1(s) = −gk(s) log γ.

Hence,

dimH Ck+1(τ) ≤ inf{s ≥ 0 : P(T,−gk+1(s)τmin(h− λ)− s log |T ′|) ≤ 0}.

Consequently, for any r ≥ 1, we obtain

dimHRr(τ ;h) ≤ inf{s ≥ 0 : P(T,−gr(s)τmin(h− λ)− s log |T ′|) ≤ 0}.

By (6.3) and letting λ→ 0 we obtained the desired result.

Proof of Theorem 6.1.1: the lower bound

For the lower bound, again our strategy is to first construct an appropriate Cantor

subset E∞ of Rr(τ ;h), then distribute the measure µ > 0 on E∞ and obtain the Hölder

exponent. Lastly, we apply the mass distribution principle, i.e., Proposition 2.1.4.

Cantor subset:

Fix 1
2
< s < s

(r)
N and choose 1 ≤ γ0 ≤ γ1 ≤ · · · ≤ γr−2 ≤ e in a way such that

log γi =
gr(s)(1− s)i

si+1
for all 0 ≤ i ≤ r − 2. (6.7)

Moreover we have the following lemma which we will prove by induction on r.

Lemma 6.2.1 For any r ≥ 1,

gr(s) =
sr(2s− 1)

sr − (1− s)r
(6.8)

satisfies the recursive relation defined in (6.2). �

Proof: When r = 1, it is clear from (6.2) that

g1(s) = s =
s(2s− 1)

s− (1− s)
.

Suppose (6.8) is true for r = k, then for r = k + 1

gk+1(s) =
sgk(s)

1− s+ gk(s)
by (6.2)

=
s sk(2s−1)
sk−(1−s)k

1− s+ sk(2s−1)
sk−(1−s)k

(by induction hypothesis)

=
sk+1(2s− 1)

sk − (1− s)k − sk+1 + s(1− s)k + (2s− 1)sk

=
sk+1(2s− 1)

sk+1 − (1− s)k(1− s)
=

sk+1(2s− 1)

sk+1 − (s− 1)k+1
. �

Therefore (6.8) is true for r = k + 1.
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6. Generalised metrical properties of continued fractions

Thus by using (6.7) and (6.8) it is easy to check that the following equality holds.

log γ−s0 = log(γ1−s
0 (γ0γ1)−s) = · · · = log((γ0 · · · γr−3)1−s(γ0 · · · γr−2)−s)

= log(γ0 · · · γr−2)1−s − s = −gr(s).
(6.9)

Further, let ε > 0 and M ∈ N. Fix an irrational z0 and an integer t0 such that for

any z ∈ In(z0) with n ≥ t0, we have

τ(z) ≤ min{τmin(1 + ε), τmin + ε}.

Next define two integer sequences {tj}j≥1 and {mj}j≥1 recursively where {mj}j≥1 is

defined to be a largely sparse integer sequence tending to infinity. For each j ≥ 1,

define tj = t0 + j and set nj = (nj−1 + (r − 1)) + tj +mj + 1.

Now we construct the Cantor subset ‘E∞’ level by level. We start by defining the

zero level.

Level 0. Let n0 + (r − 1) ≥ t2. Define

ν(0,r−1) = (a1(z0), a2(z0), · · · , an0+(r−1)(z0)).

Then the zero level ‘E0,r−1’ of the Cantor set E∞ is defined as

E0,r−1 := F0 = {In0+(r−1)(ν
(0,r−1))}.

Level 1. Note that n1 = (n0 + (r − 1)) + t1 +m1 + 1. Let us define the collection of

basic cylinders of order n1 − 1:

F1 = {In1−1(ν(0,r−1), ν(0,r−1)|t1 , b
(1)
1 , · · · , b(1)

m1
) : 1 ≤ b

(1)
1 , · · · , b(1)

m1
≤M}.

For each In1−1(w
(1)) ∈ F1 where w(1) := (ν(0,r−1), ν(0,r−1)|t1 , b

(1)
1 , · · · , b(1)

m1), define

the collection of sub-cylinders of order n1:

E1,0(w(1)) := {In1(ν
(1,0)) := In1(w

(1), an1) :

γ
τ(z1)Sn1−(n0+(r−1))−1h(z1)

0 ≤ an1 < 2γ
τ(z1)Sn1−(n0+(r−1))−1h(z1)

0 }
(6.10)

where z1 ∈ In1−(n0+(r−1))−1(ν(0,r−1)|t1 , b
(1)
1 , · · · , b(1)

m1).

Let In1 = In1(ν
(0,r−1), ν(0,r−1)|t1 , b

(1)
1 , · · · , b(1)

m1 , an1) ∈ E1,0(w
(1)). The choice of z1

indicates that for any x ∈ In1 the continued fraction representations of z1 and x share

prefixes up to t1th partial quotients. Hence τ(z1) is close to τ(x) by the continuity of

τ. Further, it can be easily checked that Sn1−(n0+(r−1))−1h(z1) ∼ Sn1−1h(x), (here ‘∼’

denotes the asymptotic equality of two functions). Consequently,

τ(z1)Sn1−(n0+(r−1))−1h(z1) ∼ τ(x)Sn1−1h(x)

=⇒ τ(z1)Sn1−(n0+(r−1))−1h(z1) log γ0 ∼ τ(x)Sn1−1h(x) log γ0
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6.2. Proof of Theorem 6.1.1

=⇒ log γ
τ(z1)Sn1−(n0+(r−1))−1h(z1)

0 ∼ log γ
τ(x)Sn1−1h(x)
0

=⇒ log an1 ∼ log γ
τ(x)Sn1−1h(x)
0 from (6.10) .

Thus, an1(x) ∼ γ
τ(x)Sn1−1h(x)
0 .

Next for each In1(ν
(1,0)) ∈ E1,0(w(1)), define

E1,1(ν(1,0)) := {In1+1(ν(1,1)) := In1+1(ν(1,0), an1+1) :

γ
τ(z1)Sn1−(n0+(r−1))−1h(z1)

1 ≤ an1+1 < 2γ
τ(z1)Sn1−(n0+(r−1))−1h(z1)

1 }.

Continuing in this way for each In1+(r−3)(ν
(1,r−3)) ∈ E1,r−3(ν(1,r−4)) collect a family

of sub-cylinders of order n1+(r−2):

E1,r−2(ν(1,r−3)) := {In1+(r−2)(ν
(1,r−2)) = In1+(r−2)(ν

(1,r−3), an1+(r−2)) :

γ
τ(z1)Sn1−(n0+(r−1))−1h(z1)

r−2 ≤ an1+(r−2) < 2γ
τ(z1)Sn1−(n0+(r−1))−1h(z1)

r−2 }.

Further for each In1+(r−2)(ν
(1,r−2)) ∈ E1,r−2(ν(1,r−3)) collect a family of sub-cylinders

of order n1+(r−1):

E1,r−1(ν(1,r−2)) := {In1+(r−1)(ν
(1,r−1)) = In1+(r−1)(ν

(1,r−2), an1+(r−1)) :(
e

γ0 · · · γr−2

)τ(z1)Sn1−(n0+(r−1))−1h(z1)

≤ an1+(r−1)

< 2

(
e

γ0 · · · γr−2

)τ(z1)Sn1−(n0+(r−1))−1h(z1)

}.

Then the first level ‘E1,r−1’ of the Cantor set E∞ is defined as

E1,r−1 = {In1+(r−1)(ν
(1,r−1)) ∈ E1,r−1(ν(1,r−2)) :

In1+i(ν
(1,i)) ∈ E1,i(ν

(1,i−1)) for 1 ≤ i ≤ r − 2;

In1(ν
(1,0)) ∈ E1,0(w(1)); In1−1(w(1)) ∈ F1}.

Level j.

Suppose that Ej−1,r−1 that is the (j − 1)th level has been constructed. Clearly,

Ej−1,r−1 consists of the collection of basic cylinders which are of order nj−1 + (r − 1).

Recall that nj = (nj−1+(r−1))+tj+mj+1. For each Inj−1+(r−1)(ν
(j−1,r−1)) ∈ Ej−1,r−1

define the collections of sub-cylinders of order nj − 1:

Fj(Inj−1+(r−1)(ν
(j−1,r−1))) = {Inj−1(ν(j−1,r−1), ν(j−1,r−1)|tj , b

(j)
1 , · · · , b(j)

mj
) :

1 ≤ b
(j)
1 , · · · , b(j)

mj
≤M}
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and let

Fj =
⋃

Inj−1+(r−1)∈Ej−1,r−1

Fj(Inj−1+(r−1)(ν
(j−1,r−1))).

Following the same process as for Level 1, for each Inj−1(w
(j)) ∈ Fj define the

collection of sub-cylinders:

Ej,0(w(j)) := {Inj(ν(j,0)) := Inj(w
(j), anj) :

γ
τ(zj)Snj−(nj−1+(r−1))−1h(zj)

0 ≤ anj < 2γ
τ(zj)Snj−(nj−1+(r−1))−1h(zj)

0 }

where zj ∈ Inj−(nj−1+(r−1))−1(ν(j−1,r−1)|tj , b
(j)
1 , · · · , b(j)

mj).

Next for each Inj(ν
(j,0)) ∈ Ej,0(w(j)), define

Ej,1(ν(j,0)) := {Inj+1(ν(j,1)) := Inj+1(ν(j,0), anj+1) :

γ
τ(zj)Snj−(nj−1+(r−1))−1h(zj)

1 ≤ anj+1 < 2γ
τ(zj)Snj−(nj−1+(r−1))−1h(zj)

1 }.

Similarly for each Inj+i−1(ν(j,i−1)) ∈ Ej,i−1(ν(j,i−2)), with 2 ≤ i ≤ r − 2 collect a family

of sub-cylinders of order nj+i:

Ej,i(ν(j,i−1)) := {Inj+i(ν(j,i)) = Inj+i(ν
(j,i−1), anj+i) :

γ
τ(zj)Snj−(nj−1+(r−1))−1h(zj)

i ≤ an1+i < 2γ
τ(zj)Snj−(nj−1+(r−1))−1h(zj)

i }.

Continuing in this way for each Inj+r−2(ν(j,r−2)) ∈ Ej,r−2(ν(j,r−3)) we define

Ej,r−1(ν(j,r−2)) := {Inj+(r−1)(ν
(j,r−1)) := Inj+(r−1)(ν

(j,r−2), anj+(r−1))) :(
e

γ0γ1 · · · γr−2

)τ(zj)Snj−(nj−1+(r−1))−1h(zj)

≤ anj+(r−1) < 2

(
e

γ0γ1 · · · γr−2

)τ(zj)Snj−(nj−1+(r−1))−1h(zj)

}.

Then the jth level ‘Ej,r−1’ of the Cantor set E∞ is defined as

Ej,r−1 = {Inj+(r−1)(ν
(j,r−1)) ∈ Ej,r−1(ν(j,r−2)) :

Inj+i(ν
(j,i)) ∈ Ej,i(ν(j,i−1)) for 1 ≤ i ≤ r − 2;

Inj(ν
(j,0)) ∈ Ej,0(w(j)); Inj−1(w(j)) ∈ Fj}.

Then the Cantor set is defined as

E∞ :=
∞⋂
j=1

⋃
Inj+(r−1)(ν

(j,r−1))∈Ej,r−1

Inj+(r−1)(ν
(j,r−1)).

By the same arguments as discussed in Level 1, that is, by the continuity of τ

and since zj and x share common prefixes up to tjth partial quotients,

lim
j→∞

τ(zj) = τ(x) and lim
j→∞

Snj−(nj−1+(r−1))−1h(zj)

Snj−1h(x)
= 1. (6.11)
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6.2. Proof of Theorem 6.1.1

Therefore E∞ is contained in Rr(τ ;h). As one can easily check that for showing

E∞ ⊂ Rr(τ ;h) it is sufficient to show that (6.11) holds.

In order to better understand the structure of E∞ we will utilize the idea of symbolic

space. If [ν1, ν2, · · · , νn, · · · ] is a continued fraction expansion of a point x ∈ E∞ then

call the sequence (ν1, ν2, · · · , νn, · · · ) an admissible sequence and for any n ≥ 1 call the

finite truncation ν := (ν1, ν2, · · · , νn) an admissible block. If ν is an admissible block

only than In(ν) ∩ E∞ 6= ∅, and such basic cylinders In(ν) are known as admissible

cylinders. For any n ≥ 1, denote by ‘Dn’ the set of strings defined as

Dn = {(ν1, ν2, · · · , νn) ∈ Nn : ν = (ν1, ν2, · · · , νn) is an admissible block }.

Next we will recursively define Dn, according to the limitations on the partial quotients

defined for different cases in the construction of E∞.
Write l1 = n1 − (n0 + (r − 1))− 1 = t1 +m1.

(1a) When 1 ≤ n ≤ (n0 + (r − 1)),

Dn = {ν(0,r−1) = (a1(z0), a2(z0), · · · , an0+(r−1)(z0))}.

(1b) When (n0 + (r − 1)) < n ≤ (n0 + (r − 1)) + t1,

Dn = {(ν(0,r−1), ν(0,r−1)|n−(n0+(r−1)))}.

(1c) When (n0 + (r − 1)) + t1 < n < n1,

Dn = {ν = (ν(0,r−1), ν(0,r−1)|t1 , ν(n0+(r−1))+t1+1), . . . , νn) :

1 ≤ νu ≤M, (n0 + (r − 1)) + t1 < u ≤ n}.

(1d) When n = n1,

Dn = {ν = (ν(0,r−1), ν(0,r−1)|t1 , ν(n0+(r−1))+t1+1), . . . , νn1−1, νn1) :

γ
τ(z1)Sl1h(z1)

0 ≤ νn1 < 2γ
τ(z1)Sl1h(z1)

0

and 1 ≤ νu ≤M for (n0 + (r − 1)) + t1 < u < n1},

where z1 ∈ Il1(ν(0,r−1)|t1 ,ν(n0+(r−1))+t1+1,··· ,νn1−1).

(1e) When n = n1 + i where 1 ≤ i ≤ r − 2,

Dn = {ν = (ν(0,r−1), ν(0,r−1)|t1 , ν(n0+(r−1))+t1+1), . . . , νn1+i−1, νn1+i) :

γ
τ(z1)Sl1h(z1)

i ≤ νn1+i < 2γ
τ(z1)Sl1h(z1)

i where 1 ≤ i ≤ r − 2,

γ
τ(z1)Sl1h(z1)

0 ≤ νn1 < 2γ
τ(z1)Sl1h(z1)

0

and 1 ≤ νu ≤M for (n0 + (r − 1)) + t1 < u < n1}.
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(1f) When n = n1 + (r − 1),

Dn = {ν = (ν(0,r−1), ν(0,r−1)|t1 , ν(n0+(r−1))+t1+1), . . . , νn1−1, νn1) :(
e

γ0γ1 · · · γr−2

)τ(z1)Sl1h(z1)

≤ νn1+(r−1) < 2

(
e

γ0γ1 · · · γr−2

)τ(z1)Sl1h(z1)

,

γ
τ(z1)Sl1h(z1)

i ≤ νn1+i < 2γ
τ(z1)Sl1h(z1)

i where 1 ≤ i ≤ r − 2,

γ
τ(z1)Sl1f(z1)

0 ≤ νn1 < 2γ
τ(z1)Sl1h(z1)

0

and 1 ≤ νu ≤M for (n0 + (r − 1)) + t1 < u < n1}.

Next to define Dn inductively, suppose that Dnj−1+(r−1) has been defined. For each

j ≥ 1, write lj = nj − (nj−1 + (r − 1))− 1 = tj +mj.

(2a) When (nj−1 + (r − 1)) < n ≤ (nj−1 + (r − 1)) + tj,

Dn = {ν = (ν(j−1,r−1), ν(j−1,r−1)|n−(nj−1+(r−1)))}.

(2b) When (nj−1 + (r − 1)) + tj < n < nj,

Dn = {ν = (ν(j−1,r−1), ν(j−1,r−1)|tj , ν(nj−1+(r−1))+tj+1, . . . , νn) :

ν(j−1,r−1) ∈ Dnj−1+(r−1),

1 ≤ νu ≤M, (nj−1 + (r − 1)) + tj < u ≤ n}.

(2c) When n = nj,

Dn = {ν = (ν(j−1,r−1), ν(j−1,r−1)|tj , ν(nj−1+(r−1))+t1+1), . . . , νnj−1, νnj) :

γ
τ(zj)Sljh(zj)

0 ≤ νnj < 2γ
τ(zj)Sljh(zj)

0

and 1 ≤ νu ≤M for (nj−1 + (r − 1)) + tj < u < nj}.

where zj ∈ Ilj(ν(j−1,r−1)|tj , ν(nj−1+(r−1))+tj+1, · · · , νnj−1).

(2d) When n = nj + i where 1 ≤ i ≤ r − 2,

Dn = {ν = (ν(j−1,r−1), ν(j−1,r−1)|tj , ν(nj−1+(r−1))+tj+1), . . . , νnj+i−1, νnj+i) :

γ
τ(zj)Sljh(zj)

i ≤ νnj+i < 2γ
τ(zj)Sljh(zj)

i where 1 ≤ i ≤ r − 2,

γ
τ(zj)Sljh(zj)

0 ≤ νnj < 2γ
τ(zj)Sljh(zj)

0

and 1 ≤ νu ≤M for (nj−1 + (r − 1)) + tj < u < nj}.

(2e) When n = nj + (r − 1),

Dn = {ν = (ν(j−1,r−1), ν(j−1,r−1)|tj , ν(nj−1+(r−1))+tj+1), . . . , νnj−1, νnj) :
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(
e

γ0γ1 · · · γr−2

)τ(zj)Sljh(zj)

≤ νnj+(r−1) < 2

(
e

γ0γ1 · · · γr−2

)τ(zj)Sljh(zj)

,

γ
τ(zj)Sljh(zj)

i ≤ νnj+i < 2γ
τ(zj)Sljh(zj)

i where 1 ≤ i ≤ r − 2,

γ
τ(zj)Sljh(zj)

0 ≤ νnj < 2γ
τ(zj)Sljh(zj)

0

and 1 ≤ νu ≤M, for (nj−1 + (r − 1)) + tj < u < nj}.

Fundamental cylinders

For each ν = (ν1, · · · , νn) ∈ Dn, we define a fundamental cylinder Jn as the union

of basic cylinders In, having a non empty intersection with E∞.

(3a) For (nj−1 + (r − 1)) + tj < n < nj + 1, define

Jn(ν) =
⋃

1≤νn+1≤M

In+1(ν1, . . . , νn, νn+1). (6.12)

(3b) For n = nj − 1, define

Jnj−1(ν) =
⋃

γ
τ(zj)Slj

h(zj)

0 ≤νnj<2γ
τ(zj)Slj

h(zj)

0

Inj(ν1, . . . , νnj−1, νnj), (6.13)

where zj ∈ Ilj(ν(j−1,r−1)|tj , ν(nj−1+(r−1))+tj+1, · · · , νnj−1).

(3c) For n = nj + i− 1 with 1 ≤ i ≤ r − 2, define

Jnj+i−1(ν) =
⋃

γ
τ(zj)Slj

h(zj)

i ≤νnj+i≤2γ
τ(zj)Slj

h(zj)

i

Inj+i(ν1, . . . , νnj+i−1
, νnj+i). (6.14)

(3d) For n = nj + (r − 2), define

Jnj+(r−2)(ν)

=
⋃

( e
γ0···γr−2

)
τ(zj)Slj

h(zj)≤νnj+(r−1)≤2( e
γ0···γr−2

)
τ(zj)Slj

h(zj)

Inj+(r−1)(w), (6.15)

where w = (ν1, . . . , νnj+(r−1)).

(3e) For nj + (r− 1) ≤ n ≤ (nj + (r− 1)) + tj+1, then by construction of E∞ we have

Jn(ν) = Inj+(r−1)+tj+1
(ν(j,r−1), ν(j,r−1)|tj+1

). (6.16)

Clearly,

E∞ =
∞⋂
n=1

⋃
ν∈Dn

Jn(ν).
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Lengths of fundamental cylinders

In the following subsection we will estimate the lengths of the fundamental cylinders

for different cases discussed above.

Let [ν(j−1,r−1), ν(j−1,r−1)|tj , b
(j)
1 , · · · , b(j)

mj , anj , · · · , anj+(r−1), · · · ] be a continued frac-

tion representation for any point x ∈ E∞.
I. If n = (nj + (r − 1)) + tj+1, then by using (2.5)

q(nj+(r−1))+tj+1
(ν(j−1,r−1), ν(j−1,r−1)|tj , b

(j)
1 , · · · , b(j)

mj
, anj , · · · , anj+(r−1), ν

(j,r−1)|tj+1
)

≤ 23r+2q(nj−1+(r−1))+tj(ν
(j−1,r−1), ν(j−1,r−1)|tj) · qmj(b

(j)
1 , · · · , b(j)

mj
) · eτ(zj)Sljh(zj)

· qtj+1
(ν(j,r−1)|tj+1

).

Next by using the fact that qmj ≥ 2
mj−1

2 and by the choice of mj,

q(nj+(r−1))+tj+1
(x) ≤ q(nj−1+(r−1))+tj(x) · (qlj(zj)e

τ(zj)Sljh(zj))1+ε

≤
j∏

k=1

(qlk(zk)e
τ(zk)Slkh(zk))1+ε, (6.17)

where zk ∈ Ilk(ν(k−1,r−1)|tk , b
(k)
1 , · · · , b(k)

mk) for all 1 ≤ k ≤ j.

II. If (nj + (r − 1)) ≤ n < (nj + (r − 1)) + tj+1, then

qn(x) ≤ q(nj+(r−1))+tj+1
(x) ≤

j∏
k=1

(qlk(zk) · eτ(zk)Slkh(zk))1+ε.

III. If (nj−1 + (r− 1)) + tj ≤ n ≤ nj − 1, and if we represent n− (nj−1 + (r− 1))− tj
by l, then

qn(x) ≤ 2q(nj−1+(r−1))+tj(x) · ql(b(j)
1 , · · · , b(j)

l )

≤
j−1∏
k=1

(qlk(zk)e
τ(zk)Slkh(zk))1+ε · ql(b(j)

1 , · · · , b(j)
l ).

Now we calculate the lengths of fundamental cylinders for different cases as defined

above (6.12)–(6.16).

I. If (nj−1 + (r− 1)) ≤ n ≤ (nj−1 + (r− 1)) + tj, then by using (2.2), (6.16) and (6.17)

|Jn(x)| =
∣∣I(nj−1+(r−1))+tj(x)

∣∣ ≥ 1

2q2
(nj−1+(r−1))+tj

(x)

≥ 1

2

j−1∏
k=1

(qlk(zk) · eτ(zk)Slkh(zk))−2(1+ε).

II. If (nj−1 + (r − 1)) + tj < n < nj − 1 and l = n− (nj−1 + (r − 1))− tj − 1, then

from (2.2) and (6.12)

|Jn(x)| ≥ 1

6q2
n(x)

≥ 1

6

j∏
k=1

(qlk(zk) · eτ(zk)Slkh(zk))−2(1+ε) · q−2
l (b

(j)
1 , · · · , b(j)

l ).
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III. If n = nj − 1 then by using (6.13) and following the similar steps as for I

|Jnj−1(x)| ≥ 1

6νnj(x)q2
nj−1(x)

≥ 1

6γ
τ(zj)Sljh(zj)

0 q2
nj−1(x)

≥ 1

24γ
τ(zj)Sljh(zj)

0 q2
lj

(x)
·
j−1∏
k=1

(qlk(zk) · eτ(zk)Slkh(zk))−2(1+ε).

IV. If n = nj + i− 1 where 1 ≤ i ≤ r − 2 then from (6.14) and following the similar

steps as for I,

|Jnj+i−1(x)| ≥ 1

6νnj+i(x)q2
nj+i−1(x)

≥ 1

6γ
τ(zj)Sljh(zj)

i q2
nj+i−1(x)

≥ 1

6 · 4iγ
τ(zj)Sljh(zj)

i (γ0 · · · γi−1)2τ(zj)Sljh(zj)q2
nj−1(x)

≥ 1

6 · 4iγ
τ(zj)Sljh(zj)

i (γ0 · · · γi−1)2τ(zj)Sljh(zj)q2
lj

(zj)

·
j−1∏
k=1

(qlk(zk)e
τ(zk)Slkh(zk))−2(1+ε).

V. If n = nj + (r − 2) then from (6.15)

|Jnj+(r−2)(x)| ≥ 1

6νnj+(r−1)(x)q2
nj+(r−2)(x)

≥ 1

6 · 4r−1(eγ0 · · · γr−2)τ(zj)Sljh(zj)q2
nj−1(x)

≥ 1

6 · 4r(eγ0 · · · γr−2)τ(zj)Sljh(zj)q2
lj

(zj)
·
j−1∏
k=1

(qlk(zk)e
τ(zk)Slkh(zk))−2(1+ε).

Supporting measure

In this subsection we will define a probability measure supported on the set E∞.
Define sj := s

(r)
(tj ,mj),M

to be the solution of∑
a1=ν

(j−1,r−1)
1 ,··· ,atj=ν

(j−1,r−1)
tj

,1≤b(j)1 ,··· ,b(j)mj≤M

1

egr(s)τ(zj)Sljh(zj)q2s
lj

(zj)
= 1

where zj ∈ Ilj(ν(j−1,r−1)|tj , b
(j)
1 , · · · , b(j)

mj). Consequently from (6.9),

∑
a1=ν

(j−1,r−1)
1 ,··· ,atj=ν

(j−1,r−1)
tj

,1≤b(j)1 ,··· ,b(j)mj≤M

 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)

s

= 1 (6.18)

where zj ∈ Ilj(ν(j−1,r−1)|tj , b
(j)
1 , · · · , b(j)

mj).
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Equality (6.18) induces a measure µ on basic cylinder of order tj +mj if we consider

µ(Inj+tj(a1, · · · , atj , b
(j)
1 , · · · , b(j)

mj
)) =

 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)

sj

,

for each a1 = ν
(j−1,r−1)
1 , · · · , atj = ν

(j−1,r−1)
tj , 1 ≤ b

(j)
1 , · · · , b(j)

mj ≤M.

We will start by assuming that the measure of Inj−1+(r−1)(x) ∈ E∞ has been defined

as

µ
(
Inj−1+(r−1)(x)

)
=

j−1∏
k=1

 1

γ
τ(zk)Slkh(zk)

0 q2
lk

(zk)

sk

1

eτ(zk)Slkh(zk)

 ,

where zk ∈ Ilk(ν(k−1,r−1)|tk , b
(k)
1 , · · · , b(k)

mk) for all 1 ≤ k ≤ j − 1.

Case 1: nj−1 + (r − 1) < n ≤ nj−1 + (r − 1) + tj. As the basic cylinder of order

nj−1 + (r − 1) contains only one sub-cylinder of order n with a non-empty intersection

with E∞, therefore

µ(In(x)) = µ
(
Inj−1+(r−1)(x)

)
.

Case 2: n = nj − 1. Let

µ(Inj−1(x)) = µ
(
Inj−1+(r−1)(x)

)
·

 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)

sj

.

Next we will uniformly distribute the measure of Inj−1(x) on its sub-cylinders.

Case 3: n = nj + i− 1, where 1 ≤ i ≤ r − 1.

µ(Inj+i−1(x)) = µ
(
Inj+i−2(x)

)
· 1

γ
τ(zj)Sljh(zj)

i−1

= µ
(
Inj−1(x)

)
· 1

(γ0 · · · γi−1)τ(zj)Sljh(zj)
.

Case 4: n = nj + (r − 1).

µ(Inj+r−1(x)) = (
γ0 · · · γr−2

e
)τ(zj)Sljh(zj)µ

(
Inj+(r−2)(x)

)
= (

γ0 · · · γr−2

e
)τ(zj)Sljh(zj) 1

(γ0 · · · γr−2)τ(zj)Sljh(zj)
µ
(
Inj+(r−2)(x)

)
=

1

eτ(zj)Sljh(zj)
µ
(
Inj−1(x)

)
.

The measure of other basic cylinders of order less than nj − 1 is followed by the

consistency property that a measure should satisfy.

For any nj−1 + (r − 1) + tj < n ≤ nj − 1, let

µ(In(x)) =
∑

Inj−1(x)⊂In(x)

µ
(
Inj−1(x)

)
.
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The Hölder exponent of the measure µ

In this part we will compare the measure of fundamental cylinders with their lengths.

Case 1: n = nj − 1.

µ
(
Jnj−1(x)

)
=

j−1∏
k=1

 1

γ
τ(zk)Slkh(zk)

0 q2
lk

(zk)

sk

1

eτ(zk)Slkh(zk)

 ·
 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)

sj

≤
j−1∏
k=1

 1

γ
skτ(zk)Slkh(zk)

0 eτ(zk)Slkh(zk)q2sk
lk

(zk)

 ·
 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)

s
(r)
M −3ε

≤
j−1∏
k=1

(
1

e2skτ(zk)Slkh(zk)q2sk
lk

(zk)

)
·

 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)

s
(r)
M −3ε

(6.19)

≤

j−1∏
k=1

(
1

e2τ(zk)Slkh(zk)q2
lk

(zk)

)1+ε


s
(r)
M
−3ε

1+ε

·

 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)


s
(r)
M
−3ε

1+ε

≤ 24|Jnj−1(x)|
s
(r)
M
−3ε

1+ε .

From (6.4), we observe that |sj−s(r)
M | ≤ 3ε which further implies that s

(r)
M −3ε ≤ sj.

In (6.19), we have used the fact that since 1 ≤ γ0 · · · γr−2 ≤ e and e
γ0···γr−2

≥
(

e
γ0···γr−2

)s
for any 0 < s < 1, we have eγs0 ≥ e2s. Therefore it is also true for sk.

Case 2: n = nj + i− 1, where 1 ≤ i ≤ r − 2. As we know that

µ(Jnj+i−1(x)) = µ
(
Inj−1(x)

)
· 1

(γ0 · · · γi−1)τ(zj)Sljh(zj)

≤

j−1∏
k=1

(
1

e2τ(zk)Slkh(zk)q2
lk

(zk)

)1+ε


s
(r)
M
−3ε

1+ε

·

 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)


s
(r)
M
−3ε

1+ε

· 1

(γ0(γ1 · · · γi−1)2γi)
τ(zj)Sljh(zj)

(6.20)

≤

j−1∏
k=1

(
1

e2τ(zk)Slkh(zk)q2
lk

(zk)

)1+ε


s
(r)
M
−3ε

1+ε

≤ 6.4i+1|Jnj+i−1(x)|
s
(r)
M
−3ε

1+ε

≤ 6 · 4r−3|Jnj+i−1(x)|
s
(r)
M
−3ε

1+ε .

We have obtained (6.20) by using the fact the 1
γ0γ1···γi−1

≤
(

1
γ0(γ1···γi−1)2γi

)s
for any

0 < s < 1.

81



6. Generalised metrical properties of continued fractions

Case 3: n = nj + r − 2.

µ(Jnj+r−2(x)) = µ
(
Jnj−1(x)

)
· 1

(γ0 · · · γr−2)τ(zj)Sljh(zj)

≤

j−1∏
k=1

(
1

e2τ(zk)Slkh(zk)q2
lk

(zk)

)1+ε


s
(r)
M
−3ε

1+ε

·

(
1

(eγ0 · · · γr−2)τ(zj)Sljh(zj)q2
lj

(zj)

) s
(r)
M
−3ε

1+ε

≤ 6.4r|Jnj+r−2(x)|
s
(r)
M
−3ε

1+ε .

Case 4: nj + (r − 1) ≤ n ≤ nj + tj+1.

µ(Jn(x)) =

j−1∏
k=1

 1

γ
τ(zk)Slkh(zk)

0 q2
lk

(zk)

sk

1

eτ(zk)Slkh(zk)


·

 1

γ
τ(zj)Sljh(zj)

0 q2
lj

(zj)

sj

1

eτ(zj)Sljh(zj)

=

j∏
k=1

 1

γ
τ(zk)Slkh(zk)

0 q2
lk

(zk)

sk

1

eτ(zk)Slkh(zk)


≤

j∏
k=1

 1

e
2τ(zk)Slkh(zk)

0 q2
lk

(zk)

sk

≤
j∏

k=1

 1

e
2τ(zk)Slkh(zk)

0 q2
lk

(zk)

s
(r)
M −3ε

≤

 j∏
k=1

 1

e
2τ(zk)Slkh(zk)

0 q2
lk

(zk)

1+ε
s
(r)
M
−3ε

1+ε

≤ 2|Jn(x)|
s
(r)
M
−3ε

1+ε .

Gap estimation

Let x ∈ E∞. In this section we estimate the gap between Jn(x) and its adjacent

fundamental cylinder Jn(x′) of the same order n. Assume that ai(x) = ai(x
′) for all

1 ≤ i < n. These gaps are helpful for estimating the measure on general balls. Also as

Jn(x) and Jn(x′) are adjacent, we have |an(x)− an(x′)| = 1.
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6.2. Proof of Theorem 6.1.1

Let the left and the right gap between Jn(x) and its adjacent fundamental cylinder

at each side be represented by gLn (x) and gRn (x) respectively.

Denote by gL,Rn (x) the minimum distance between Jn(x) and its adjacent cylinder

of the same order n, that is,

gL,Rn (x) = min{gLn (x), gRn (x)}.

Without loss of generality we assume that n is even and estimate gRn (x) only, since if

n is odd then for gLn (x) we can carry out the estimation in almost the same way.

Gap I. When (nj−1 + (r − 1)) + tj < n < nj − 1, for all j ≥ 1,

gRn (x) ≥
∑

an+1>M

|In+1 (a1, a2, . . . , an−1, an + 1, an+1) |

=
(M + 1) (pn + pn−1) + pn−1

(M + 1) (qn + qn−1) + qn−1

− pn + pn−1

qn + qn−1

=
1

((M + 1) (qn + qn−1) + qn−1) (qn + qn−1)

≥ 1

3Mq2
n

≥ 1

3M
|In(x)|.

Gap II. When n = nj + i− 1 where 0 ≤ i ≤ r − 2,

gRn (x) ≥ pn + pn−1

qn + qn−1

− γ
τ(zj)Sljh(zj)

i pn + pn−1

γ
τ(zj)Sljh(zj)

i qn + qn−1

=
γ
τ(zj)Sljh(zj)

i − 1(
γ
τ(zj)Sljh(zj)

i qn + qn−1

)
(qn + qn−1)

≥ γ
τ(zj)Sljh(zj)

i − 1

4γ
τ(zj)Sljh(zj)

i q2
n

≥ γ
τ(zj)Sljh(zj)

i

8γ
τ(zj)Sljh(zj)

i q2
n

≥ 1

8
|In(x)|.

Gap III. When n = nj + r − 2,

gRn (x) ≥

(
e

γ0···γr−2

)τ(zj)Sljh(zj)

− 1((
e

γ0···γr−2

)τ(zj)Sljh(zj)

qn + qn−1

)
(qn + qn−1)

≥ 1

8q2
n

≥ 1

8
|In(x)|.

Gap IV. If (nj + (r − 1)) ≤ n ≤ (nj + (r − 1)) + tj+1 then note that Jn(x) is a small

part of Inj+(r−1)(x) as I(nj+(r−1))+tj+1
(x) ⊂ I(nj+(r−1))+2(x). Therefore, the right gap is

larger than the distance between the right endpoints of Jn(x) and that of Inj+(r−1)(x).

gRn (x) ≥
∣∣I(nj+(r−1))+2(x)

∣∣ ≥ 1

2q2
(nj+(r−1))+2(x)

≥ 1

32a2
1a

2
2q

2
nj+(r−1)(x)
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≥ 1

32a2
1a

2
2q

2
(nj+(r−1))+tj

(x)
≥ 1

32a2
1a

2
2

|I(nj+(r−1))+tj(x)|

=
1

32a2
1a

2
2

|J(nj+(r−1))+tj(x)|,

where a1 represents a(nj+(r−1))+1(x) and a2 represents a(nj+(r−1))+2(x).

The measure µ on general ball B(x, d)

We now estimate the measure µ on any ball B(x, d) with radius d and centred at x. Fix

x ∈ E∞. There exists a unique sequence (ν1, ν2, · · · νn, · · · ) such that for each n ≥ 1,

x ∈ Jn(ν1, · · · , νn) where (ν1 · · · , νn) ∈ Dn and

gRn+1(x) ≤ d < gRn (x).

Clearly, B(x, d) can intersect only one fundamental cylinder of order n, i.e., Jn(ν1, . . . , νn).

Case I: (nj−1 + (r − 1)) + tj < n < nj − 1, for all j ≥ 1 or n = nj + tj+1. Since in

this case 1 ≤ an(x) ≤M and |Jn(x)| ≤ 1
q2n
, thus we have

µ(B(x, d)) ≤ µ(Jn(x)) ≤ c|Jn(x)|
s
(r)
M
−3ε

1+ε

≤ c

(
1

q2
n

) s
(r)
M
−3ε

1+ε

≤ c4M2

(
1

q2
n+1

) s
(r)
M
−3ε

1+ε

≤ c8M2|In+1(x)|
s
(r)
M
−3ε

1+ε

≤ c48M3gRn+1(x)
s
(r)
M
−3ε

1+ε

≤ Cd
s
(r)
M
−3ε

1+ε , where C = cc3
0 are arbitrary constants.

Case II: n = nj + i− 1 where 0 ≤ i ≤ r − 2. Since

1

8γ
2τ(zj)Sljh(zj)

i q2
nj+i−1(x)

≤ |Inj+i(x)| ≤ 8gRnj+i(x) ≤ 8d

implies

1 ≤ 64dγ
2τ(zj)Sljh(zj)

i q2
nj+i−1(x),

the number of fundamental cylinders of order nj + i contained in Jnj+i−1(x) that the

ball B(x, d) intersects is at most

2d

|Inj+i(x)|
+ 2 ≤ 16dγ

2τ(zj)Sljh(zj)

i q2
nj+i−1(x) + 27dγ

2τ(zj)Sljh(zj)

i
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= c0dγ
2τ(zj)Sljh(zj)

i q2
nj+i−1(x).

Therefore,

µ(B(x, d)) ≤ min
{
µ(Jnj+i−1(x)), c0dγ

2τ(zj)Sljh(zj)

i q2
nj+i−1(x)µ(Jnj+i(x))

}
≤ µ(Jnj+i−1(x)) min

{
1, c0dγ

2τ(zj)Sljh(zj)

i q2
nj+i−1(x)

1

γ
τ(zj)Sljh(zj)

i

}
≤ 6 · 4i+1|Jnj+i−1(x)|

s
(r)
M
−3ε

1+ε min
{

1, c0dγ
τ(zj)Sljh(zj)

i q2
nj+i−1(x)

}
≤ c
( 1

γ
τ(zj)Sljh(zj)

i q2
nj+i−1(x)

) s(r)M −3ε

1+ε
(
c0dγ

τ(zj)Sljh(zj)

i q2
nj+i−1(x)

) s(r)M −3ε

1+ε

≤ cc0d
s
(r)
M
−3ε

1+ε .

Here we have used the fact that min{a, b} ≤ a1−sbs for any a, b > 0 and 0 ≤ s ≤ 1.

Case III: n = nj + r − 2. As

(γ0 · · · γr−2)2τ(zj)Sljh(zj)

8e2τ(zj)Sljh(zj)q2
nj+r−2(x)

≤ |Inj+r−1(x)| ≤ 8gRnj+r−1(x) ≤ 8d,

the number of fundamental cylinders of order nj + r − 1 contained in Jnj+r−2(x) that

the ball B(x, d) intersects is at most

2d

|Inj+r−1(x)|
+ 2 ≤ c0d

e2τ(zj)Sljh(zj)

(γ0 · · · γr−2)2τ(zj)Sljh(zj)
q2
nj+r−1(x).

Therefore,

µ(B(x, d))

≤ min
{
µ(Jnj+r−2(x)), c0d

e2τ(zj)Sljh(zj)

(γ0 · · · γr−2)2τ(zj)Sljh(zj)
q2
nj+r−2(x)µ(Jnj+r−1(x))

}
≤ µ(Jnj+r−2(x)) min

{
1, c0d

e2τ(zj)Sljh(zj)

(γ0 · · · γr−2)2τ(zj)Sljh(zj)
q2
nj+r−2(x)

(γ0 · · · γr−2)τ(zj)Sljh(zj)

eτ(zj)Sljh(zj)

}
≤ 6.4r|Jnj+r−2(x)|

s
(r)
M
−3ε

1+ε min
{

1, c0d
eτ(zj)Sljh(zj)

(γ0 · · · γr−2)τ(zj)Sljh(zj)
q2
nj+r−2(x)

}
≤ c
((γ0 · · · γr−2)τ(zj)Sljh(zj)

eτ(zj)Sljh(zj)q2
nj+r−2

) s(r)M −3ε

1+ε
.
(
c0d

eτ(zj)Sljh(zj)

(γ0 · · · γr−2)τ(zj)Sljh(zj)
q2
nj+r−2(x)

) s(r)M −3ε

1+ε

≤ cc0d
s
(r)
M
−3ε

1+ε .

By combining all the above cases and using the mass distribution principle, we

conclude that

dimHRr(τ ;h) ≥ dimH E∞ ≥ s0 =
s

(r)
M − 3ε

1 + ε
.
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6. Generalised metrical properties of continued fractions

Since ε > 0 is arbitrary, as ε → 0 we have s0 → s
(r)
M . Further, letting M → ∞, we

obtain

dimHRr(τ ;h) ≥ s
(r)
N .

This completes the proof for the lower bound and thus of Theorem 6.1.1.
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Chapter 7

A survey of advances in uniform

Diophantine approximation and open

problems

We will conclude the thesis by this short survey which summarises the findings of this

thesis and list some recent results as well as some open problems arising in the uniform

approximation theory concerned with the metrical theory of the sets of Dirichlet

non-improvable numbers.

7.1 Some recent developments to uniform

Diophantine approximation theory

In the one-dimensional Diophantine approximation, we have notice that by using the

theory of continued fractions Khintchine and Jarńık theorems are concerned with the

growth of the large partial quotients while the improvability of Dirichlet’s Theorem is

concerned with the growth of the product of consecutive partial quotients.

Let ψ : [t0,∞)→ R+ be a non-increasing function with t0 ≥ 1 fixed and tψ(t) < 1

for all t ≥ t0. Recall that if a real number x ∈ D(ψ), where

D(ψ) =

{
x ∈ R :

∃N such that the system |qx− p| < ψ(t), |q| < t

has a nontrivial integer solution for all t > N

}
,

then x is known as ψ-Dirichlet improvable and if it belongs to the complementary set

D(ψ)c then it is called ψ-Dirichlet non-improvable. From the discussion of Chapter 1, it

is obvious that a lot has been done to strengthen Corollary 1.1.3 rather than Theorem

1.1.2. To this end, a natural question is to investigate the set D(ψ).
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7. Conclusion and further open problems

As discussed in Chapter 3, Kleinbock–Wadleigh [34] provided the Lebesgue measure

criterion for this set. Recall that the auxiliary function Ψ is defined as

Ψ(t) =
1

1− tψ(t)
− 1,

with tψ(t) < 1 for all t > t0.

Theorem 7.1.1 (Kleinbock–Wadleigh, [34]) Let ψ and Ψ be as defined above.

Then

λ(Dc(ψ)) =


0 if

∑
t

log Ψ(t)
tΨ(t)

< ∞;

1 if
∑

t
log Ψ(t)
tΨ(t)

= ∞.
(7.1)

�

Whereas the Hausdorff measure version for Dc(ψ) has been established in [27].

Theorem 7.1.2 (Hussain–Kleinbock–Wadleigh–Wang, [27]) Let Ψ and ψ be

functions as defined above. Then for any s ∈ [0, 1)

Hs(D(ψ)c) =


0 if

∑
t

t
(

1
t2Ψ(t)

)s
< ∞;

∞ if
∑
t

t
(

1
t2Ψ(t)

)s
= ∞.

(7.2)

�

Consequently,

dimHD(ψ)c =
2

2 + τ
; τ = lim inf

t→∞

log Ψ(t)

log t

where dimH denotes Hausdorff dimension.

The condition s < 1 is necessary, H1 is the Lesbesgue measure which is the scope

of zero-one law by Kleinbock–Wadleigh [34]. The summability criterion that appears

in (7.1) does not agree with the one in (7.2). Indeed when s = 1 the summand in

equation (7.2) differs from that in equation (7.1) by a factor of log Ψ(t).

A natural generalisation of the s-dimensional Hausdorff measure is the f -dimensional

Hausdorff measure Hf where f is a dimension function, that is an increasing, con-

tinuous function f : R+ → R+ such that f(r)→ 0 as r → 0. We need to impose an

additional technical condition on f : say that a dimension function f is essentially

sub-linear if there exists

B > 1 such that lim sup
x→0

f(Bx)

f(x)
< B. (7.3)

The above condition does not hold for f(x) = x or f(x) = x log(1/x). However it

is clearly satisfied for the dimension functions f(x) = xs when s ∈ [0, 1). Further,

we remark that the essentially sub-linear condition is equivalent to the doubling

condition but with exponent α < 1.(A function f is called doubling with exponent α

if f(cx)� cαf(x) for all x and all c > 1).

The following theorem readily implies Theorem 7.1.2.
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7.1. Some recent developments to uniform Diophantine approximation theory

Theorem 7.1.3 (Hussain–Kleinbock–Wadleigh–Wang, [27]) Let ψ be a non-

increasing positive function with tψ(t) < 1 for all large t, and let f be an essentially

sub-linear dimension function. Then

Hf
(
D(ψ)c

)
=


0 if

∑
t

tf
(

1
t2Ψ(t)

)
< ∞;

∞ if
∑
t

tf
(

1
t2Ψ(t)

)
= ∞.

Naturally one would like to investigate the Hausdorff f -measure of sets D(ψ)c for

a large class of non-essentially sub-linear dimension function. The only restriction

that we have on the dimension functions, in addition to negating (7.3), is that the

dimension functions are not the identity functions.

Returning to the theory of continued fractions, as noticed in Chapter 1, partial

quotients reveal how rapidly a real number can be approximated by rationals. Thus

it motivates us to express the elements of D(ψ) (or D(ψ)c) in terms of entries of

continued fraction expansion. Kleinbock–Wadleigh [34] provided a characterisation of

the ψ-Dirichlet improvable number x in terms of growth of partial quotients in the

continued fraction of x.

This observation leads to the following characterisation of Dirichlet’s improvable

numbers.

Lemma 7.1.4 (Kleinbock–Wadleigh, [34]) Let x ∈ [0, 1) \Q. Then,

(i) x ∈ D(ψ) if an+1(x)an(x) ≤ Ψ(qn)/4 for all sufficiently large n.

(ii) x ∈ D(ψ)c if an+1(x)an(x) > Ψ(qn) for infinitely many n. �

As a consequence of this lemma we have the inclusions

G(Ψ) ⊂ D(ψ)c ⊂ G(Ψ/4), (7.4)

where

G(Ψ) :=
{
x ∈ [0, 1) : an(x)an+1(x) > Ψ

(
qn(x)

)
for infinitely many n ∈ N

}
.

Hussain–Kleinbock–Wadleigh–Wang [27] proved the f -dimensional Hausdorff measure

for G(Ψ). For Ψ as defined above and f an essentially sub-linear dimension func-

tion, they showed that Hf(G(Ψ)) = ∞ (resp. zero) if
∑
t

tf
(

1
t2Ψ(t)

)
diverges (resp.

converges).

Also by Legendre’s Theorem it can be easily seen that G(Ψ) contains K(3Ψ) where

K(Ψ) :=

{
x ∈ [0, 1) :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q2Ψ(q)
for infinitely many (p, q) ∈ Z× N

}
.
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It is worth pointing out that the inclusion

K(3Ψ) ⊂ G(Ψ) (7.5)

along with containment (7.4) was the key observation in proving the divergence part of

the Hausdorff measure statement for G(Ψ). Also one can observe that when the sum∑
t

t
(

1
t2Ψ(t)

)s
diverges, both the sets G(Ψ) and K(3Ψ) have full measure. However,

since the inclusion (7.5) is proper, it is natural to expect that the set G(Ψ) \ K(3Ψ)

is non-trivial. From a measure theoretic point of view there is no new information,

however, from a dimension point of view there is more to ask. So the natural question

is

How big is the set G(Ψ) \ K(3Ψ)?

In Chapter 4, we have answered this question by completely determining the Hausdorff

dimension for the set G(Ψ) \ K(CΨ) for any C > 0.

Recall that the set G(Ψ) \ K(Ψ) can be written as{
x ∈ [0, 1) :

an+1(x)an(x) ≥ Ψ(qn) for infinitely many n ∈ N and

an+1(x) < Ψ(qn) for all sufficiently large n ∈ N

}
.

In fact we have proved the following result.

Theorem 7.1.5 (Bakhtawar–Bos–Hussian [3]) Let Ψ : [1,∞) → R+ be a non-

decreasing function and C > 0. Then

dimH

(
G(Ψ) \ K(CΨ)

)
=

2

τ + 2
, where τ = lim inf

q→∞

log Ψ(q)

log q
. �

Now since K(3Ψ) ⊂ G(Ψ) and therefore for any non-essentially sub-linear dimension

function f , it follows from Theorem ?? that

Hf
(
K(Ψ)

)
= 0 if

∑
t

t log (Ψ(t)) f

(
1

t2Ψ(t)

)
<∞.

Since this estimate is crude there must be a room for improvement. There are two

natural questions here.

Question 7.1.6 Is the convergence estimate given above is best possible? �

Question 7.1.7 What is the optimal sum condition so that the f -dimensional Haus-

dorff measure of K(Ψ) is infinity for any non-essentially sub-linear dimension func-

tion f? �
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It is plausible that the sum condition will either be the one coming from Theorem

7.1.3 or from the Theorem ??.

There are a few other important investigations that have been made recently. One

of them is the Hausdorff dimension of the level sets,

L(τ) :=

{
x ∈ [0, 1) : lim

n→∞

log(an(x)an+1(x))

log qn(x)
= τ

}
,

by Huang–Wu [24]. They proved the following dimensional result.

Theorem 7.1.8 (Huang–Wu, [24]) For any τ ≥ 0,

dimH(L(τ)) =


1 if τ = 0,

2
τ+2+

√
τ2+4

if τ > 0.

From this theorem it is straightforward to see that dimH(L(τ)) as a function of

τ ∈ [0,∞), has a jump at τ = 0.

Metrical theory for continued fractions

One of the fundamental result in the metrical theory of continued fraction is Borel–

Bernstein’s Theorem (1911,1912) which is a kind of Borel–Cantelli ‘zero-one’ law with

respect to the Lebesgue measure.

In this section we will discuss the metrical theory associated with the following set for

different m. Consider an arbitrary function Φ : N→ (1,∞) with limn→∞Φ(n) = ∞,
and define

Em(Φ) :=

{
x ∈ [0, 1) :

m∏
i=1

an+i−1(x) ≥ Φ(n) for infinitely many n ∈ N

}
.

Case 1. m = 1.

In this case, we have

E1(Φ) := {x ∈ [0, 1) : an(x) ≥ Φ(n) for infinitely many n ∈ N} .

The metrical theory associated with this set has been studied well over the years and

a lot is known.

Theorem 7.1.9 (Borel–Bernstein, [7, 9]) Let Φ : N→ R+ be a positive function.

Then

λ(E1(Φ)) =


0 if

∑∞
n=1

1
Φ(n)

< ∞;

1 if
∑∞

n=1
1

Φ(n)
= ∞.

�
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Regarding the Hausdorff tmeasure and dimension, some partial results for the Hausdorff

dimension of this set were known, for instance  Luczak [39] and Feng–Wu–Tseng [20]

determined it for the function Φ(n) = ab
n
, a > 1, b > 1. However, a complete Hausdorff

dimension result was proven by Wang–Wu [45].

Theorem 7.1.10 (Wang–Wu, [45]) Let Φ : N→ R+ be an arbitrary positive func-

tion. Suppose

logB = lim inf
n→∞

log Φ(n)

n
and log b = lim inf

n→∞

log log Φ(n)

n
.

Then

dimH E1(Φ) =



1; if B = 1;

inf{s ≥ 0 : P(T,−s(logB + log |T ′|)) ≤ 0} if 1 < B <∞;

1
1+b

if B =∞.

�

Recall that T is the Gauss map related to the continued fraction expansion, T ′ denotes

the derivative of Tand P represents the pressure function as defined in Section 2.2.

It is important to mention here that the question of finding the Hausdorff measure

of the set E1(Φ) is still open. The set has been substantially generalised to the settings

of localised Jarńık–Besicovitch set, more details are provided in Section 7.1.

Case 2. m ≥ 2

In this situation, the first result is due to Kleinbock–Wadleigh who proved the Lebesgue

measure result for m = 2. Define the set

E2(Φ) := {x ∈ [0, 1) : an(x)an+1(x) ≥ Φ(n) for infinitely many n ∈ N} ,

where Φ : N→ (1,∞) is any function with limn→∞Φ(n) =∞.

Theorem 7.1.11 (Kleinbock–Wadleigh, [34]) Let Φ be a positive function as

defined above. Then

λ(E2(Φ)) =


0 if

∑∞
n=1

log Φ(n)
Φ(n)

< ∞;

1 if
∑∞

n=1
log Φ(n)

Φ(n)
= ∞.

�

This theorem has been recently (2019) generalised to an arbitrary m by

Huang–Wu–Xu [25].
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Theorem 7.1.12 (Huang–Wu–Xu, [25]) Let Φ be as defined above. Then

λ(Em(Φ)) =


0 if

∞∑
n

logm−1 Φ(n)
Φ(n)

< ∞;

1 if
∞∑
n

logm−1 Φ(n)
Φ(n)

= ∞.
�

Note that E1(Φ) is properly contained in E2(Φ). Since the inclusion is proper, this

raises a natural question of the size of the set F(Φ) := E2(Φ) \ E1(Φ). In other words,

a natural question is to estimate the size of the set

F(Φ) =

{
x ∈ [0, 1) :

an+1(x)an(x) ≥ Φ(n) for infinitely many n ∈ N and

an+1(x) < Φ(n) for all sufficiently large n ∈ N

}
,

where Φ : N→ (1,∞) be any function with lim
n→∞

Φ(n) =∞.

In Chapter 5 we have studied the Hausdorff dimension of F(Φ) and proved the

following theorem.

Theorem 7.1.13 (Bakhtawar–Bos–Hussain, [2]) Let Φ : N → (1,∞) be any

function with lim
n→∞

Φ(n) =∞ and let logB = lim inf
n→∞

log Φ(n)
n

and log b = lim inf
n→∞

log log Φ(n)
n

.

Then

dimHF(Φ) =


inf{s ≥ 0 : P (T,−s2 logB − s log(|T ′|) ≤ 0} if 1 < B <∞;

1
1+b

if B =∞.
�

Note that if we take B = 1 then from the definition of F(Φ) we have an+1(x) < 1

which is a contradiction to the assumption that an+1(x) ≥ 1. Therefore, B is strictly

greater than 1.

Another direction that has been investigated recently is the analogue of the

Lagrange’s spectrum for the Dirichlet’s Theorem instead of the Corollary 1.1.3. Define

the Dirichlet spectrum as

D(x) := sup

{
c ≥ 1 : min

1≤q<t,p∈Z
|qx− p| < 1

ct
, for all t� 1

}
.

Clearly any results on this set would improve our understanding on Lagrange’s spectrum.

From the Lemma 7.1.4, it follows that

D(x) = 1 ⇐⇒ lim sup
n→∞

an(x)an+1(x) =∞.

This leads naturally to consider the set

ND(Φ) := {x ∈ [0, 1) : an(x)an+1(x) ≥ Φ(n), for all n ≥ 1} .

Zhang [47] recently (2020) proved the following result.
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Theorem 7.1.14 (Zhang, [47]) Let Φ : N→ (1,∞) be a function with limn→∞ Φ(n) = ∞.
Then

dimH ND(Φ) =
1

b+ 1
where log b = lim sup

n→∞

log log Φ(n)

n
.

Problem 7.1.15 Determine the Hausdorff dimension of the set ND(Φ) if logB =

lim infn→∞
log Φ(n)

n
for any B ≥ 1. �

The Hausdorff dimension of the set Em(Φ) for any m has also been established by

Huang–Wu–Xu [25].

Theorem 7.1.16 (Huang–Wu–Xu, [25]) Let Φ : N → (1,∞) be a function such

that lim
n→∞

Φ(n) =∞ and

logB = lim inf
n→∞

log Φ(n)

n
and log b = lim inf

n→∞

log log Φ(n)

n
.

Then

dimH Em(Φ) =



1, if B = 1,

inf{s ≥ 0 : P (T,−fm(s) logB − s log |T ′|) ≤ 0} if 1 < B <∞;

1
1+b

if B =∞,
�

where fm is given by the following iterative formula

f1(s) = s, fk+1(s) =
sfk(s)

1− s+ fk(s)
, k ≥ 1.

Generalised Jarńık–Besicovitch set

Recall that an irrationality exponent of an irrational x ∈ [0, 1) is defined as

ϑ(x) := sup

{
τ :

∣∣∣∣x− p

q

∣∣∣∣ < 1

qτ
for infinitely many (p, q) ∈ Z× N

}
.

Moreover for any τ ≥ 2, Jarńık–Besicovitch Theorem [29, 8] states that

dimH{x ∈ [0, 1) : ϑ(x) ≥ τ} = dimH{x ∈ [0, 1) : ϑ(x) = τ} =
2

τ
.

Barral–Seuret [4] extended this theorem in the following way. Instead of a constant τ

they considered the continuous function τ(x) and showed that

dimH{x ∈ [0, 1) : ϑ(x) ≥ τ(x)} = dimH{x ∈ [0, 1) : ϑ(x) = τ(x)}
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=
2

min{τ(x) : x ∈ [0, 1]}
,

where τ(x) ≥ 2 is some continuous function on [0, 1]. They called such a set the

localised Jarńık–Besicovitch set. This is a fantastic result as it gives the Hausdorff

dimension of sets with prescribed irrationality exponent. Their result was further

generalised by Wang–Wu–Xu [46] who refashioned the problem in terms of continued

fractions and took a dynamical approach.

Recall from Chapter 6, in terms of growth rate of partial quotients Jarńık–

Besicovitch set can be restated as,

J(τ) :=
{
x ∈ [0, 1) : an(x) ≥ e(

τ−2
2 )Sn(log |T ′(x)|) for infinitely many n ∈ N

}
,

where Snf(x) := f(x) + · · ·+ f(T n−1(x)) represents the ergodic sum of any function f.

In fact, Wang–Wu–Xu [46] introduced the generalised version of J(τ) as

J(τ ;h) :=
{
x ∈ [0, 1) : an(x) ≥ eτ(x)·Snh(x) for infinitely many n ∈ N

}
,

where h(x) and τ(x) are positive continuous functions defined on [0, 1] and calling

such points the localised (τ ;h) approximable points. Further, they proved that

dimH J(τ, h) = s
(1)
N := inf{s ≥ 0 : P(T,−sτminh− s log |T ′|) ≤ 0},

where τmin = min{τ(x) : x ∈ [0, 1]}, P denotes the pressure function and T ′ is the

derivative of Gauss map T.

Keeping in view that the growth rate of partial quotients give us better approx-

imation results, in Chapter 6 we introduce the set of points x ∈ [0, 1) for which the

product of an arbitrary block of consecutive partial quotients, in their continued

fraction expansion, are growing. To be more precise, for any r ∈ N we define the set

Rr(τ ;h) :=

{
x ∈ [0, 1) :

r∏
d=1

an+d(x) ≥ eτ(x)·Snh(x) for infinitely many n ∈ N

}

and proved the following theorem.

Theorem 7.1.17 (Bakhtawar, [1]) Let h : [0, 1] → (0,∞) and τ : [0, 1] → [0,∞)

be positive continuous functions with h satisfying the tempered distortion property.

Then

dimHRr(τ ;h) = s
(r)
N := inf{s ≥ 0 : P(T,−gr(s)τminh− s log |T ′|) ≤ 0},

where τmin = min{τ(x) : x ∈ [0, 1]}, g1(s) = s and gr(s) = sgr−1(s)
1−s+gr−1(s)

for all r ≥ 2. �

From Chapter 6, we have noticed this result is more general as it implies various

classical results for different values of τ(x) and h(x).
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7.2 Further generalisations and open questions

Recall that for an arbitrary function Φ : N → (1,∞) with limn→∞Φ(n) = ∞, we

defined the set

Em(Φ) =

{
x ∈ [0, 1) :

m∏
i=1

an+i−1(x) ≥ Φ(n) for infinitely many n ∈ N

}
.

A natural generalisation and strengthening of the set Em(Φ), as suggested by Kleinbock

(in a private communication at the conference Ergodic Theory, Diophantine Approxim-

ation and Related Topics held at MATRIX, University of Melbourne, Creswick), is to

determine the Hausdorff dimension of the following set

Gtm(Φ) :=

{
x ∈ [0, 1) :

m∏
i=1

atin+i−1(x) ≥ Φ(n) for infinitely many n ∈ N

}
,

where ti ∈ N.

This set may be considered as the weighted version of the set Em(Φ) discussed

above. We have made substantial progress on this problem (paper is in preparation).

It may be possible to obtain some heuristic estimates which may yield the following

result. Before we state any results, define

logB = lim inf
n→∞

log Φ(n)

n
and log b = lim inf

n→∞

log log Φ(n)

n
.

Then we may have,

Theorem 7.2.1 Let B, b be as above. Then

dimH Gtm(Φ) =



1 if B = 1;

inf{s ≥ 0 : P (−s log |T ′| − ft1,··· ,tm(s) logB) ≤ 0} if 1 < B <∞;

1
1+b

if B =∞,

where ft1,··· ,tm is given by the following iterative formula

ft1,··· ,t`+1
(s) =

sft1,··· ,t`(s)

t`+1ft1,··· ,t`(s) + max{0, s− (2s− 1) t`+1

ti
, 1 ≤ i ≤ `}

=
sft1,··· ,t`(s)

t`+1ft1,··· ,t`(s) + max{0, s− (2s− 1) t`+1

max1≤i≤` ti
}
, ` ≥ 1

and ft1(s) =
s

t1
. �

Clearly when exponents of the partial quotients are all identically equal to one, i.e.

ti = 1,∀i, then Theorem 7.2.1 readily implies Theorem 7.1.16.

In fact for m=2 we have obtained the following (paper is in preparation).
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Theorem 7.2.2 Let B, b be as above. Then

dimH Gt2(Φ) =



1 if B = 1;

inf{s ≥ 0 : P (−s log |T ′| − ft1,t2(s) logB) ≤ 0} if 1 < B <∞;

1
1+b

if B =∞,

where

ft1,t2(s) =
s2

t2s+ 1
t1

max{0, s− (2s− 1) t2
t1
}
. �

Open questions and problems

In this section we state some of the open problems related to the the Dirichlet

improvability which may be worth exploring in the future and which could possibly

extended to the inhomogeneous settings.

Improvements to Dirichlet’s Theorem in higher dimensions

Similar to the one dimensional ψ-Dirichlet improvable set D(ψ), analogous higher

dimensional theory exists. First we state the higher dimensional general form of

Dirichlet’s Theorem. Let m,n be positive integers and denote by Rmn the space of

real m× n matrices.

Theorem 7.2.3 (Dirichlet’s Theorem) Given any X ∈ Rmn and t > 1, there

exist p ∈ Zm and q ∈ Zn \ {0} such that

‖Xq− p‖m ≤ 1

t
and ‖q‖n < t. �

Here ‖ ∗ ‖ denotes the supremum norm on Ri, i ∈ N defined as ‖a‖ = max1≤k≤i |ak|.
Informally, a matrix X represents a vector valued function q→ Xq and the above

theorem claims that one can pick a not-so-large integer vector q ∈ Zn \ {0} so that

the output of that function is close to an integer vector. For m = n = 1 the theorem

just asserts that for any real number x and t > 1, one of the first t multiples of x lies

within 1/t of an integer. Similar to the case m = n = 1, Theorem 7.2.3 guarantees a

non-trivial integer solution for all t, therefore it is the archetypal uniform Diophantine

approximation result. A weaker form of approximation guaranteeing that such a system

is solvable for an unbounded set of t, is sometimes known as asymptotic approximation.

The following corollary, which follows trivially from this weaker statement, is the

archetypal asymptotic approximation result.
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Corollary 7.2.4 For any X ∈ Rmn there exists infinitely many integer vectors q ∈ Zn

such that

‖Xq− p‖m ≤ 1

‖q‖n
for some p ∈ Zm. �

Let ψ : [t0,∞) → R+ be a non-increasing function where t0 > 1 is fixed. A matrix

X ∈ Rmn is called ψ-Dirichlet if for every sufficiently large t one can find integer vector

q ∈ Zn \ {0} such that

‖Xq− p‖m < ψ(t) and ‖q‖n < t.

Let Dm,n(ψ) denote the set of all ψ-Dirichlet matrices. From now onwards we use the

notation ψa(x) := x−a. Then clearly D1,1(ψ1) = R, and that for any m,n almost every

matrix is ψ1-Dirichlet. A result in [13] asserts that for min(m,n) = 1 and in [36] for

the general case, that for any c < 1, the set Dm,n(cψ1) of cψ1-Dirichlet matrices has a

Lebesgue measure zero. This naturally motivates the following question.

What is a necessary and sufficient condition on a non-increasing function ψ guar-

anteeing that the set Dm,n(ψ) has a zero or full measure? Recall that the answer to

this question for m = n = 1 has been given in [34].

As discussed earlier in the one dimensional settings, the continued fraction ex-

pansions has been useful in characterising the ψ-Dirichlet numbers. However, this

machinery is not fully developed in higher dimensions and therefore the following

problems are challenging.

Problem 7.2.5 Determine the zero-full law for the set Dm,n(ψ) in terms of generalised

f -dimensional Hausdorff measure. �

However, the Lebesgue measure criterion for the doubly metric analogue of Dm,n(ψ)

has been recently proved by Kleinbock–Wadleigh [35] by reducing the problem to the

shrinking target problem on the space of grids in Rm+n. To be precise, let ψ be as

above and consider a fixed b ∈ Rm. A matrix X ∈ Rmn is called ψb-Dirichlet if for

every sufficiently large t one can find non-zero integer vector q ∈ Zn such that

‖Xq + b− p‖m < ψ(t) and |q|n < t. (7.6)

Let Db
m,n(ψ) denote the set of all ψb-Dirichlet matrices. If the inhomogeneous vector

b ∈ Rm is not fixed then let D̂m,n(ψ) be the set of all pairs (X,b) ∈ Rm+n ×Rm such

that (7.6) holds.

Theorem 7.2.6 (Kleinbock–Wadleigh, [35]) Given a non-increasing ψ, the set

D̂m,n(ψ) has zero (resp. full) Lebesgue measure if and only if the series
∑

q
1

q2ψ(q)

diverges (resp. converges). �
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Recently (2020), Kim–Kim [33] established the Hausdorff measure analogue of Theorem

7.2.6.

Theorem 7.2.7 (Kim–Kim, [33]) Let ψ be non-increasing and 0 ≤ s ≤ mn+m.

Then

Hs(D̂m,n(ψ)) =


0 if

∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn+m−s

< ∞;

Hs([0, 1]mn+m) if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn+m−s

= ∞.
(7.7)

�

Recall that for fixed b ∈ Rm the set Db
m,n(ψ) = {X ∈ Rmn : (X,b) ∈ D̂m,n(ψ)}. In

the same article Kim–Kim also provided the Hausdorff measure criterion for the singly

metric case.

Theorem 7.2.8 (Kim–Kim, [33]) Let ψ be non-increasing with limt→∞ ψ(t) = 0.

Then for any 0 ≤ s ≤ mn

Hs(Db
m,n(ψ)) =


0 if

∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn−s
< ∞;

Hs([0, 1]mn) if
∞∑
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn−s
= ∞,

for every b ∈ Rm \ Zm. �

Below we list a few natural problems in this setup.

Problem 7.2.9 Determine the f -Hausdorff measure for D̂m,n(ψ).

Problem 7.2.10 Determine the zero-full law for the set Db
m,n(ψ) in terms of general-

ised f -dimensional Hausdorff measure. �

Problem 7.2.11 What are the precise formulations of the weighted analogues of the

sets Dm,n(ψ), Db
m,n(ψ) and D̂m,n(ψ)? �

Given that the proof of Theorem 7.2.6 used the correspondence principle between

Diophantine approximation and homogeneous dynamics, the following is a plausible

objective.

Complex Numbers System

Moving away from the real setting, to ultrametric settings, improvements to the

Dirichlet’s Theorem (of the above flavour) are not possible over formal power series or

the p-adics. However, solving all of the problems stated above over complex number

system will be challenging.
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In an analogy with the real case, let ψ : [t0,∞)→ R+ be a non-increasing function

with t0 ≥ 1 fixed. Consider the set

DC(ψ) :=

Z ∈ C :
∃N such that the system

∣∣∣Z − p1 + ip2

q1 + iq2

∣∣∣ < ψ(t) with

|q1 + iq2| < t has a nontrivial integer solution for all t > N

 .

There has been a lot of progress recently in developing the theory of continued

fraction expansion for complex numbers. Hence it is timely to think of the validity of

the following problems.

Problem 7.2.12 Characterise any Z ∈ DC(ψ) in terms of its continued fractions.

Problem 7.2.13 Determine the Lebesgue measure of the complex analogue of the

set D̂m,n(ψ). �

Problem 7.2.14 Determine the necessary and sufficient conditions on ψ to guarantee

the zero-full law with respect to the f -dimensional Hausdorff measure Hf . �
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