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Abstract

Big data processing and analysis is becoming an increasingly important part of modern
society as corporations and government organisations seek to draw insight from the vast
amount of data they are storing. The traditional approach to such data processing is to
use the popular Hadoop framework which uses HDFS (Hadoop Distributed File System)
to store and stream data to analytics applications written in the MapReduce model.
As organisations seek to share data and results with third parties, HDFS remains
inadequate for such tasks in many ways. This work looks at replacing HDFS with a
decentralised data store that is better suited to sharing data between organisations. The
best fit for such a replacement is chosen to be the decentralised hypermedia distribution
protocol IPFS (Interplanetary File System), that is built around the aim of connecting
all peers in it’s network with the same set of content addressed files.
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Abbreviations

API Application Programming Interface

AWS Amazon Web Services

CLI Command Line Interface

DHT Distributed Hash Table

DNS Domain Name System

EC2 Elastic Compute Cloud

FTP File Transfer Protocol

HDFS Hadoop Distributed File System

HPC High-Performance Computing

IPFS InterPlanetary File System

IPNS InterPlanetary Naming System

SFTP Secure File Transfer Protocol

UI User Interface
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Chapter 1

Introduction

As society creates an ever increasing volume of data, both large corporations and gov-

ernment organisations are working to conduct research and analysis on huge quantities

of data in order to gain insight and understanding into complex topics. Traditional

approaches towards storing and processing large data sets, such as the use of relational

databases, have been unable to keep up with the sheer scale and growth in today’s

corporate and government data collection climate [11]. This has driven the need for,

and development of, new technologies such as Google’s MapReduce [12], which breaks

data processing tasks into seperate Map and Reduce phases that can be executed in

parallel across a distributed cluster of machines.

The most popular implementation of MapReduce is the Apache Software Foundation’s

open source Hadoop library, which is based very closely on the work from Google.

Hadoop consists of three core components [8]:

1. MapReduce - a system providing parallel data processing capabilities

2. YARN - a framework for allocating jobs and managing resources

3. HDFS - a distributed and scalable filesystem

The Hadoop Distributed Filesystem, and more largely Hadoop as a whole, is designed to
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run on a fully connected and controlled cluster of servers within an organisation. This

doesn’t allow for easy or seamless sharing of data or result sets between organisations.

In this thesis, we aim to address the following concerns around the use of the Hadoop

Distributed File System with shared data:

1. Inefficient Data Ingestion Process: Data sets that are stored on an alternate

filesystem, or otherwise downloaded from some external source, need to be in-

gested into HDFS before processing. This retrieval and ingestion process adds

considerable delay before any analysis can be performed.

2. Complicated Mechanism Needed To Move Computation: If we aim to eliminate the

data ingestion phase with a shared data set, but still utilise HDFS, a mechanism

would be needed to move computation between organisations. Such a mechanism

would be complicated to implement and run.

3. Highly Centralised Data Set Hosting : Data sets that are made available for use

by third parties are typically hosted and controlled by one entity. This poses

concerns around the longevity of the data set and usually means that only one

version is available. If the entity decides they no longer want to host the data, it

will no longer be available for access.

4. No Versioning Guarantees: Data sets are typically only available in one version,

and often there is no easy way to be certain that the version being accessed is

the one that is expected.

These concerns will be addressed by implementing an interface between Hadoop and

an existing, decentralised, peer-to-peer storage system. Such an interface will allow

MapReduce tasks to be executed directly on data stored in this alternate storage system.

2
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Chapter 2

Background

In this chapter some of the features of the Hadoop Distributed File System are discussed

as well as some of the problems it solves, and those it doesn’t. Some of the existing

work to replace HDFS with alternate file systems, and the motivation of each of these

projects, is also discussed. In addition, HTTPFS is mentioned, which is a REST HTTP

gateway providing external access to HDFS clusters.

2.1 The Hadoop Distributed File System

The Hadoop Distributed File System [13] is a file system developed largely by Yahoo!

that provides data storage for the Hadoop framework. It is a distributed and scalable

file system designed to run on large clusters of servers running commodity hardware.

One of the key concepts behind HDFS, and more generally Hadoop, is data locality,

in which computation is executed as close as possible to the data. HDFS connects the

local storage of the compute nodes in a cluster into a single distributed file system.

There were a number of key design decisions behind HDFS that provide certain benefits,

but are also the source of some of its short-comings. Some of these decisions include:

3
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1. File metadata and contents stored separately : HDFS stores file metadata sep-

arately to the actual data itself. This is implemented using the concept of a

NameNode and seperate DataNode’s. This has the advantage of simplifying the

system greatly. The downside to this architecture, however, is that until recently

with Hadoop 2.0, there was only a single NameNode. This NameNode became a

single point of failure and a significant bottleneck in larger clusters as all requests

must first contact the NameNode to determine the location of data blocks.

2. Naive replication: HDFS’s approach to data replication is to assume that the

nodes themselves have no redundancy, and that data replication must be imple-

mented by the file system. The method via which HDFS achieves this is in naive

replication of all data blocks across a number of nodes (typically 3). This has

benefits in simplifying the compute nodes and allowing data to be distributed in

such a way that it is more likely a copy of some data is nearby a compute node

wanting to access it. The disadvantage is, however, that storing 3 complete copies

of a data set is quite expensive from a storage footprint perspective.

3. Performance over POSIX compliance: The interface for HDFS has many similar-

ities to traditional Unix file system interfaces, but is not POSIX compliant. This

was deemed to be a worthy tradeoff as not supporting POSIX semantics allowed

the development team behind HDFS to increase performance of the file system.

This decision has meant that HDFS is well suited to high-performance Hadoop

MapReduce applications, as well as other applications in the Hadoop ecosystem,

but that alternate applications reliant on POSIX semantics are not supported.

2.2 Existing Work to Replace HDFS

Whilst there have been other attempts at replacing HDFS with an alternate filesystem,

the motives behind doing so have been largely different to that of this work, and have

mostly been a result of some of the design decisions behind HDFS. Some of the aims

of the other projects have been to:
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1. Improve scalability - HDFS’ single NameNode becomes a bottleneck in larger

clusters.

2. Reduce the overall storage footprint - the naive replication strategy used by HDFS

results in significant storage footprint overhead.

3. Remove the need for multiple storage systems within an organisation - this need

arises from the lack of POSIX compliance provided by HDFS.

The main aim of these projects has been to provide an alternate file system for Hadoop

that is relatively similar to HDFS, but improves on it in some way. Some of the projects

are now commercially available, whilst others were just intended as a proof of concept.

It should be noted that the work of this thesis does not aim to improve on any of these

previous projects and that the motivation here for replacing HDFS is quite different.

2.2.1 Hadoop on LustreFS

Both Intel [14] and Seagate [15] have worked separately to build their own interface

between Hadoop MapReduce and the Lustre File System. Lustre is similar in many

ways to HDFS in that it is a distributed and scalable file system deployed to a known

and controlled cluster of commodity based hardware [4]. It provides a number of

advantages over HDFS; most notably, it is more scalable and performs better under

certain conditions.

The team at Intel were largely motivated in their work by the need to improve scal-

ability of high-performance computing and to provide tools that can keep up with

the ever-increasing size of todays data stores. They felt Lustre was an obvious choice

for integration with Hadoop as it is already the file system of choice in a variety of

high-performance computing (HPC) applications. In many organisations, this could

eliminate the need for two seperate file-systems (HDFS and Lustre for example), and

thus remove the overhead of data transfer between the filesystems. This was another

motivating factor behind their work.
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Seagate’s project had much of the same motivation as Intel’s project, however they were

also interested in reducing the overall storage footprint, and hence cost, of a Hadoop

cluster.

2.2.2 Hadoop on GFarm

A small team of Japanese researchers have developed a plugin to allow Hadoop MapRe-

duce jobs to run on top of the GFarm file system. The aim of their work was to provide

an alternate file system to HDFS that had comparable performance, but also supported

POSIX semantics to allow other applications to run on top of the file system [17]. Re-

sults from their own testing show they were successful in achieving their aims, with

GFarm performing only slightly worse than HDFS. The group implemented their plu-

gin by implementing Hadoop’s FileSystem interface for the GFarm file system.

GFarm is similar to HDFS in many regards, in that it is a scalable, distributed file

system with extensive support for data-locality, such that computation is moved to a

node containing a replica of the relevant data [16]. GFarm differs from HDFS however

in that it is more of a general purpose filesystem with POSIX support allowing it to be

used with a wide array of applications.

2.3 HTTPFS

HTTPFS [6] is a REST HTTP gateway that allows external entities to access a HDFS

cluster externally. It supports the full set of file system operations and can be used

to transfer data between clusters or access data from an external cluster. Whilst this

gateway does allow effective sharing of data sets with third parties, it doesn’t address

the concerns around data centralisation or versioning.

6
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Chapter 3

Analysing Different Options

In this section, some of the options for alternate file systems are presented. In order to

best solve the issues raised, a decentralised file system makes the best fit, and so all the

options presented here are decentralised file systems. Each of the alternatives solve the

concerns raised around data ingestion, movement of computation and centralisation

of data, so these aren’t discussed here. Instead, the following properties of each are

considered:

1. Mechanism for sharing data with peers

2. Data replication and distribution approach

3. Presence of an API on which the FileSystem interface can be built

4. Support for large files

5. Data versioning capabilities

6. Access control mechanisms

7
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3.1 IPFS: Interplanetary File System

The Interplanetary File System (IPFS) is a highly ambitious project that aims to

connect all peers with the same set of files [1]. One of the core idea’s underpinning the

system is the concept of content addressed files, which makes it ideal in addressing the

data versioning concerns.

1. Mechanism for sharing data with peers: Any peer can access any file stored in

the network using it’s content hash address. Files can be accessed via an API or

through a CLI.

2. Data replication and distribution approach: Data is replicated throughout the

network based on interest. As peers access content, it is kept in a local cache

for a short time and can also be actively ’pinned’ to ensure that a local copy is

persisted.

3. Presence of an API on which the FileSystem interface can be built : IPFS has an

extensive API that allows file system operations to be invoked from a variety of

languages. Most notably, there is a Java API which is ideal for our use case.

4. Support for large files: Whilst not tested or documented extensively, there are

known cases where IPFS has been used with files in the 10’s to low 100’s of

Gigabyte’s, without suffering significant performance degradation.

5. Data versioning capabilities: One of the fundamental design concepts underpin-

ning IPFS is it’s content addressing, by which files are accessed via a crypto-

graphic hash link of their contents. This is an ideal solution to the data-versioning

concerns because as soon as one byte in a file is changed, the hash will also change,

which provides certainty around the content being accessed. In addition, the IPFS

development community aim to add Git style commit objects that would allow

multiple versions of a file to linked. The IPFS paper [1] makes reference to such

objects, but they have not yet been fully implemented.

8
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6. Access control mechanisms: Whilst IPFS doesn’t currently support access con-

trol mechanisms, there are plans to add such features in the near future. It is

possible, however, to run an IPFS network behind a firewall, which would allow a

private network to be created. Currently all peers within an IPFS network have

read/write access to all files. Since files are immutable, however, appending data

to an existing file creates a new file with a new content address. In this way, files

that have already been created are not able to be modified.

3.2 Tahoe-LAFS: Tahoe Least Authority File System

Tahoe Least Authority File System is a long-lived project to develop a decentralised

file system with security as the major focus [3].

1. Mechanism for sharing data with peers: Tahoe uses a concept of ’caps’ (or capa-

bilities) to share files with other users of the system. A ’cap’ is a cryptographic

identifier that identifies a file and dictates what type of access (read, write etc.)

to the file is allowed with the use of this ’cap’. A peer who has a ’cap’ for a file

can access the file using Tahoe’s REST API, CLI or the FTP/SFTP protocols.

2. Data replication and distribution approach: Data is split into erasure coded and

encrypted ’shares’ that are distributed amongst peers in the network. The ap-

proach taken with the ’shares’ is that only n of k ’shares’ are needed to recreate

a file, and so some of these ’shares’ can be lost without the underlying file being

lost.

3. Presence of an API on which the FileSystem interface can be built : Tahoe cur-

rently supports a RESTful web API and a CLI which would both serve our

purposes.

4. Support for large files: Whilst not tested or documented thoroughly, there are

recorded cases of people using Tahoe with files in the order of 10’s of Gigabytes.

9
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5. Data versioning capabilities: Files are accessed via ’caps’, which are a crypto-

graphic hash derived from the file contents and a ’convergence key’, which is by

default unique to each user. This provides a user the ability to confirm that the

downloaded data is exactly the data they were expecting.

6. Access control mechanisms: A user must have the specific ’cap’ for a file before

it can be accessed. Further to this, a ’cap’ also dictates whether the file access

is read only or read-write. The system uses RSA key pairs to ensure security of

mutable files.

3.3 Sia

Sia is a relatively young project with a more commercial focus. It is aimed at becoming a

decentralised cloud alternative (to compete with the likes of Dropbox etc.). It is mainly

targeted at enterprise and highlights it’s key features as being distributed, customisable,

extensible and secure [9] [2].

1. Mechanism for sharing data with peers: File sharing in Sia centres around siafile’s,

which contain data access and location information for retrieving a file. Without

the siafile corresponding to a file, no user has the ability to retrieve it. Files are

retrieved over a Web API using the information contained in the siafile.

2. Data replication and distribution approach: Files are split into erasure coded

and encrypted ’shares’, which are distributed to peers who are paid in crypto-

currency for their efforts. In this way, data-replication is guaranteed through

financial incentive.

3. Presence of an API on which the FileSystem interface can be built : Sia currently

only supports a RESTful web API.

4. Support for large files: There is currently no documented case of Sia being used

with any reasonable sized data.

10
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5. Data versioning capabilities: Sia currently has no built-in support for data ver-

sioning.

6. Access control mechanisms: Sia provides access control through its siafiles, which

contain the necessary data for retrieving and decrypting a file. Without a siafile,

no user is able to access and decrypt the corresponding file.

3.4 Storj

Storj is similar to Sia in that it is also a more commercialised alternative aiming to

become an open source and decentralised alternative to the likes of Dropbox, Google

Drive etc. It is aimed more at personal users [10].

1. Mechanism for sharing data with peers: Storj is not expressly designed to allow

sharing of data with peers. It is more focussed on personal storage. It is possible

to share data with peers using the web API, however this is not a particularly

easy task.

2. Data replication and distribution approach: Files are split into erasure coded

and encrypted ’shares’, which are distributed to peers who are paid in crypto-

currency for their efforts. In this way, data-replication is guaranteed through

financial incentive.

3. Presence of an API on which the FileSystem interface can be built : Storj provides

a RESTful web API for interacting with the network programatically.

4. Support for large files: There is currently no documented case of Storj being used

with any reasonable sized data.

5. Data versioning capabilities: In order to access files using the REST API, the

content hash of the desired file is needed. This provides a user the ability to

ensure that the data retrieved is the data they expect.

11
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6. Access control mechanisms: As Storj is not expressly designed for sharing of data

with third parties, access control is not something well defined in the system. In

order to retrieve a file via the REST API however, a great deal of information on

the file is needed, including it’s content hash, address, the ID of the host and a

cryptographic signature.

12
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Chapter 4

Chosen Solution

In this chapter, it is determined which File System is the most suitable to replace HDFS

for our use case and some of the differences between HDFS and the chosen FileSystem

that will be important and relevant to this work are discussed.

4.1 Ideal Choice: The InterPlanetary File System

The InterPlanetary File System (IPFS) has been chosen as the most suitable for this

project as it solves the four main issues raised in the following ways:

1. Inefficient Data Ingestion Process: With the implementation of a layer between

Hadoop MapReduce and IPFS, it will be possible for organisations to store data

sets, share this data with third parties, perform analysis on the data and output

results all directly on top of IPFS. Any third party interested in this data will

also be able to perform analysis on the data directly from IPFS, and output their

results straight into IPFS, to potentially be shared with others. This eliminates

the need for any data ingestion phase and allows organisations to also share their

output with ease.

13
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2. Complicated Mechanism Needed To Move Computation: If data is stored directly

in IPFS, there is no longer a need to move computation between organisations.

Instead, data is moved between them during execution of the job.

3. Highly Centralised Data Set Hosting : With data set’s stored in IPFS, any party

connected to the same IPFS network will be able to retrieve and store this data

for themselves by actively ’pinning’ the content. As they do so, the data is being

replicated throughout the network and becoming more and decentralised as more

copies are made. This form of replication is based purely on interest and means

that as long as there is one party still interested in ’pinning’ the data, it will be

persisted. In this way multiple versions will also be available, as long as some

party in the network still has interest in the relevant version.

4. No Versioning Guarantees: One of the key ideas behind IPFS is that everything

is content addressed. This is a perfect solution to the versioning concerns as a

user of the system must specify the cryptographic hash of the data they wish to

access. This guarantees they will receive the exact version of the data that they

are expecting.

As well as solving the above issues, IPFS also made the most sense as it is a highly

ambitious project gaining lots of attention and is in very active development. It’s data

replication strategy is the best suited to our application in that it doesn’t require any

party paying for the storage and doesn’t make any assumptions about the trustworthi-

ness or authenticity of peers hosting the data. It also has been documented to support

large files relatively well, an important consideration for applications in big data.

14
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Chapter 5

My Work

In this chapter, the work that has been completed is discussed, as well as how it was

completed, some of the challenges that were encountered and how they were dealt with.

Some suggestions for future improvements to the work are also discussed.

15
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5.1 System Structure

5.1.1 High-Level Overview

As shown in the above diagram, the system has a similar structure to a conventional

Hadoop cluster, except with the addition of an IPFS component on each node. The

Namenode and Datanodes that form the Hadoop cluster can be either within one

datacenter, or be geographically distributed. Each of the nodes has an IPFS daemon

process running on it, which connects to a peer-to-peer IPFS network (either public or

private) for file access. This enables the cluster to perform MapReduce tasks on any

data stored within the IPFS network.

16
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5.1.2 Key Components

In order to develop my solution, there were a number of pieces that needed to be

implemented. These various components and how they fit together are as follows:

1. IPFSFileSystem Interface: This is the main body of work, and implements the

interface between Hadoop and IPFS. It is compiled as a jar file and placed on

each node in the Hadoop cluster.

2. IPFSOutputStream: This component is an output stream used in file creation on

IPFS. It is used directly by the IPFSFileSystem interface, and is compiled as part

of it’s jar file.

3. Custom Output Committer : This is a seperate component that is used by the

MapReduce job itself (in our testing a multiple file word count). It enables us to

only use IPFS for the final output of the job, and to use HDFS for intermediate

files (the reasons for this behaviour are outlined in section 5.2.2). It is compiled

as part of the MapReduce application’s jar file.

5.1.3 Anatomy of a MapReduce Job

To give a detailed understanding of how the system operates, a typical MapReduce job

run on top of the IPFS system will behave as follows:

1. Data fetched from IPFS : Metadata for the input data set is retrieved from IPFS

and important parameters determined (such as the size of each file, the number

of files, etc). From here the data will be split by the MapReduce framework (as

in any MapReduce job) and an appropriate number of containers scheduled.
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2. Map Phase: Each of the conatiners forming the the Map phase will then operate

on their own subset of the input data set fetched from IPFS and perform their

computation. Each node in the cluster has it’s own IPFS API allowing it to

connect directly with the IPFS network. Any temporary output files created by

the Map phase are stored in HDFS, rather than IPFS, due to performance and

concurrency concerns (outlined in section 5.2.2).

3. Reduce Phase: The containers forming the reduce phase will then fetch the in-

termediary results created by the Map phase from HDFS and perform their com-

putation. The output from this phase is committed to both HDFS and IPFS,

based on the design of our output committer. This, however, could be changed

and output only committed to IPFS. Due to the semantics of mutability on IPFS

(see section 5.2.1), the output directory is created via a single node (typically the

NameNode).

The above workflow is further illustrated with the following diagram showing the various

phases of the job and the input and output locations of each.

In addition to the above workflow, depending on the use case, a MapReduce program-

mer may decide only to fetch the input data from IPFS and to output to HDFS as

normal. They may also decide to do the reverse and fetch data from HDFS, with the

output stored in IPFS. A new type of custom output committer could also be developed

that stores the final output only on IPFS rather than storing in both HDFS and IPFS.
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5.2 Challenges

5.2.1 Mutability and Working Directories

Possibly the biggest challenge for this work was determining how to implement muta-

bility, and even basic file creation, on top of a file system that is inherently immutable

and whose file path’s are semantically very different to those used in the FileSystem

interface for Hadoop. Paths used by Hadoop for all file and directory operations are

defined before any content for the files or directories is given. In the case of IPFS, where

files and directories are content addressed, these semantics simply don’t work. Object

paths in IPFS take the form hash/foo/bar, where hash is a cryptographic hash of the

objects contents, and so an absolute Hadoop Path object cannot be simply passed in

when performing operations on IPFSobjects, as this hash is not known until after the

operation is complete.

To solve this issue, I used IPNS (InterPlanetary Naming System) to implement the

concept of a working directory. IPNS can be thought of as a DNS system for IPFS,

where every peer has a peer ID which is used as the key for their IPNS entry. This

means that each IPFS peer has one IPNS record for themselves, which they can publish

any IPFS object hash to.

For implementing working directories and mutability this system works quite well and

allowed me to implement file operations on IPFS using simple string paths. When any

modification is made to the working directory or any files within it, we first resolve the

IPNS record to an object hash, then perform the relevant operations. These operations

result in a new object being formed (with a new hash) which is then published to IPNS

to replace the old object.

This system works well, but exposes two major issues which are discussed below.
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5.2.2 Concurrent Modification of Files Within a Directory

Taking the above mechanism for mutability and IPFS’ content addressing into account

raises concerns about concurrent modification of any objects within a working direc-

tory. More specifically a race condition arises when any two or more nodes attempt to

concurrently modify the working directory in any way. This is due to the important

fact, and feature of IPFS, that when any element of an object or any of its children

is modified, all parent objects of the modified object will have a new hash, up to and

including the root object. When two or more nodes are concurrently modifying the

working directory, a critical section exists between the time when each of them resolves

the IPNS name and when they publish the newly modified hash back to IPNS.

In order to solve this issue, I first considered implementing a locking system to ensure

that no two nodes are in the critical section at the same time. This option wasn’t

appropriate as the loss of performance would be too significant and the complexity of

implementing a distributed locking system for Hadoop was outside the scope of this

work.

Instead, the best option was to only use IPFS for input for the job and for the final

committed output. This meant that any intermediate files created by Hadoop (such as

the output of the Map phase) would still need to be stored in HDFS.

Whilst at first this solution may seem like a loss of functionality for the system, it is

important to note that the solution still solves all of the issues it set out to solve. From

the perspective of a user of the system, this solution is just as effective in solving the

defined use case scenarios as a system that ran entirely on IPFS. What matters in our

use case is the initial input and final output, not the location of the intermediate files.
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5.2.3 IPNS Caching Functionality

During my work with IPNS, I encountered an issue where resolving an IPNS peer ID

would return a stale cached result, even when the most recent publish for that peer ID

was issued by the peer itself, only moments earlier. This appears to be an oversight

by the IPFS team in that publishing a record to IPNS does not set (or even flush) the

local cache for that record.

The solution to this issue was thankfully quite straightforward in that I was able to

simply pass a TTL (time to live) parameter to the IPFS API. The downside to this

however, is that all IPNS resolve requests now need to query the IPFS DHT, which

can be quite a noticeable hit to performance.

5.3 The Hadoop FileSystem Interface

In order to allow interoperability between Hadoop and various different file systems,

Apache have provided a generic FileSystem interface that all Hadoop MapReduce ap-

plication programmers are encouraged to use, rather than interacting with HDFS (or

its alternatives) more directly. It is this interface that has allowed past projects to

replace HDFS with alternate FileSystems, without needing to modify existing MapRe-

duce Applications. The most crucial part of this work was to implement this interface

for the InterPlanetary File System (IPFS).

The main functions in this interface, and those that I implemented, are as follows:
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public FSDataOutputStream append(Path f, int bufferSize, Progressable

progress);

public void concat(Path trg, Path[] psrcs) throws IOException;

public FSDataOutputStream create(Path f, FsPermission permission, boolean

overwrite, int bufferSize, short replication, long blockSize,

Progressable progress) throws IOException;

public boolean delete(Path f, boolean recursive) throws IOException;

public boolean exists(Path f);

public int getDefaultPort();

public FileStatus getFileStatus(Path f) throws IOException;

public String getScheme();

public URI getUri();

public Path getWorkingDirectory();

public void initialize(URI name, Configuration conf) throws IOException;

public boolean isDirectory(Path f) throws IOException;

public boolean isFile(Path f) throws IOException;

public FileStatus[] listStatus(Path f) throws IOException;

public boolean mkdirs(Path f, FsPermission permission);

public FSDataInputStream open(Path f, int bufferSize) throws IOException;
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public boolean rename(Path src, Path dst) throws IOException;

public void setWorkingDirectory(Path new_dir);

Some of the more critical and interesting functions will be discussed in more depth

below.

5.3.1 create

The create function is used to create files at a given Path, returning a stream to which

file contents are sent. My implementation of the function first performs a check on the

type of file Path it is given. This Path must either be a relative string Path (of the

form foo/bar) or an IPNS string Path (of the form hash/foo/bar). This is due to the

way mutability is handled by our implementation.

If the given Path is of the right form, a check is performed to ensure the root hash (either

that given in the IPNS string Path or the hash that corresponds to the current working

directory) is mutable. If so, the mkdirs function is called, as needed, to construct the

Path of the file to be created and finally an FSDataOutputStream is created from a

new IPFSOutputStream object, and is returned. The IPFSOutputStream is covered in

more depth in the next section, but has the basic functionality of accepting writes to

the new File and saving the file contents to IPFS once the stream is closed or flushed.

5.3.2 delete

The delete function is as advertised, deleting files or directories from the file system.

My implementation enforces the same requirements as the create function on the Path

type it is given. This is again due to the way mutability is handled.
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Once it has been determined that the given Path is of the correct format, and that it

is mutable, the function checks whether the Path refers to a directory. If so, as long as

the recursive flag is true, delete is called recursively on all the children of the current

Path.

When any recursion has hit the base case, the parent of the given Path is modified to

remove the link to the child (which is being deleted). This creates a new hash for the

parent, and so the parent of the parent must be modified so that it’s link to the parent

points to the new parent (with removed link) and not the old parent. This process of

updating links continues up the path to the root object until a new object is created

for the root. This new object’s hash is then published to IPNS such that subsequent

operations on the working directory will be operating on the now modified working

directory.

5.3.3 exists

The exists function determines whether a given file or directory exists. Our implemen-

tation simply makes a call to IPFS to retrieve the status of the object at the given

Path. If no status is returned, it is assumed that the file doesn’t exist. This is quite

different to the way most file system’s would implement such functionality, and has the

downside of being very slow, particularly when the file doesn’t exist as a full query of

the IPFS DHT is necessary.

5.3.4 getFileStatus

The getFileStatus function retrieves certain information and parameters about files in

IPFS. It is not able to provide the full information that HDFS provides on its files, as

much of this information is not supported by IPFS (such as file mode, symlinks and

data locality information). What is provided is the size and block size of the file (as

provided by ipfs object stat) and whether the Path refers to a file or directory.
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5.3.5 isDirectory/isFile

The isDirectory and isFile functions determine whether a given Path refers to a file or

directory. These were not as straight forward to implement with the current function-

ality of IPFS as one might expect. IPFS doesn’t currently provide a simple isDirectory

flag in any of its object data methods. Simply inspecting the number of outgoing links

from an object is also not suitable for this purpose as large files are chunked and will

have outgoing links to the other chunks in the file. Instead, we rely on the fact that

the data object in every IPFS directory is 2 bytes in size. Whilst this is not entirely

accurate, it is assumed that no file will be 2 bytes long. There is currently no better

method in IPFS to determine whether an object represents a file or a directory.

5.3.6 mkdirs

The mkdirs function creates one or more directories in a Path, as needed. Our im-

plementation first checks that the given path is of a correct type and is mutable. It

then resolves the root hash of the Path, an IPNS name, into its object hash. From

here a stack is created of the components of the Path, and is iterated over. For each

Path component, we determine whether or not a link exists of the same name from the

current child element (beginning with the resolved root object). This information is

then used to separate the components into two new stacks, one for components of the

Path that already exist and one for those that are being created.

We then create a new object (initially an empty directory) and add a series of links to it

using the stack of Path components that do not currently exist. To illustrate, if we had

the Path hash/foo/bar/baz/abc and in the current working directory the Path hash/foo

already exists, we would create an object to represent abc (an empty directory). We

would then create another object, representing baz, and create a link from it to our

already created object for abc. We would then create yet another object, this time

representing bar, and create a link from it to the object representing baz. The result of

this is an object representing bar with a chain of links to baz and abc.
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Following this, the child object of the components of the Path that already exist is

updated with a link to the object we created for the Path components that didn’t

already exist. In the example above, that would mean that the foo object would be

patched with a link to the bar object. This change creates a new hash for the child

object, and so we must update the existing links to point to the updated objects, back

up the path to the root object. Once we have the new hash for the updated root object,

this is published to IPNS.

5.3.7 open

The open function is just as expected, returning a stream containing the file contents.

Whilst functions involving mutability proved more difficult to implement on top of

IPFS, open remained straight forward. The function simply retrieves a byte array of

the object contents using ipfs cat and creates an FSDataInputStream.

5.3.8 rename

The rename function renames files or directories. My implementation first checks that

the given source and destination Path’s are mutable, and whether or not they exist.

Following this, it determines whether the destination Path is a directory, and if so calls

rename recursively with a new destination Path given by concatenating the destination

Path with the filename of the source Path. The object at the source Path is then

retrieved and the delete function called on the source Path.

The Parent object of the destination Path is retrieved, and a link added using the

filename from the destination Path and the hash of the original source object. This

link addition creates a new parent object (with a new hash) and so the parent to the

parent is updated to point to the new parent object. This process repeats up the chain

to the root object, which is then published to IPNS.
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5.4 IPFSOutputStream

The IPFSOutputStream is used in the create function to construct the FSDataOutput-

Stream it must return. It provides a stream through which files can be created on IPFS

via the IPFSFileSystem interface. It has the role of acting as a buffer between file data

submitted by Hadoop and that published to IPFS.

A custom output stream of this nature is typically not required when implementing

the FileSystem interface for a new file system, however it was required here because

of the way in which mutability is implemented on IPFS. When the stream is closed or

flushed, the contents of the buffer must be submitted to IPFS as a new file and the

working directory updated accordingly (via publishing to IPNS).

The interface itself is quite small, providing only the following functionality:

public void close() throws IOException;

public void flush() throws IOException;

public void write(int b) throws IOException;

public void write(byte[] b) throws IOException;

public void write(byte[] b, int off, int len) throws IOException;

5.5 Custom Job Committer

The custom job committer is a seperate class not used by the IPFSFileSystem. It

functions as a wrapper around the FileOutputCommitter provided by Hadoop, and

commits the result of the job both to the default FileSystem (specified in the core-

site.xml) and the FileSystem specified in the output path. Any intermediate files are

stored in the default FileSystem rather than that specified in the output path. This
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custom committer was necessary as the default committers used in Hadoop will use

the file system specified in the output path both for intermediate files and the final

commit, which isn’t suitable in this case.

The class itself is quite small and only implements a constructor and override for the

commitJob function. The effort for this component of my work was in reading through

the Hadoop source code and determining what needed to be modified and how. It

is also worth noting that most other projects to implement alternate file systems on

Hadoop would not need a custom committer because they are usually suitable for both

intermediate output and the final commit.

5.6 Deployment and Configuration

In order to deploy the solution to AWS, a standard Hadoop/HDFS cluster must first

be setup, and then modified to run the IPFS FileSystem alongside HDFS.

5.6.1 Deployment to Amazon Web Services

Aside from the standard deployment of a Hadoop cluster on AWS, the following addi-

tional considerations needed to be made to ensure the smooth operation of Hadoop on

IPFS:

1. Instance Size: Running Hadoop on top of the IPFS daemon process has proved to

be fairly CPU intensive at times and so a standard T2 type instance was not suffi-

cient, as instances were running out of CPU credits. A more appropriate instance

type is any of the C4 family, that are optimised for computational capacity.
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2. Security Group: IPFS uses port 4001 for its swarm (data transfer between DHT

nodes) and 5001 for the API. Port 4001 for the swarm should be open to all traffic

from all IP’s within the IPFS network (whether that be a private IPFS network,

or the public network). Port 5001 should only be open to the nodes in the Hadoop

cluster to ensure that they can access the API on other nodes. If port 5001 is left

open to the world, this is a serious security risk for the IPFS network as a third

party could compromise the API on one of the nodes and perform operations on

its behalf, without its knowledge.

5.6.2 Cluster Configuration

In order to setup a Hadoop cluster to use IPFS, a number of modifications are necessary.

These changes are as follows:

1. Install IPFS : IPFS must be installed on all nodes (NameNode and DataNodes).

2. Configure the IPFS API : In order to allow API requests from other nodes, the

IPFS config must be modified on each host. This config is usually located at

∼/.ipfs/config and should contain the following:

"Addresses": {

"Swarm": [

"/ip4/0.0.0.0/tcp/4001",

"/ip6/::/tcp/4001"

],

"API": "/ip4/0.0.0.0/tcp/5001",

"Gateway": "/ip4/127.0.0.1/tcp/8080"

},

3. Ensure Java 8 is installed : The IPFSFileSystem uses a Java API for IPFS which

requires Java 8. All nodes should be running Java 8.
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4. Install the IPFSFileSystem jar file: The IPFSFileSystem jar file needs to be

placed on all nodes in the cluster, both Namenodes and Datanodes. It should be

placed in a directory that is on the classpath for both the Hadoop master and

the containers it spawns on the various nodes.

5. Modify the core-site.xml : The core-site.xml needs to be modified on all nodes to

specify a class to use for files with an ipfs:// scheme. This file should be modified

to contain the following two entries:

<property>

<name>fs.ipfs.impl</name>

<value>com.sbrisbane.hadoop.fs.ipfs.IPFSFileSystem</value>

</property>

<property>

<name>fs.AbstractFileSystem.ipfs.impl</name>

<value>com.sbrisbane.hadoop.fs.ipfs.IPFSDelegate</value>

</property>

6. Increase the hard limit for maximum number of open files: The system-wide (but

enforced per-process) hard limit for number of open files must be increased. The

appropriate number for the new limit will depend on the application and data set

being used, but the IPFS daemon process makes use of a large number of open

file descriptors in many cases. The daemon process is able to manage its own soft

limit, but cannot increase this past the global hard limit.
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Chapter 6

Evaluation

In order to determine the success of the thesis work and analyse its merits, the project

was evaluated based on its performance characteristics, its functionality for given pre-

defined use cases and how adaptable it is for use with Apache Spark.

6.1 Performance

Whilst performance may appear to be an ill-fitted evaluation criteria for this thesis,

mainly due to the apparent loss of data locality benefits, performance is still an impor-

tant criteria. The performance of a sample MapReduce job, a multiple file word count

on a large data set, will be compared on 4 different types of cluster:

1. Local HDFS : A standard Hadoop/HDFS cluster running within a single AWS

Availability Zone to mimic the cluster being contained within one data centre.

2. Local IPFS : A Hadoop cluster running on top of IPFS with the interface developed

as part of this work. The nodes will also be kept within the same AWS Availability

Zone to mimic the cluster being contained within one data centre.
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3. Cross-Region HDFS : A standard Hadoop/HDFS cluster running across multiple

AWS regions to mimic a distributed HDFS based cluster running at the scale of

the web.

4. Cross-Region IPFS : A Hadoop cluster running on top of IPFS with the interface

developed as part of this work. The nodes will be separated between multiple

AWS regions to mimic a distributed and decentralised cluster running at the scale

of the web.

6.1.1 Local HDFS

As a baseline for comparing the performance of HDFS and IPFS on local clusters, a

basic multiple file word count program was run on a 1.2GB data set of over 3000 text

files stored on HDFS. The text files contained a corpus of various English language

literature pieces obtained from Project Gutenburg. The program was run on a small

cluster of 4 nodes (1 Namenode and 3 Datanodes), with each node being a c4.large

AWS EC2 instance. All instances were located within the same region, us-west-2. On

each iteration of the job, the data set was fetched from a seperate 5th instance, in the

same region, using the scp command and then ingested into HDFS, to simulate the

data set being owned by the party conducting the analysis.

The system structure for this experiment is further illustrated with the following dia-

gram:
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For the purposes of analysing the performance, two different timing measurements were

used, as follows:

1. Unix time command on copy, ingestion and execution: A simple script was created

to copy the data from the 5th instance, ingest it into HDFS, and then perform the

map reduce job. This script’s execution was timed using the unix time command.

This measurement indicates the real-world time that it took to fetch the data set

from nearby storage, ingest it into HDFS and then perform the map-reduce job.
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2. Hadoop web UI reported task time: In addition to the full time for copy, ingestion

and execution, the time taken by the MapReduce job itself (as reported by the

Hadoop web UI) is also measured. This measurement indicates the time taken

for the actual analysis.

The test was repeated 20 times and an average taken. The data is given in the table

below.

Attempt Copy, Ingestion and Execution Time MapReduce Task Time

1 262.60 160

2 256.31 162

3 251.39 161

4 253.82 159

5 249.55 159

6 260.14 162

7 261.83 161

8 252.06 162

9 256.93 162

10 259.32 162

11 257.61 161

12 254.49 160

13 253.50 159

14 250.18 161

15 253.41 163

16 255.82 164

17 253.03 160

18 257.26 164

19 265.22 164

20 254.61 161

AVERAGE 255.95 161.35
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6.1.2 Local IPFS

In order to compare the performance of the IPFS based solution and HDFS on a local

cluster, the same experiment was conducted as above, using the same data set, on the

same EC2 cluster. The difference being that rather than using scp to transfer the data

set to the NameNode and then ingesting it into HDFS, the 5th instance would host

the data set over IPFS. The Hadoop job would instead access this data set over IPFS

directly, using the solution developed as part of this work. The aim of this setup is to

simulate a similar scenario to the above experiment, where the party conducting the

analysis owns the data set, but has it hosted in IPFS (potentially to allow them to

share this data with other parties).

The system structure for this experiment is further illustrated with the following dia-

gram:
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Similar to the above experiment, the following timing measurements were used:

1. Unix time command on the Hadoop job: The unix time command was used to

time the execution of the Hadoop job in real world terms. This time includes all

aspects of the job including setup and the initial accessing of metadata on the

data set, via IPFS, as well as the MapReduce task itself.

2. Hadoop web UI reported task time: In addition to the time for complete execution

of the job, the time taken by the MapReduce task itself (as reported by the

Hadoop web UI) is also measured. This measurement indicates the time taken

for the actual analysis.

The test was again repeated 20 times and an average taken. The data is given in the

table below.

36



Scott Ross Brisbane Decentralising Big Data Processing

Attempt Total Time MapReduce Task Time

1 1289.50 559

2 1097.22 404

3 1236.77 522

4 1245.91 541

5 1247.13 536

6 1425.63 712

7 1198.11 498

8 1147.35 444

9 1149.04 431

10 1337.72 634

11 1259.87 562

12 1318.65 627

13 1312.35 596

14 1216.71 506

15 1288.49 579

16 1326.26 643

17 1462.82 762

18 1148.27 453

19 1392.93 712

20 1212.10 490

AVERAGE 1256.64 560.55
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6.1.3 Local Cluster Comparison

As the above graph shows, in a local cluster scenario, HDFS is significantly more

performant than IPFS. This is an expected result due to the way in which both file

systems operate. HDFS is a purpose-built file system designed specifically for local

Hadoop clusters operating in a single data center. IPFS, in contrast, is a much more

generalised file system designed for decentralised applications where performance is not

a key concern.
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Further to this, HDFS and Hadoop, in combination, are able to take advantage of data

locality information and schedule MapReduce computations to take place as close to

the data as possible. IPFS provides no such information and in our case the data is on

a seperate host meaning all the Hadoop nodes are streaming the entirety of their split

of the data set over the network.

In addition, before Hadoop is able to determine how to split the input data, the NameN-

ode must obtain file metadata for the data set to inform its decision. This metadata

retrieval is trivial in the case of HDFS, as the metadata is all contained on the Na-

meNode already. However, in the case of IPFS, it must retrieve metadata over the

IPFS DHT. In our case, the node with the information is not located very far away

(it is within the same AWS region), but this data transfer must occur for every file

in the data set (in this case over 3000 files) which becomes a significant burden. One

potential solution for this would be for IPFS to support getting file metadata for an

entire directory more easily, such that it could occur in one API call.

6.1.4 Cross-Region HDFS

In order to better simulate the types of scenarios that this thesis is targeted towards,

the above experiments were also conducted on a geographically distributed cluster to

simulate decentralised analytics at the scale of the web. The cluster consisted of 1

Namenode and 3 Datanode’s, all of which were c4.large Amazon EC2 instances. The

Namenode was hosted out of the Oregon region, with one Datanode in each of the

North Virginia, Ireland and Seoul regions. For sake of performing a fair comparison,

the same multiple file word count program was used and the experiment conducted in

the same way as the local HDFS experiment above. The data set was again hosted

on a seperate 5th instance and copied over to the Namenode as part of the ingestion

process. This 5th instance was located in the North California region to again simulate

decentralisation and distribution of the data set.

The system structure for this experiment is further illustrated with the following dia-

gram:
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Whilst identical to those used in the local HDFS test above, the timing measurements

were as follows:

1. Unix time command on copy, ingestion and execution: A simple script was created

to copy the data from the 5th instance, ingest it into HDFS, and then perform the

map reduce job. This script’s execution was timed using the unix time command.

This measurement indicates the real-world time that it took to fetch the data set

from nearby storage, ingest it into HDFS and then perform the map-reduce job.
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2. Hadoop web UI reported task time: In addition to the full time for copy, ingestion

and execution, the time taken by the MapReduce job itself (as reported by the

Hadoop web UI) is also measured. This measurement indicates the time taken

for the actual analysis.

This test took significant time to complete and so was only repeated 5 times (largely

due to AWS billing concerns with data transfer between regions). The raw data and

an average is given in the table below.

Attempt Copy, Ingestion and Execution Time MapReduce Task Time

1 8075.57 327

2 7928.32 250

3 8176.31 311

4 8000.76 257

5 8134.79 305

AVERAGE 8063.15 290

6.1.5 Cross-Region IPFS

With a similar motive to above, in wanting to test my solution in a scenario that is

closer to those the work was intended for, a cross-region IPFS test was conducted using

the same data set, application and cluster as described above. The difference this time

however being that the 5th instance hosting the data set was replaced by 3 instances

hosting the data set over IPFS. These 3 instances are located in three different regions

(that are also different to those hosting the Hadoop cluster) to simulate the data set

being distributed across multiple hosts around the world. These instances were placed

in the North California, Frankfurt and Tokyo regions. As above (in the local IPFS

test), the Hadoop job will access the data set over IPFS directly, using the solution

developed as part of this work. Which of the 3 IPFS hosts the various Hadoop nodes

are retrieving their data fromis not known. This is handled by IPFS and is transparent

to users of the system.
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The system structure for this experiment is further illustrated with the following dia-

gram:

Whilst identical to those used in the local IPFS test above, the timing measurements

used were as follows:

1. Unix time command on the Hadoop job: The unix time command was used to

time the execution of the Hadoop job in real world terms. This time includes all

aspects of the job including setup and the initial accessing of metadata on the

data set, via IPFS, as well as the MapReduce task itself.
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2. Hadoop web UI reported task time: In addition to the time for complete execution

of the job, the time taken by the MapReduce job itself (as reported by the Hadoop

web UI) was also recorded. This measurement indicates the time taken for the

actual analysis.

This test also took a reasonable time to complete and was only repeated 10 times

(largely due to AWS billing concerns with moving excessive data between regions).

The raw data and an average is given in the table below.

Attempt Total Time MapReduce Task Time

1 1604.09 766

2 1600.97 705

3 1538.48 673

4 1479.02 628

5 1594.68 704

6 1639.61 760

7 1595.50 684

8 1543.64 676

9 1555.73 654

10 1620.41 745

AVERAGE 1577.21 699.50
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6.1.6 Cross-Region Cluster Comparison

As the above graph shows, comparing HDFS and IPFS on a cross-region cluster is quite

a different story to the local cluster comparison. When looking at the MapReduce time

alone, HDFS is still a clear winner. This was an expected result due to the way in

which HDFS is purpose built for Hadoop and supports data locality. By supporting

data locality, Hadoop is able to determine on which nodes in the cluster a particularly

block is kept and schedule computation on that block to occur where it is hosted. This

significantly reduces network traffic, and in doing so significantly reduces the effects of

greater latency (brought about in this case due to the geographical separation of the

Hadoop nodes) on the job time. In contrast, IPFS does not support data locality, and
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so our system built on IPFS does not benefit from reduced network traffic.

When the overall time (including ingestion) is considered, however, a very different

picture is obtained. HDFS spends a very significant amount of time ingesting the data

set. The exact reason for this is not clear, but it is likely related to the replication

HDFS performs. IPFS is much quicker overall, as it does not need to perform any

ingestion.

6.2 Functionality

In addition to performance, the interface was tested to ensure it solves the problems

outlined in this work, as well as to ensure it allows users of Hadoop to perform MapRe-

duce jobs directly on data stored in IPFS, with only minimal modification to the jobs.

6.2.1 Remove the Need for Inefficient Data Ingestion Processes

As the performance results above show, performing MapReduce jobs on data sets hosted

in IPFS in a geographically distributed cluster is significantly more efficient than in-

gesting the same data set into HDFS before the analysis is performed. Whilst the

MapReduce job itself is slower, if the data set in question is not already hosted on

HDFS, the overall time is significantly reduced.

However, if the cluster is not geographically distributed, HDFS remains a more perfor-

mant alternative. The time needed to ingest data into HDFS is less than the overhead

of running Hadoop on top of IPFS, in a local cluster scenario.

6.2.2 No Complicated Mechanism Needed To Move Computation

With data stored on IPFS, organisations are able to easily share data sets and perform

MapReduce computations on their shared data sets, without a need for a mechanism to

move computation between them. The Hadoop clusters of the different organisations
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can be completely seperate, even in different parts of the world, and operate on exactly

the same data set. This requirement was tested in the cross-region IPFS tests above,

as the data set used in the test was hosted in a completely seperate region to the nodes

in the Hadoop cluster.

6.2.3 Decentralised Data Set Hosting

Storing and accessing data sets directly on IPFS eliminates the typically decentralised

nature of shared data sets, provided there is adequate interest in the content. As

people access a data set, they can choose to pin it (keep a local copy), which can then

be accessed by other peers in the network. As more people pin the content, it becomes

more and more decentralised.

Whilst a system like this may raise security and quality concerns in that various parties

’re-hosting’ the data could modify their version and serve incorrect data, this isn’t

possible in IPFS as all files are content hash addressed. Further, this content addressing

means that if a data set is updated or modified it will have a new address. This further

decentralises data set hosting and ensures that as long as someone is interested in a

version of some data set, it will still be accessible in IPFS.

This aspect of the functionality has not been explicitly tested, but is implicit in the

way IPFS itself is designed.

6.2.4 Strong Versioning Guarantees

Data stored on IPFS is accessed using its content hash. For this reason, as long as the

original hash given to a party does indeed refer to the data set they are interested in,

they can be sure that they are accessing the data they expect. Any change in a file

means a new hash must be created, and any change in a string path component for a

file means the base hash must also be regenerated. This ensures that when a Hadoop

user specifies an IPFS file as input, they know exactly what data they are getting.
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This aspect of the functionality has also not been explicitly tested, but is implicit in

the way IPFS itself is designed.

6.3 Adaptability

Whilst Hadoop still plays an important role in the big data processing space, Apache

Spark proves to be a more generalised framework allowing a greater range of analytics

tasks be performed efficiently on large data sets. As such, it would be of great value

to be able to repurpose this work for use with Apache Spark. This evaluation criteria

is less experimental in nature, and was conducted through researching what would be

involved in using the created Filesystem interface with Spark.

On investigation, Spark has explicit support for ’any storage source supported by

Hadoop, including your local file system, HDFS, Cassandra, HBase, Amazon S3, etc’ [7].

This claim is quite broad, and doesn’t provide any indication of how this support

works. On further investigation, it was determined that Spark has support for the

OpenStack Swift Filesystem [5]. This support is better documented and relies on the

org.apache.hadoop.fs.swift.snative.SwiftNativeFileSystem class being specified through

a core-site.xml file. This class extends the same FileSystem interface as that of the

main FileSystem class developed in this work. As such, Spark would be able to run on

the IPFS FileSystem in much the same way.

6.4 Limitations of the Evaluation Design

Whilst the above experiments and evaluation criteria are a representative means of

evaluating the merits of this work, it is important to note a few limitations.
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6.4.1 Single Job Type

In the above experiments, only one type of job was used (a multiple file word count).

This job alone is not sufficient to cover the various types of jobs that run on Hadoop,

but is adequate in proving that the system is functional and achieves its goals. In order

to improve the evaluation of the work, a number of different types of jobs could be run,

including iterative machine learning jobs.

6.4.2 Small-Scale Cluster

The size of the cluster used in the above experiments was also quite small, largely due

to AWS cost concerns. A more realistic cluster would consist of many more nodes. The

cluster used is still adequate in proving the solution works, however, and that it works

in a distributed environment.

48



Scott Ross Brisbane Decentralising Big Data Processing

Chapter 7

Future Improvements

In this section, some of the future efforts that could be undertaken to improve this work

in various ways are outlined. Some of these are improvements on my work directly, and

others are proposed improvements to IPFS.

7.1 Improve Production Readiness

As with most research work, this solution was developed as a proof of concept and

is, as such, not production-ready. The code quality of the work could be improved

and performance tweaks made to ready the solution for real-world use in a production

setting.

7.2 Improve Testing Approach

In developing this work, I used an end-to-end testing approach. This approach can be

argued to have its flaws, and will often be unable to test edge-cases and all logic paths.

To combat this and improve the testing of the work, unit tests could be added to test

out all different logic paths and potential edge cases. This would also help in making
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the work production ready.

7.3 Retrieve File Metadata for an Entire Directory

During the initial phase of a job, Hadoop will perform a listStatus operation on its

input Path to determine how to split the data. In the current implementation, this

operation must individually retrieve object metadata over the IPFS network for each

file in the input Path. This is quite a considerable performance loss.

A better approach would be to retrieve this metadata in one go for the entire directory

(object). This is, however, not currently supported by IPFS, but would be a useful

addition to the system.

7.4 Improve IPNS Caching Mechanism

As outlined in section 5.2.3, the caching mechanism for IPNS records could be improved.

Most notably, when publishing a new hash to a peer’s own record, the cached version of

their record is not updated or flushed. This means that running ipfs name publish hash

and ipfs name resolve on the same peer can mean that the resolve command returns a

hash different to that which was just published.

A simple solution to this issue would be to either invalidate the cache for one’s own

record when ipfs name publish is executed. Or, more optimally, for ipfs name publish

to update one’s own cache with the new value.
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Chapter 8

Conclusion

This work set out to provide a means for performing big data analysis, at web scale,

over decentralised storage. In doing so, it aimed to solve four key problems in the

current state of affairs in sharing of data sets. The approach taken was to implement

an interface between Hadoop and the InterPlanetary File System. On evaluation of the

finished work, these aims of removing the need for inefficient data ingestion, eliminating

the need for a complicated mechanism to move computation, decentralising data set

hosting and providing data versioning guarantees were all met. Further to this, on

analysing the performance of the solution, there are scenarios in which such a system

can be significantly more efficient than a HDFS based system.

As society creates an ever increasing volume of data it is hoped that decentralised

analytics techniques, such as that proposed by this work, will enable new ways for

meaning to be derived and knowledge gained from data sets that may not have been

suitable for more traditional analytics platforms. It is also hoped that this system,

and potential future systems like it, will enable greater sharing of data, and therefore

knowledge transfer, between organisations.
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