
Geology 1:100,000

Geology

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Surface Geology 1:100,000

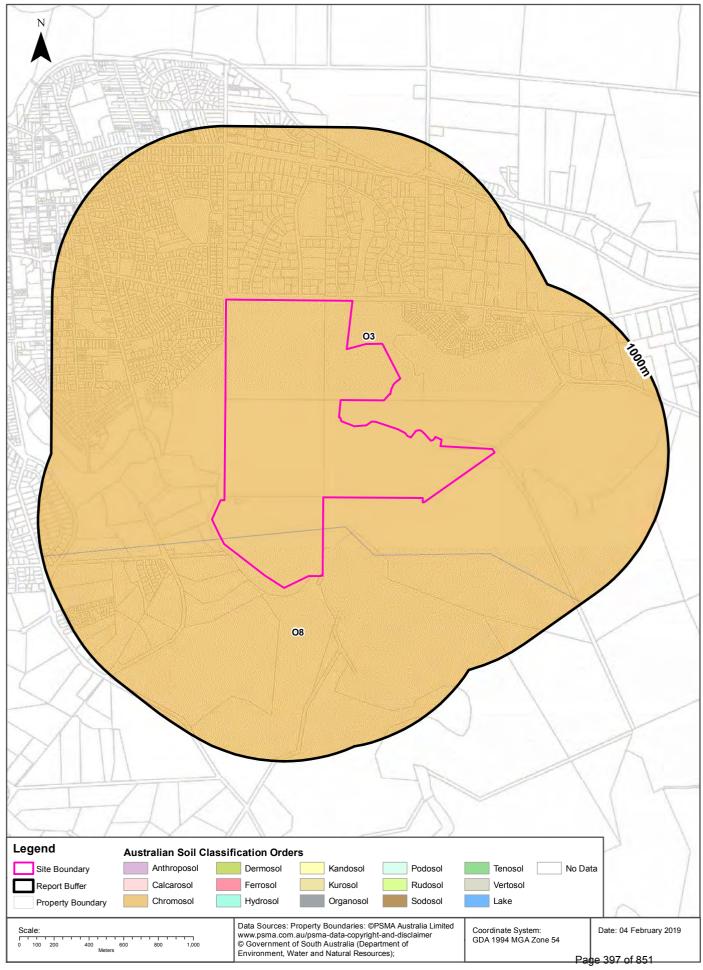
Surface Geology Units within the dataset buffer:

Map Unit Code	Name	Description	Parent Name	Province	Age	Min Age	Max Age	Distance
Ndw	Woolshed Flat Shale	Shale, black; dolomitic siltstone; dolomite; grey laminated siltstone.	Bungarider Subgroup	ADELAIDE GEOSYNCLINE	NEOPROTERO ZOIC	Torrensian	Torrensian	0m
qz	Unnamed GIS Unit - see description	S Unit - undifferentiated.				0m		
Т	Unnamed GIS Unit - see description	Undifferentiated Tertiary rocks.		UNKNOWN	TERTIARY	Tertiary	Tertiary	0m
T/Tomw	Unnamed GIS Unit - see description	Undifferentiated Tertiary rocks.		UNKNOWN	TERTIARY	Tertiary	Tertiary	202m
Ndt	Stonyfell Quartzite	Quartzite, feldspathic, with shale interbeds; silty sandstone in part schistose and calcareous.	Bungarider Subgroup	ADELAIDE GEOSYNCLINE	NEOPROTERO ZOIC	Torrensian	Torrensian	884m
Ndt1	Unnamed GIS Unit - see description	Quartzite or sandstone interbeds. Based on dotted unit in Prot-du on Adelaide, Onkaparinga, Noarlunga and Echunga 1:50 000 maps.	Stonyfell Quartzite	ADELAIDE GEOSYNCLINE	NEOPROTERO ZOIC	Torrensian	Torrensian	965m

Geology Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Linear Structures 1:100,000

Linear geological structures within the dataset buffer:


Map Code	Description	Distance
N/A	No features in buffer	

Geology Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

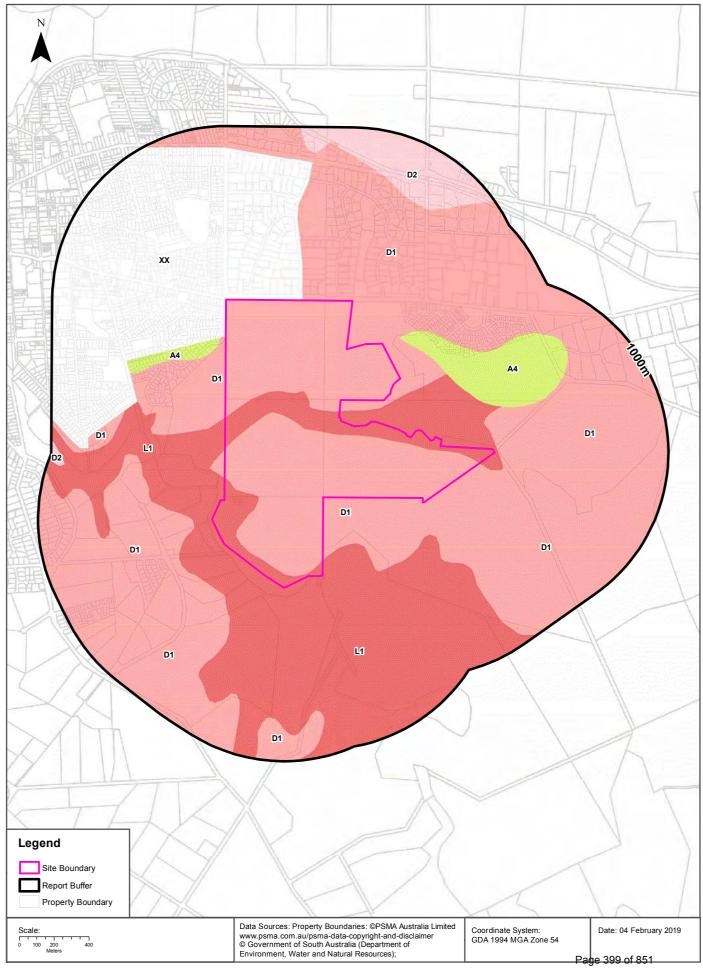
Atlas of Australian Soils

Soils

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance
О3	Chromosol	Hills and valleys: alternating, subparallel hilly ridges and valleys with a general NS. trend. Shallow forms of hard alkaline red soils (Dr2.23) with (Um5.41); (Um5.11) and shallow varieties of (Um6) especially (Um6.23) occur on the hilly ridges; while on the hill slopes and in the valleys (Dr2.23) with (Dr2.33), which increases in area towards the northern portion of the unit, occur with small areas of cracking clay soils (Ug5.15, Ug5 16, Ug5 2, and Ug5.3); friable earths (Gn3.13); grey-brown highly calcareous loamy earths (Gc1) in the northern portion of the unit; and also minor areas of soils belonging to groups (Dr3.22), (Dy3.4), and (Dy5.4); while on present stream terraces occur (Dr2.23) and deep varieties of (Um6) with various alluvial soils (unclassified) on the flood-plains.	Om
O8	Chromosol	Rounded hill slopes with some scarps: shallow forms of hard alkaline red soils (Dr2.23) in association with friable loamy soils (Um6.42, Um6.43, and Um6.21); dark structured clays (Uf6.11); smaller areas of shallow red subplastic clay soils (Uf5.31); red friable earths (Gn3.12); cracking clays (Ug5.15, Ug5.16, and Ug5.2) and sandy alkaline yellow mottled soils (Dy5.4 and Dy5.8).	0m

Atlas of Australian Soils Data Source: CSIRO

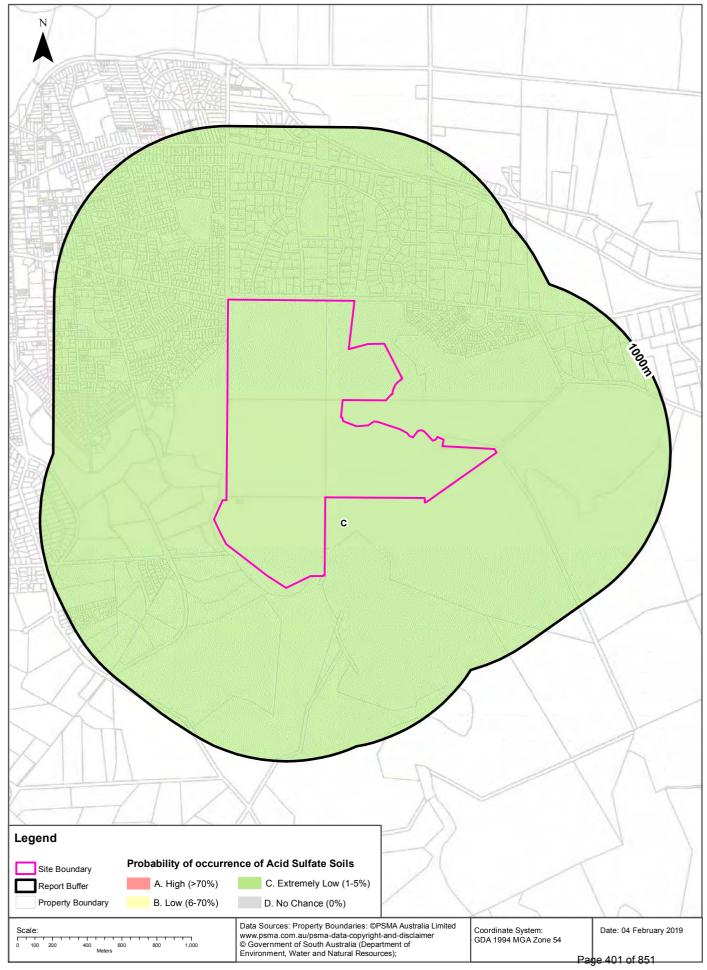
Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Types

Soils

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Soil Types


Soil types within the dataset buffer:

Map category code	Soil type description	Distance
D1	Loam over clay on rock	0m
XX	Not applicable - No assessment/analysis undertaken	0m
L1	Shallow soil on rock	0m
A4	Calcareous loam	32m
D2	Loam over red clay	670m

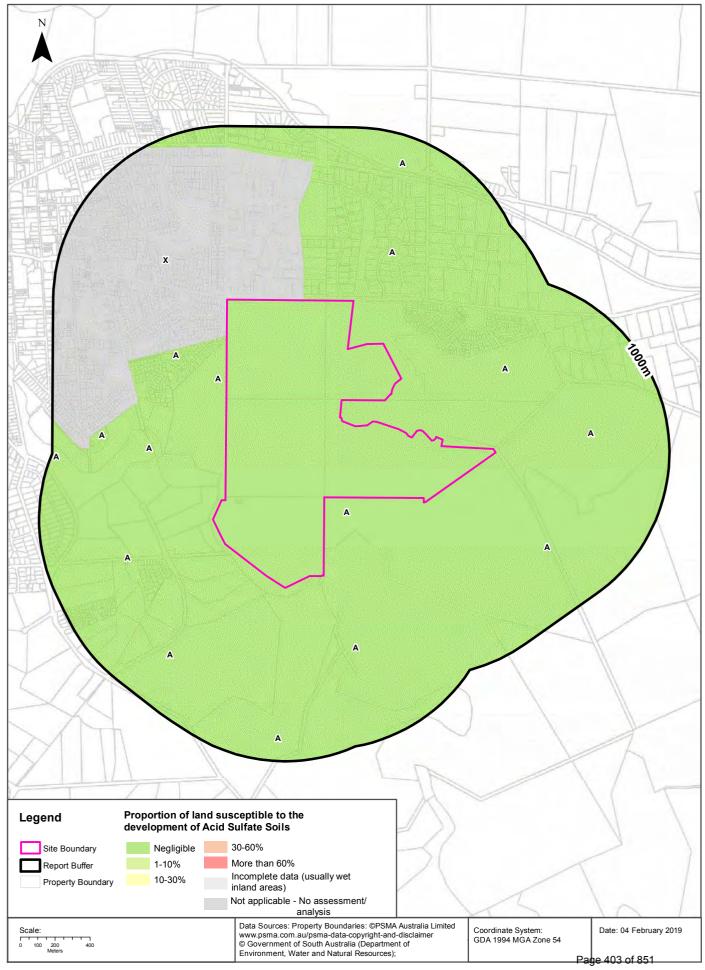
Soil Types Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Atlas of Australian Acid Sulfate Soils


Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m

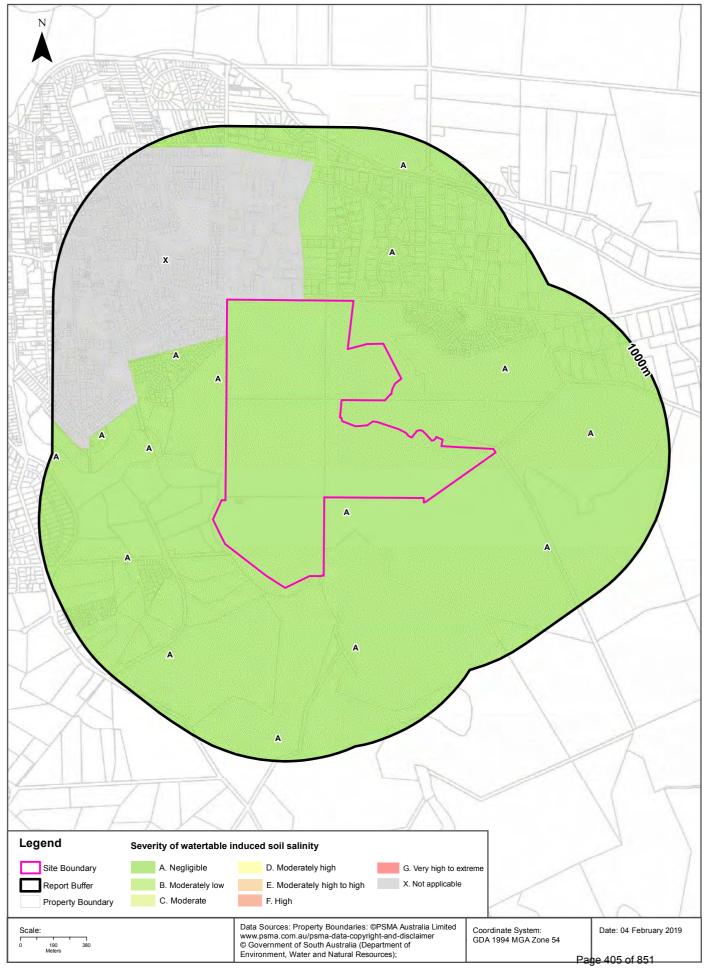
Atlas of Australian Acid Sulfate Soils Data Source: CSIRO Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Acid Sulfate Soils Potential

Acid Sulfate Soils

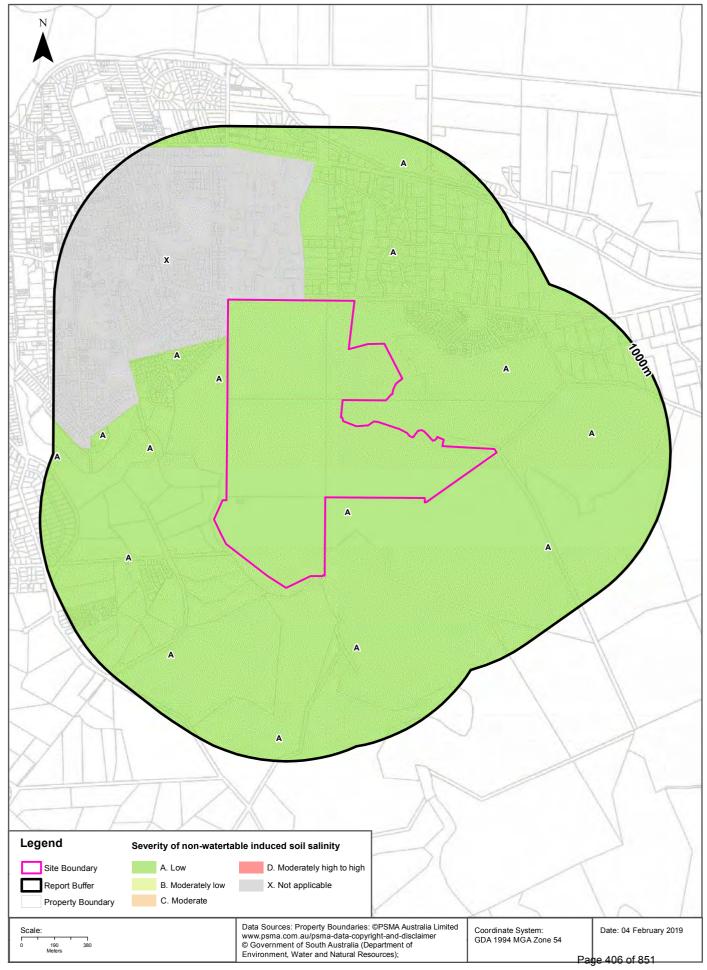
Stages 3 and 4, Springwood Development, Gawler East, SA 5118

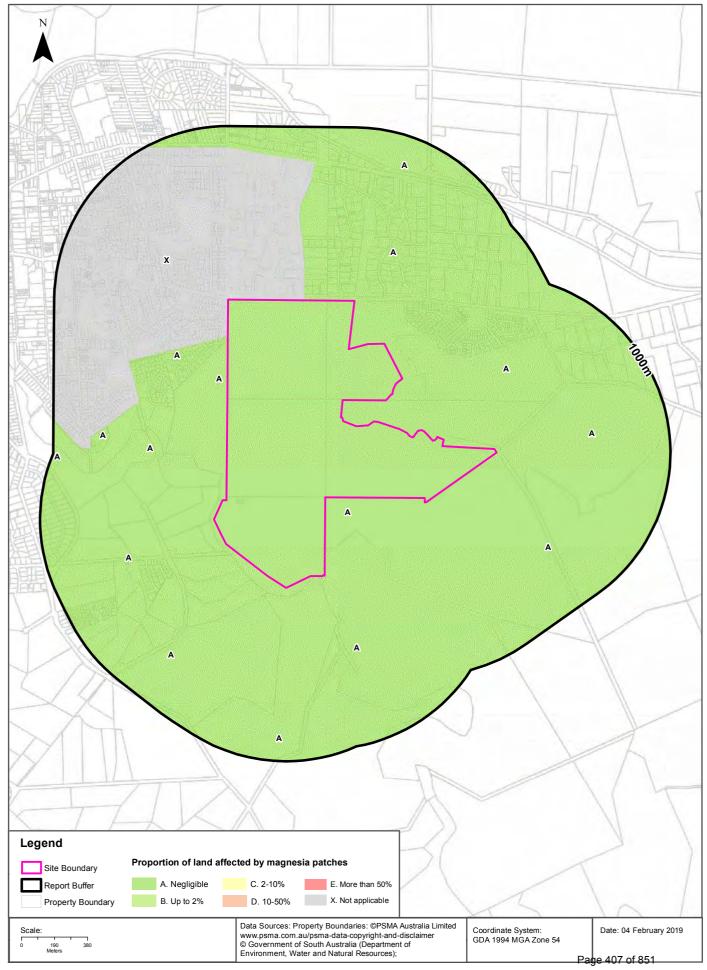
Acid Sulfate Soil Potential


Acid sulfate soil potential within the dataset buffer:

Map category code	Proportion of land susceptible to the development of acid sulfate soils	Distance
Α	Negligible	0m
X	Not applicable - No assessment/analysis undertaken	0m

Acid Sulfate Soils Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en


Soil Salinity - Watertable Induced


Soil Salinity - Non-watertable

Soil Salinity - Non-watertable (Magnesia Patches)

Soil Salinity

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Soil Salinity - Watertable Induced

Watertable induced soil salinity within the dataset buffer:

Map category code	Severity description	Distance
A	Negligible	0m
X	Not applicable - No assessment/analysis undertaken	0m

Salinity Watertable Induced Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

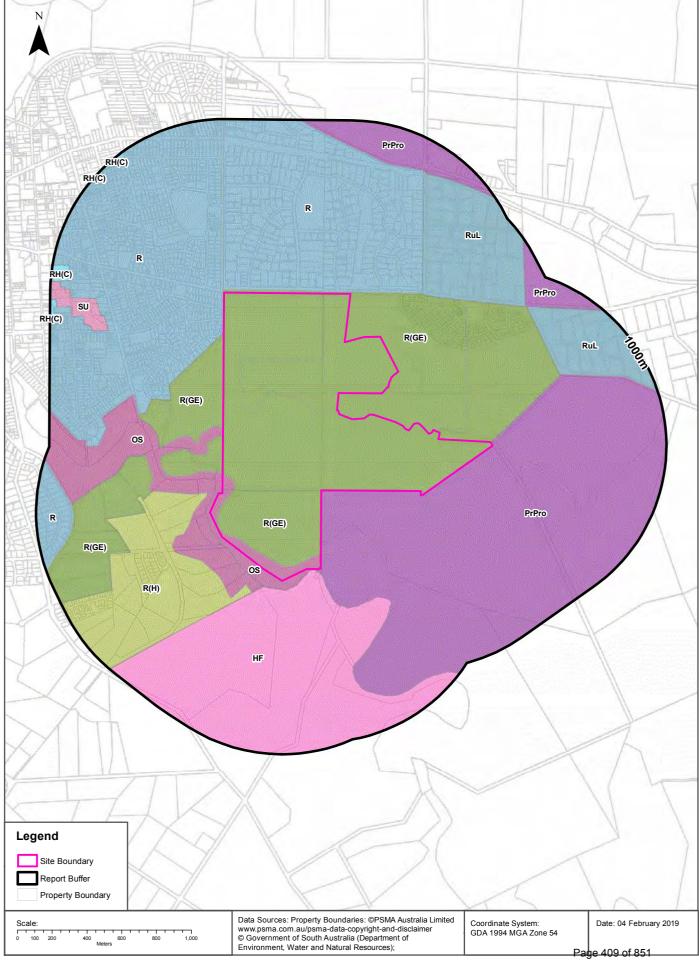
Soil Salinity - Non-Watertable

Non-watertable soil salinity within the dataset buffer:

Map category code	Severity description	Surface ECe (dS/m)	Subsoil ECe (dS/m)	Distance
Α	Low	<2	<4	0m
X	Not applicable - No assessment/analysis undertaken			0m

Salinity Non-Watertable Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Soil Salinity - Non-Watertable (Magnesia Patches)


Magnesia patches within the dataset buffer:

Map category code	Proportion of land affected by magnesia patches	Distance
A	Negligible	0m
Х	Not applicable - No assessment/analysis undertaken	0m

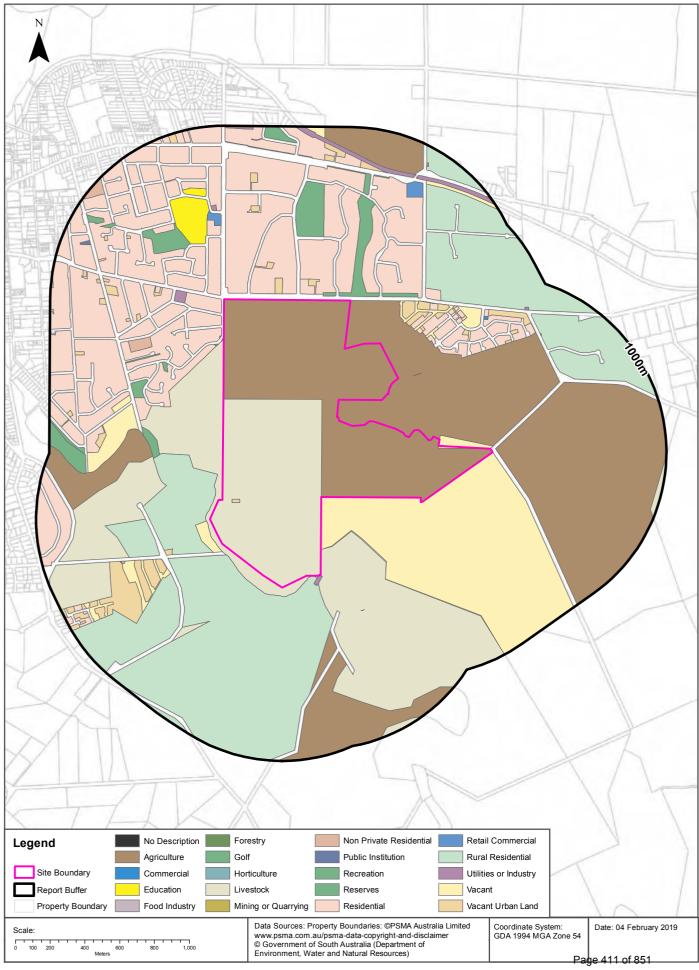
Salinity Non-Watertable (Magnesia Patches) Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Land Development ZonesStages 3 and 4, Springwood Development, Gawler East, SA 5118

Planning

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Land Development Zones


Land development zoning within the dataset buffer:

Zone Code	Development Plan Code	Zone Description	Devlopment Category	Distance	Direction
R(GE)	GA	Residential (Gawler East)	RESIDENTIAL	0m	Onsite
R(GE)	BARO	Residential (Gawler East)	RESIDENTIAL	0m	Onsite
os	BARO	Open Space	OPEN SPACE	0m	Onsite
os	GA	Open Space	OPEN SPACE	0m	West
PrPro	BARO	Primary Production	PRIMARY PRODUCTION - MINING	0m	East
R	GA	Residential	RESIDENTIAL	0m	North West
HF	PLAY	Hills Face	ENVIRONMENTAL CONSTRAINT	3m	South
R	GA	Residential	RESIDENTIAL	13m	North
R(H)	GA	Residential (Hills)	RESIDENTIAL	55m	South West
RuL	BARO	Rural Living	RURAL LIVING	343m	North East
R(GE)	GA	Residential (Gawler East)	RESIDENTIAL	351m	South West
RuL	BARO	Rural Living	RURAL LIVING	557m	East
SU	GA	Special Use	MISCELLANEOUS	665m	North West
R	GA	Residential	RESIDENTIAL	782m	West
RH(C)	GA	Residential Historic (Conservation)	HISTORIC RESIDENTIAL	890m	North West

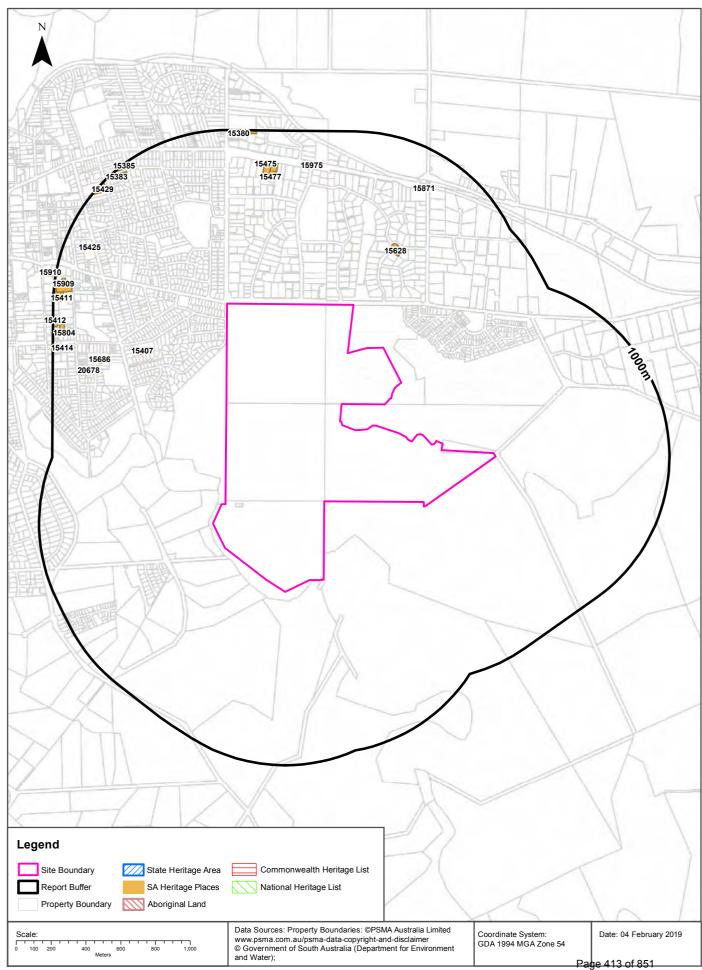
Land Development Zones Data Source: Dept of Planning, Transport and Infrastructure - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Land Use Generalised 2017

Land Use

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Land Use Generalised 2017


Land use classes within the dataset buffer:

Description	Distance	Direction
Agriculture	0m	Onsite
Livestock	0m	Onsite
Vacant	0m	East
Vacant Urban Land	0m	South West
Vacant	0m	South East
Utilities or Industry	0m	South
Reserves	0m	North West
Rural Residential	3m	South
Residential	14m	North West
Education	338m	North West
Recreation	368m	North
Non Private Residential	412m	North West
Retail Commercial	424m	North West
Commercial	592m	North East
Public Institution	829m	North West

Land Use Generalised Data Source: Dept of Planning, Transport and Infrastructure - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Heritage

Heritage

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Areas

State Heritage Areas within the dataset buffer:

Heritage Id	Name	Distance	Direction
N/A	No records in buffer		

Heritage Areas Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

SA Heritage Places

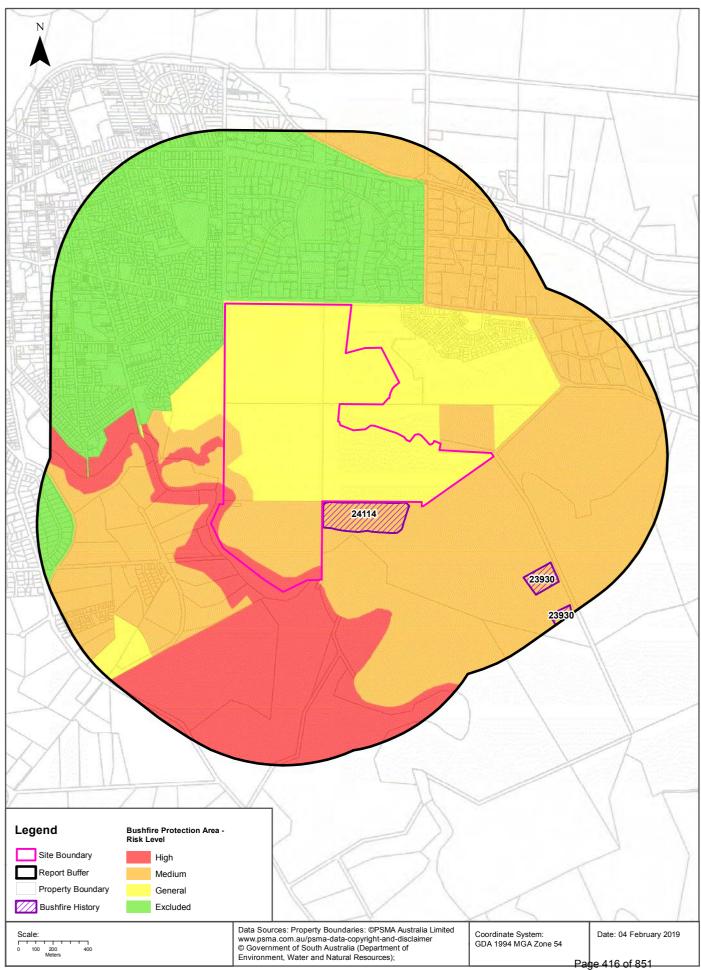
SA Heritage Places within the dataset buffer:

Heritage No	Location	Heritage Class	Australian Class	Details	Auth Date	Distance	Direction
15628	2 Lally Drive GAWLER EAST	Local	House	Dwelling, former chaff mill & barn	3/8/2001	372m	North East
15407	1 Deland Avenue GAWLER	State	House	Trevu House Nursing Home (former Dwelling of James Martin MLC)		467m	North West
15686	8 McKinlay Avenue GAWLER EAST	Local	House	Oaklands	3/8/2001	720m	West
20678	1B Dawes Avenue GAWLER EAST	Local	House	Dwelling	3/8/2001	720m	West
15477	7 Eucalypt Drive GAWLER EAST	Local	House	Former Korff farmhouse	3/8/2001	728m	North

Heritage No	Location	Heritage Class	Australian Class	Details	Auth Date	Distance	Direction
15475	6 Eucalypt Drive GAWLER EAST	Local	House	Former Korff barn	3/8/2001	730m	North
15476	7 Eucalypt Drive GAWLER EAST	Local	House	Former Korff farmhouse & attached stable	3/8/2001	762m	North
15871	Barossa Valley Highway GAWLER EAST	State	Hotel - Motel - Inn	Tea Rooms (former Wheatsheaf Hotel)		779m	North East
15975	Lyndoch/Hemafo rd GAWLER EAST	Local	Historic Sites (unclassified)	Stone culvert under Lyndoch Road	3/8/2001	793m	North
15425	23 East Terrace GAWLER EAST	Local	Historic Sites (unclassified)	Dance Academy, former barn	3/8/2001	829m	North West
15909	3 Turner Street GAWLER EAST	Contribut ory	House	Dwelling, barn & western perimeter walls	3/8/2001	896m	North West
15411	10 Duffield Street GAWLER EAST	Contribut ory	House	Coach House	3/8/2001	916m	North West
15804	8 Rudall Street GAWLER EAST	Contribut ory	House	Dwelling	3/8/2001	934m	North West
15910	1 Turner Street GAWLER EAST	State	House	Dwelling		939m	North West
15383	11 Crown Street GAWLER EAST	Contribut ory	House	Dwelling	3/8/2001	940m	North West
15429	6-8 East Terrace GAWLER EAST	Local	House	Former Hutchinson Hospital	3/8/2001	952m	North West
15386	7 Crown Street GAWLER EAST	Contribut ory	House	Dwelling	3/8/2001	972m	North West
15413	20 Duffield Street GAWLER EAST	Contribut	House	Dwelling	3/8/2001	976m	North West
15412	18 Duffield Street GAWLER EAST	Contribut ory	House	Dwelling	3/8/2001	978m	North West
15380	LOT 72 Cheek Avenue North GAWLER EAST	Local	Cemetery	St George's Anglican Cemetery	3/8/2001	981m	North
15409	Duffield Street GAWLER EAST	Contribut ory	Fence/Wall	Western stone wall	3/8/2001	985m	North West
15385	5 Crown Street GAWLER EAST	Contribut ory	House	Dwelling	3/8/2001	989m	North West
15414	22 Duffield Street GAWLER EAST	Contribut ory	House	Dwelling	3/8/2001	996m	West
15343	8 Bishop Street GAWLER EAST	Contribut ory	House	Dwelling	3/8/2001	998m	North West

Heritage Places Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Aboriginal Land


Aboriginal Land within the dataset buffer:

Map Id	Grant Date	Address	Locality	Description	Title	Distance	Direction
N/A	No records in buffer						

Aboriginal Land Data Source: Department of State Development, Resources and Energy - South Australia

Bushfire

Natural Hazards

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

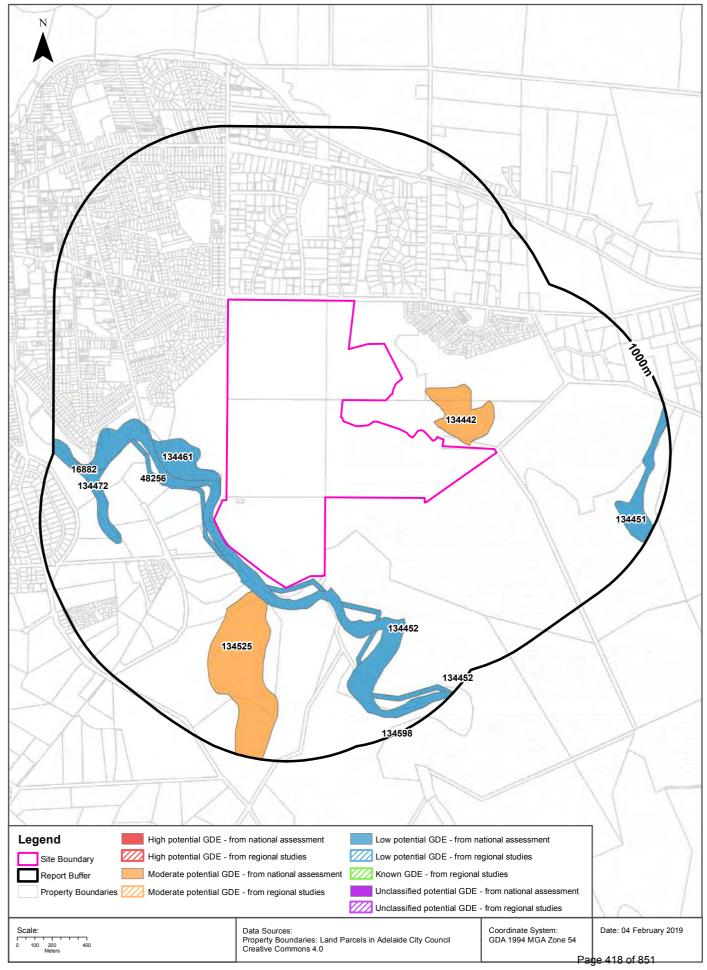
Bushfire Protection Areas

Bushfire Protection Areas within the dataset buffer:

Map Id	Bushfire Risk Code	Development Plan Code	Additional Development Criteria	Distance	Direction
2436	High	BARO		0m	Onsite
1825	High	GA		0m	Onsite
1826	Medium	GA		0m	Onsite
1827	General	GA		0m	Onsite
2027	Medium	BARO		0m	Onsite
1727	Medium	GA		0m	Onsite
2150	Excluded	GA		0m	West

Bushfire Protection Areas Data Source: Dept of Planning, Transport and Infrastructure - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Bushfires and Prescribed Burns History


Bushfires and prescribed burns within the dataset buffer:

Ma	ap Id	Incident No.	Incident Name	Incident Type	Date of Fire	Area of Fire	Distance	Direction
	24114	209	Para Woodland A16	Prescribed Burn	3/16/2017 12:00:00 AM	7	4m	South East
:	23930	208	Para Woodlands A15	Prescribed Burn	3/27/2015 12:00:00 AM		668m	South East

Bushfires and Prescribed Burns History Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Groundwater Dependent Ecosystems Atlas

Ecological Constraints

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Groundwater Dependent Ecosystems Atlas

GDEs within the dataset buffer:

MapID	Туре	Name	GDE Potential	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
134452	Terrestrial		Low potential GDE - from national assessment	10	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	Vegetation		0m
48256	Aquatic		Low potential GDE - from national assessment	5	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	River		0m
134442	Terrestrial		Moderate potential GDE - from national assessment	7	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	Vegetation		13m
134461	Terrestrial		Low potential GDE - from national assessment	9	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	Vegetation		34m
134525	Terrestrial		Moderate potential GDE - from national assessment	5	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	Vegetation		123m
16882	Aquatic		Low potential GDE - from national assessment	10	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	River		453m

MapID	Туре	Name	GDE Potential	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
134472	Terrestrial		Low potential GDE - from national assessment	10	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	Vegetation		543m
134451	Terrestrial		Low potential GDE - from national assessment	6	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	Vegetation		737m
134598	Terrestrial		Low potential GDE - from national assessment	4	Complex fold belt of prominent ranges in north, chiefly quartzite with vales on weaker rocks; stepped fault blocks and islands in south, mainly of weathered metamorphic rocks with ferruginous cappings.	Vegetation		989m

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

Stages 3 and 4, Springwood Development, Gawler East, SA 5118

Ramsar Wetlands

RamsarWetlands within the dataset buffer:

Wetland	Distance	Direction
No records in buffer		

Ramsar Wetlands Data Source: Dept of Environment, Water and Natural Resources - South Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - (i) content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any

- of its Third Party Content Supplier have any liability to it under or in connection with the Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Appendix D Aerial Photographs

Historical Aerial Photographs

1979

Springwood Stage 3 and 4 **Gawler East Preliminary Site Investigation**

Arcadian Property

LEGEND

Approximate Site Boundary

LBW co Det	LBW co Details							
Job No.	191076	191076						
Drawn	MF	Rev.	0					
Checked	MP	Date	05.04.2019					

Page 425 of 851

Historical Aerial Photographs

1989

Springwood Stage 3 and 4 Gawler East Preliminary Site Investigation

Fo

Arcadian Property

LEGEND

Approximate Site Boundary

DELIVERING ENVIRONMENTAL SOLUTIONS

Page 426 of 851

Historical Aerial Photographs 2005

Springwood Stage 3 and 4 Gawler East Preliminary Site Investigation

Fo

Arcadian Property

LEGEND

Approximate Site Boundary

DELIVERING ENVIRONMENTAL SOLUTIONS

Page 427 of 851

Historical Aerial Photographs 2010

Springwood Stage 3 and 4 Gawler East Preliminary Site Investigation

Fo

Arcadian Property

LEGEND

Approximate Site Boundary

DELIVERING ENVIRONMENTAL SOLUTIONS

LBW co Details						
Job No.	191076	191076				
Drawn	MF	Rev.	0			
Checked	MP	Date	05.04.2019			

Page 428 of 851

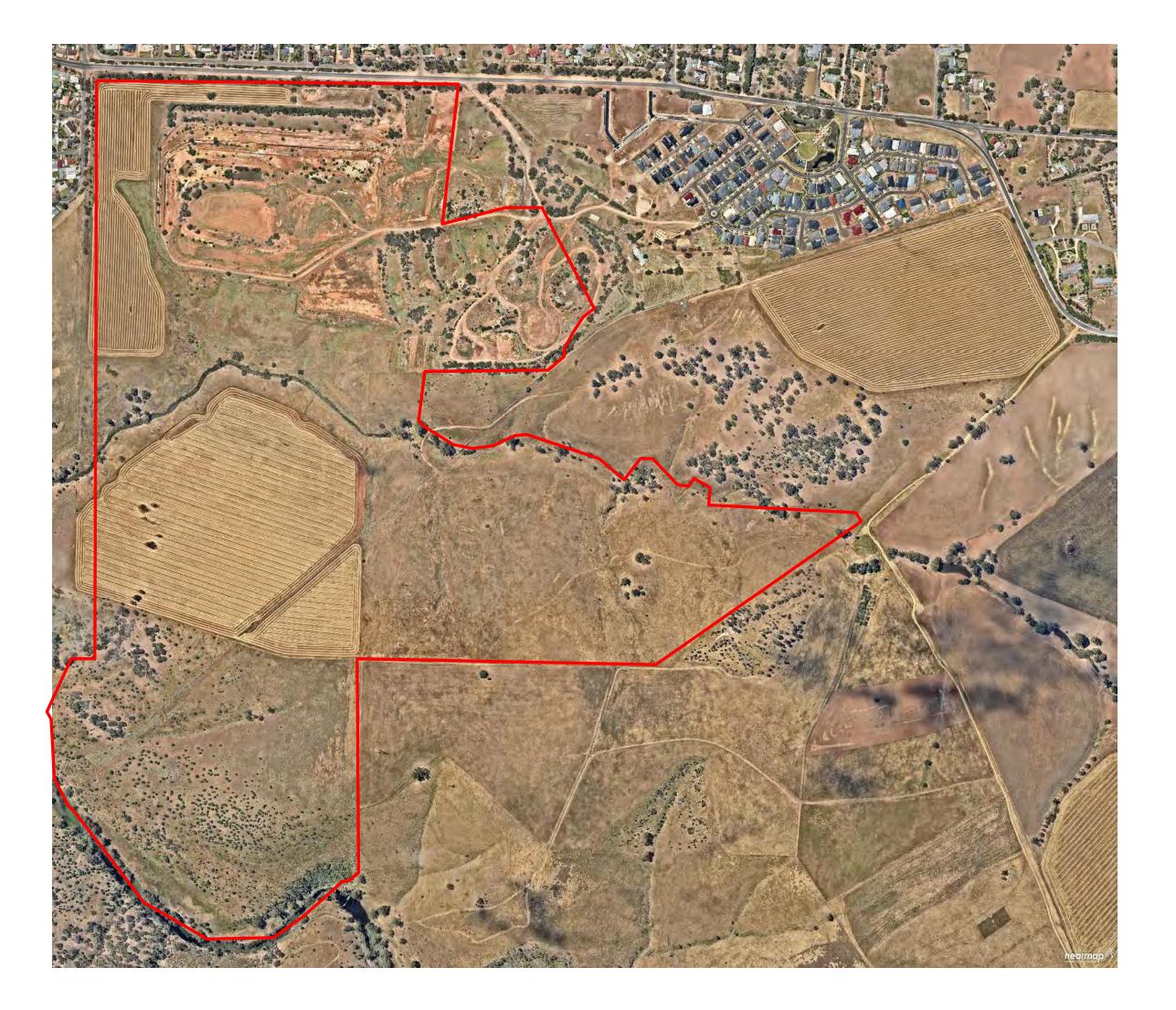
Historical Aerial Photographs 2014

Springwood Stage 3 and 4 Gawler East Preliminary Site Investigation

For

Arcadian Property

LEGEND



Approximate Site Boundary

DELIVERING ENVIRONMENTAL SOLUTIONS

Page 429 of 851

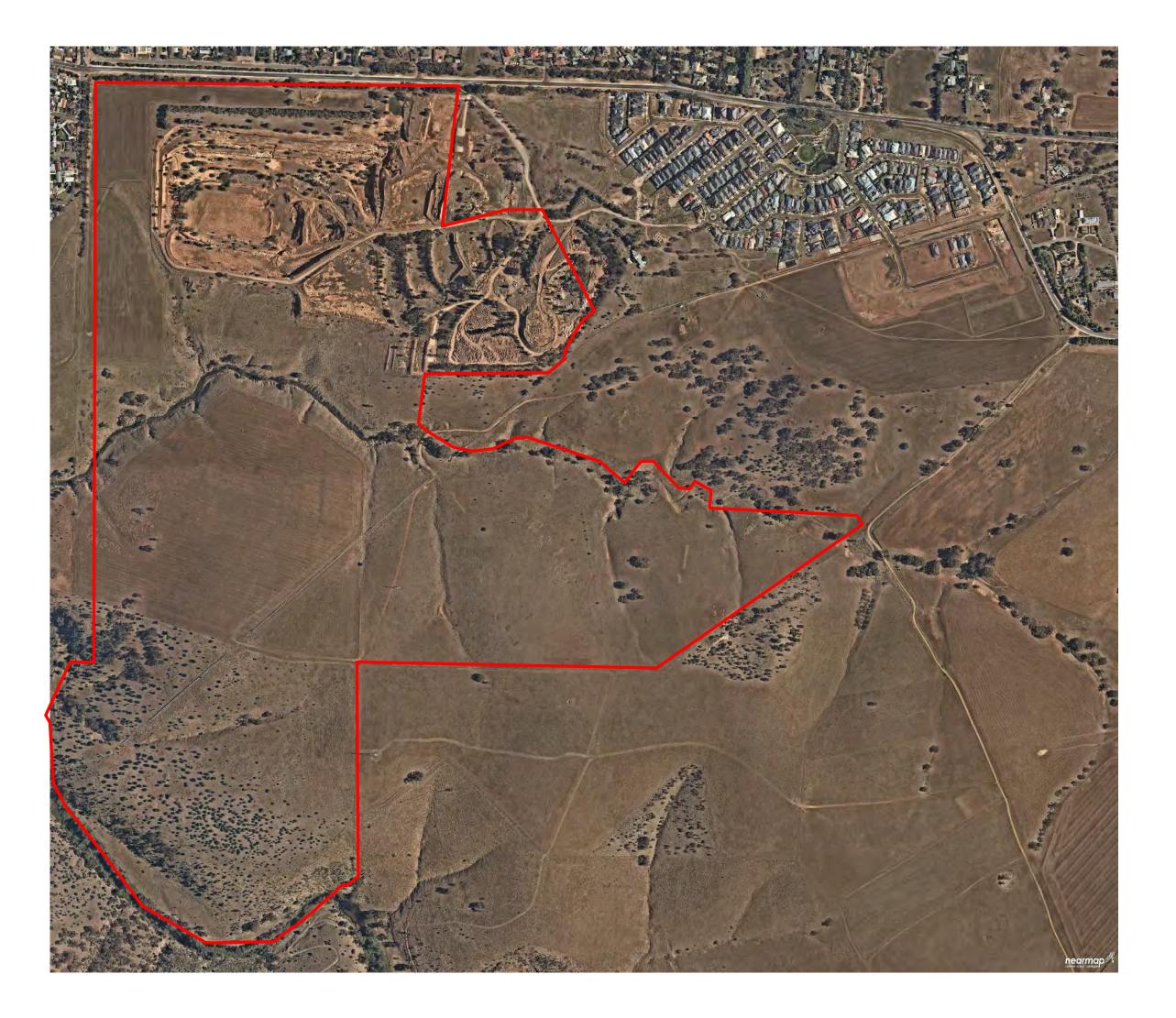
Historical Aerial Photographs 2016

Springwood Stage 3 and 4 Gawler East Preliminary Site Investigation

Fo

Arcadian Property

LEGEND



Approximate Site Boundary

DELIVERING ENVIRONMENTAL SOLUTIONS

Page 430 of 851

Appendix D

Historical Aerial Photographs 2018

Springwood Stage 3 and 4 Gawler East Preliminary Site Investigation

For

Arcadian Property

LEGEND

Approximate Site Boundary

DELIVERING ENVIRONMENTA SOLUTIONS

Page 431 of 851

Appendix E Sands and McDougall Search Results

Sands and McDougall Search

Project Number 191076

 Report Title
 Preliminary Site Investigation

 Site Address
 Springwood Stage 3 and 4

On-site

Nearby off-site activities of significance

<u>1973</u> <u>1963</u>

Pages 359 Pages 380

1

GAWLER

GAWLER

CALTON BD

Off Morray et

1 Oseler Tee & Mik Pty

11 Describe Tee & Mik Pty

12 Describe Tee & Mik Pty

12 Describe Tee & Mik Pty

13 Describe Tee & Mik Pty

14 Describe Tee & Mik Pty

15 Describe Tee & Mik Pty

16 Describe Tee & Mik Pty

17 Tymma R A

17 Tymma R A

17 Tymma R A

17 Tymma R A

18 Wellar B J pair &

18 West Tee & Mik Pty

19 Marray W A

19 Felat C B

10 Felat C B

Page 433 of 851

Appendix F

SA Dangerous Substances Licensing Database Search Results

22 February 2019

Licensing, Customer Services Team

Level 4 World Park A 33 Richmond Road Keswick SA 5035

GPO Box 465 Adelaide SA 5001

DX 715 Adelaide

Phone 1300 365 255

Email licensing.safework@sa.gov.au

ABN 50-560-588-327

www.safework.sa.gov.au

Mr Sam Rady LBW Co Pty Ltd 184 Magill Road NORWOOD SA 5067

Dear Mr Rady

DANGEROUS SUBSTANCES LICENCE SEARCH

PROPERTY DETAILS: Calton Road, Gawler East 5118

Further to your application for a Dangerous Substance Search dated 6 February 2019 received for the abovementioned site, I advise that there are no current or historical records for this site.

Yours sincerely

MANAGER CUSTOMER SERVICES TEAM

SAFEWORK SA

Appendix G EPA Section 7 Search Results

Environment Protection Authority

GPO Box 2607 Adelaide SA 5001 211 Victoria Square Adelaide SA 5000 T (08) 8204 2004 Country areas 1800 623 445

Receipt No

:

Admin No

: 73272 (52827)

LBW Co 184 Magill Road NORWOOD SA 5067 Contact: Section 7
Telephone: (08) 8204 2026
Email: epasection7@sa.gov.au

Contact: Public Register Telephone: (08) 8204 9128

Email: epa.publicregister@sa.gov.au

28 March, 2019

NO

EPA STATEMENT TO FORM 1 - CONTRACTS FOR SALE OF LAND OR BUSINESS

The EPA provides this statement to assist the vendor meet its obligations under section 7(1)(b) of the Land and Business (Sale and Conveyancing) Act 1994. A response to the questions prescribed in Schedule 1-Contracts for sale of land or business-forms (Divisions 1 and 2) of the Land and Business (Sale and Conveyancing) Act 1994 is provided in relation to the land.

I refer to your enquiry concerning the parcel of land comprised in

Title Reference CT Volume 6186 Folio 896

Address Allotment 9010 (DP 114845), Calton Road, GAWLER EAST SA 5118

Schedule - Division 1 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS OF MORTGAGES, CHARGES AND PRESCRIBED ENCUMBRANCES AFFECTING THE LAND

7. Environment Protection Act 1993

7.7

Does the EPA hold any of the following details relating to the Environment Protection Act 1993:

Section 103J - Site remediation order that is registered in relation to the land.

7.1	Section 59 - Environment performance agreement that is registered in relation to the land.	NO
7.2	Section 93 - Environment protection order that is registered in relation to the land.	NO
7.3	Section 93A - Environment protection order relating to cessation of activity that is registered in relation to the land.	NO
7.4	Section 99 - Clean-up order that is registered in relation to the land.	NO
7.5	Section 100 - Clean-up authorisation that is registered in relation to the land.	NO
7.6	Section 103H - Site contamination assessment order that is registered in relation to the land.	NO

CT Volume 6186 Folio 896 page 1 of 4

Page 437 of 851 www.epa.sa.gov.au 7.8 Section 103N - Notice of declaration of special management area in relation to the land (due to possible existence of site contamination).
 7.9 Section 103P - Notation of site contamination audit report in relation to the land.
 7.10 Section 103S - Notice of prohibition or restriction on taking water affected by site contamination in relation to the land.

Schedule - Division 2 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS RELATING TO ENVIRONMENT PROTECTION

3-Licences and exemptions recorded by EPA in public register

Does the EPA hold any of the following details in the public register:

Does the EPA hold any of the following details in the public register:			
	a)	details of a current licence issued under Part 6 of the <i>Environment Protection Act 1993</i> to conduct, at the land-	
	i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
	ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
	iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
	b)	details of a licence no longer in force issued under Part 6 of the <i>Environment Protection Act</i> 1993 to conduct, at the land-	
	i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
	ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
	iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	YES
	c)	details of a current exemption issued under Part 6 of the <i>Environment Protection Act 1993</i> from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
	d)	details of an exemption no longer in force issued under Part 6 of the <i>Environment Protection</i> Act 1993 from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
	e)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to operate a waste depot at the land?	NO
	f)	details of a licence issued under the repealed <i>Waste Management Act 1987</i> to operate a waste depot at the land?	NO
	g)	details of a licence issued under the repealed <i>South Australian Waste Management Commission Act 1979</i> to produce waste of a prescribed kind (within the meaning of that Act) at the land?	NO

CT Volume 6186 Folio 896 page 2 of 4

h)	details of a licence issued under the repealed Waste Management Act 1987 to produce prescribed waste (within the meaning of that Act) at the land?	NO
4-Poll	lution and site contamination on the land - details recorded by the EPA in public register	
Does the EPA hold any of the following details in the public register in relation to the land or part of the land:		
a)	details of serious or material environmental harm caused or threatened in the course of an activity (whether or not notified under section 83 of the <i>Environment Protection Act 1993</i>)?	NO
b)	details of site contamination notified to the EPA under section 83A of the <i>Environment Protection Act 1993</i> ?	NO
c)	a copy of a report of an environmental assessment (whether prepared by the EPA or some other person or body and whether or not required under legislation) that forms part of the information required to be recorded in the public register?	NO
d)	a copy of a site contamination audit report?	NO
e)	details of an agreement for the exclusion or limitation of liability for site contamination to which section 103E of the <i>Environment Protection Act 1993</i> applies?	NO
f)	details of an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act</i> 1993?	NO
g)	details of an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993?</i>	NO
h)	details of a notification under section 103Z(1) of the <i>Environment Protection Act 1993</i> relating to the commencement of a site contamination audit?	YES
i)	details of a notification under section 103Z(2) of the <i>Environment Protection Act 1993</i> relating to the termination before completion of a site contamination audit?	NO
j)	details of records, held by the former South Australian Waste Management Commission under the repealed Waste Management Act 1987, of waste (within the meaning of that Act) having been deposited on the land between 1 January 1983 and 30 April 1995?	NO
5-Poll	ution and site contamination on the land - other details held by EPA	
Does	the EPA hold any of the following details in relation to the land or part of the land:	
a)	a copy of a report known as a "Health Commission Report" prepared by or on behalf of the South Australian Health Commission (under the repealed South Australian Health Commission Act 1976)?	NO
b)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act 1993?</i>	NO
c)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993</i> ?	NO

CT Volume 6186 Folio 896 page 3 of 4

d) a copy of a pre-1 July 2009 site audit report?

NO

e) details relating to the termination before completion of a pre-1 July 2009 site audit?

NO

Details and/or copies of environmental assessments, licences, exemptions and records on the Public Register may be obtained from the Environment Protection Authority.

Prior to arranging an examination and/or copies of the required above information please telephone (08) 8204 9128 to contact the Public Register Administrator to ensure the required details are available upon arrival.

All care and diligence has been taken to access the above information from available records. Historical records provided to the EPA concerning matters arising prior to 1 May 1995 are limited and may not be accurate or complete and therefore the EPA cannot confirm the accuracy of the historical information provided.

File Reference: EPA/1874; EPA/14132; SC60456

CT Volume 6186 Folio 896 page 4 of 4

Environment Protection Authority

GPO Box 2607 Adelaide SA 5001 211 Victoria Square Adelaide SA 5000 T (08) 8204 2004 Country areas 1800 623 445

Receipt No Admin No

: 67577 (52830)

LBW Co 184 Magill Road NORWOOD SA 5067

Contact: Section 7 Telephone: (08) 8204 2026 Email: epasection7@sa.gov.au

> Contact: Public Register Telephone: (08) 8204 9128

Email: epa.publicregister@sa.gov.au

28 March, 2019

NO

NO

page 1 of 4

EPA STATEMENT TO FORM 1 - CONTRACTS FOR SALE OF LAND OR BUSINESS

The EPA provides this statement to assist the vendor meet its obligations under section 7(1)(b) of the Land and Business (Sale and Conveyancing) Act 1994. A response to the questions prescribed in Schedule 1-Contracts for sale of land or business-forms (Divisions 1 and 2) of the Land and Business (Sale and Conveyancing) Act 1994 is provided in relation to the land.

I refer to your enquiry concerning the parcel of land comprised in

Title Reference CT Volume 6162 Folio 334

Address Allotment 4 (DP 28814), Balmoral Track, GAWLER EAST SA 5118

Schedule - Division 1 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS OF MORTGAGES, CHARGES AND PRESCRIBED ENCUMBRANCES AFFECTING THE LAND

7. Environment Protection Act 1993

7.6

7.7

CT Volume 6162 Folio 334

Does the EPA hold any of the following details relating to the Environment Protection Act 1993:

Section 103J - Site remediation order that is registered in relation to the land.

7.1	Section 59 - Environment performance agreement that is registered in relation to the land.	NO
7.2	Section 93 - Environment protection order that is registered in relation to the land.	NO
7.3	Section 93A - Environment protection order relating to cessation of activity that is registered in relation to the land.	NO
7.4	Section 99 - Clean-up order that is registered in relation to the land.	NO
7.5	Section 100 - Clean-up authorisation that is registered in relation to the land.	NO

Section 103H - Site contamination assessment order that is registered in relation to the land.

Page 441 of 851 www.epa.sa.gov.au

7.8	Section 103N - Notice of declaration of special management area in relation to the land (due to possible existence of site contamination).	NO
7.9	Section 103P - Notation of site contamination audit report in relation to the land.	NO
7.10	Section 103S - Notice of prohibition or restriction on taking water affected by site contamination in relation to the land.	NO

Schedule – Division 2 – Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS RELATING TO ENVIRONMENT PROTECTION

3-Licences and exemptions recorded by EPA in public register

Does the EPA hold any of the following details in the public register:		
a)	details of a current licence issued under Part 6 of the <i>Environment Protection Act 1993</i> to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
b)	details of a licence no longer in force issued under Part 6 of the <i>Environment Protection Act</i> 1993 to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
c)	details of a current exemption issued under Part 6 of the <i>Environment Protection Act 1993</i> from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
d)	details of an exemption no longer in force issued under Part 6 of the <i>Environment Protection</i> Act 1993 from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
e)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to operate a waste depot at the land?	NO
f)	details of a licence issued under the repealed Waste Management Act 1987 to operate a waste depot at the land?	NO
g)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to produce waste of a prescribed kind (within the meaning of that Act) at the land?	NO

CT Volume 6162 Folio 334 page 2 of 4

h)	details of a licence issued under the repealed Waste Management Act 1987 to produce prescribed waste (within the meaning of that Act) at the land?	NO
4-Poll	lution and site contamination on the land - details recorded by the EPA in public register	
Does the EPA hold any of the following details in the public register in relation to the land or part of the land:		
a)	details of serious or material environmental harm caused or threatened in the course of an activity (whether or not notified under section 83 of the <i>Environment Protection Act 1993</i>)?	NO
b)	details of site contamination notified to the EPA under section 83A of the <i>Environment Protection Act 1993</i> ?	NO
c)	a copy of a report of an environmental assessment (whether prepared by the EPA or some other person or body and whether or not required under legislation) that forms part of the information required to be recorded in the public register?	YES
d)	a copy of a site contamination audit report?	YES
e)	details of an agreement for the exclusion or limitation of liability for site contamination to which section 103E of the <i>Environment Protection Act 1993</i> applies?	NO
f)	details of an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103l of the <i>Environment Protection Act</i> 1993?	NO
g)	details of an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993?</i>	NO
h)	details of a notification under section 103Z(1) of the <i>Environment Protection Act 1993</i> relating to the commencement of a site contamination audit?	YES
i)	details of a notification under section 103Z(2) of the <i>Environment Protection Act 1993</i> relating to the termination before completion of a site contamination audit?	NO
j)	details of records, held by the former South Australian Waste Management Commission under the repealed Waste Management Act 1987, of waste (within the meaning of that Act) having been deposited on the land between 1 January 1983 and 30 April 1995?	NO
5-Poll	lution and site contamination on the land - other details held by EPA	
Does	the EPA hold any of the following details in relation to the land or part of the land:	
a)	a copy of a report known as a "Health Commission Report" prepared by or on behalf of the South Australian Health Commission (under the repealed South Australian Health Commission Act 1976)?	NO
b)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act 1993?</i>	NO
c)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993</i> ?	NO

CT Volume 6162 Folio 334 page 3 of 4

d) a copy of a pre-1 July 2009 site audit report?

NO

e) details relating to the termination before completion of a pre-1 July 2009 site audit?

NO

Details and/or copies of environmental assessments, licences, exemptions and records on the Public Register may be obtained from the Environment Protection Authority.

Prior to arranging an examination and/or copies of the required above information please telephone (08) 8204 9128 to contact the Public Register Administrator to ensure the required details are available upon arrival.

All care and diligence has been taken to access the above information from available records. Historical records provided to the EPA concerning matters arising prior to 1 May 1995 are limited and may not be accurate or complete and therefore the EPA cannot confirm the accuracy of the historical information provided.

File Reference: SC60456

CT Volume 6162 Folio 334 page 4 of 4

Environment Protection Authority

GPO Box 2607 Adelaide SA 5001 211 Victoria Square Adelaide SA 5000 T (08) 8204 2004 Country areas 1800 623 445

Receipt No

:

Admin No

: 72785 (52831)

LBW Co 184 Magill Road NORWOOD SA 5067 Contact: Section 7
Telephone: (08) 8204 2026
Email: epasection7@sa.gov.au

Contact: Public Register Telephone: (08) 8204 9128

Email: epa.publicregister@sa.gov.au

28 March, 2019

NO

EPA STATEMENT TO FORM 1 - CONTRACTS FOR SALE OF LAND OR BUSINESS

The EPA provides this statement to assist the vendor meet its obligations under section 7(1)(b) of the Land and Business (Sale and Conveyancing) Act 1994. A response to the questions prescribed in Schedule 1-Contracts for sale of land or business-forms (Divisions 1 and 2) of the Land and Business (Sale and Conveyancing) Act 1994 is provided in relation to the land.

I refer to your enquiry concerning the parcel of land comprised in

Title Reference CT Volume 6184 Folio 173

Address Allotment 1 (FP 13468), Gauge Station Track, KALBEEBA SA 5118

Schedule - Division 1 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS OF MORTGAGES, CHARGES AND PRESCRIBED ENCUMBRANCES AFFECTING THE LAND

7. Environment Protection Act 1993

7.7

Does the EPA hold any of the following details relating to the Environment Protection Act 1993:

Section 103J - Site remediation order that is registered in relation to the land.

7.1	Section 59 - Environment performance agreement that is registered in relation to the land.	NO
7.2	Section 93 - Environment protection order that is registered in relation to the land.	NO
7.3	Section 93A - Environment protection order relating to cessation of activity that is registered in relation to the land.	NO
7.4	Section 99 - Clean-up order that is registered in relation to the land.	NO
7.5	Section 100 - Clean-up authorisation that is registered in relation to the land.	NO
7.6	Section 103H - Site contamination assessment order that is registered in relation to the land.	NO

CT Volume 6184 Folio 173 page 1 of 4

Page 445 of 851 www.epa.sa.gov.au 7.8 Section 103N - Notice of declaration of special management area in relation to the land (due to possible existence of site contamination).
 7.9 Section 103P - Notation of site contamination audit report in relation to the land.
 7.10 Section 103S - Notice of prohibition or restriction on taking water affected by site contamination in relation to the land.

Schedule - Division 2 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS RELATING TO ENVIRONMENT PROTECTION

3-Licences and exemptions recorded by EPA in public register

Does the EPA hold any of the following details in the public register:

D000 t	The Elivinoid any of the following details in the public register.	
a)	details of a current licence issued under Part 6 of the <i>Environment Protection Act 1993</i> to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
b)	details of a licence no longer in force issued under Part 6 of the <i>Environment Protection Act</i> 1993 to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
c)	details of a current exemption issued under Part 6 of the <i>Environment Protection Act 1993</i> from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
d)	details of an exemption no longer in force issued under Part 6 of the <i>Environment Protection</i> Act 1993 from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
e)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to operate a waste depot at the land?	NO
f)	details of a licence issued under the repealed Waste Management Act 1987 to operate a waste depot at the land?	NO
g)	details of a licence issued under the repealed <i>South Australian Waste Management Commission Act 1979</i> to produce waste of a prescribed kind (within the meaning of that Act) at the land?	NO

CT Volume 6184 Folio 173 page 2 of 4

h)	details of a licence issued under the repealed Waste Management Act 1987 to produce prescribed waste (within the meaning of that Act) at the land?	NO
4-Poll	lution and site contamination on the land - details recorded by the EPA in public register	
Does the EPA hold any of the following details in the public register in relation to the land or part of the land:		
a)	details of serious or material environmental harm caused or threatened in the course of an activity (whether or not notified under section 83 of the <i>Environment Protection Act 1993</i>)?	NO
b)	details of site contamination notified to the EPA under section 83A of the <i>Environment Protection Act 1993</i> ?	NO
c)	a copy of a report of an environmental assessment (whether prepared by the EPA or some other person or body and whether or not required under legislation) that forms part of the information required to be recorded in the public register?	NO
d)	a copy of a site contamination audit report?	NO
e)	details of an agreement for the exclusion or limitation of liability for site contamination to which section 103E of the <i>Environment Protection Act 1993</i> applies?	NO
f)	details of an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act</i> 1993?	NO
g)	details of an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993?</i>	NO
h)	details of a notification under section 103Z(1) of the <i>Environment Protection Act 1993</i> relating to the commencement of a site contamination audit?	YES
i)	details of a notification under section 103Z(2) of the <i>Environment Protection Act 1993</i> relating to the termination before completion of a site contamination audit?	NO
j)	details of records, held by the former South Australian Waste Management Commission under the repealed Waste Management Act 1987, of waste (within the meaning of that Act) having been deposited on the land between 1 January 1983 and 30 April 1995?	NO
5-Poll	ution and site contamination on the land - other details held by EPA	
Does	the EPA hold any of the following details in relation to the land or part of the land:	
a)	a copy of a report known as a "Health Commission Report" prepared by or on behalf of the South Australian Health Commission (under the repealed South Australian Health Commission Act 1976)?	NO
b)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act 1993?</i>	NO
c)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993</i> ?	NO

CT Volume 6184 Folio 173 page 3 of 4

d) a copy of a pre-1 July 2009 site audit report?

NO

e) details relating to the termination before completion of a pre-1 July 2009 site audit?

NO

Details and/or copies of environmental assessments, licences, exemptions and records on the Public Register may be obtained from the Environment Protection Authority.

Prior to arranging an examination and/or copies of the required above information please telephone (08) 8204 9128 to contact the Public Register Administrator to ensure the required details are available upon arrival.

All care and diligence has been taken to access the above information from available records. Historical records provided to the EPA concerning matters arising prior to 1 May 1995 are limited and may not be accurate or complete and therefore the EPA cannot confirm the accuracy of the historical information provided.

File Reference: SC60456

CT Volume 6184 Folio 173 page 4 of 4

Environment Protection Authority

GPO Box 2607 Adelaide SA 5001 211 Victoria Square Adelaide SA 5000 T (08) 8204 2004 Country areas 1800 623 445

Receipt No Admin No

:

: 81944 (52828)

LBW Co 184 Magill Road NORWOOD SA 5067 Contact: Section 7 Telephone: (08) 8204 2026 Email: epasection7@sa.gov.au

Contact: Public Register Telephone: (08) 8204 9128

Email: epa.publicregister@sa.gov.au

28 March, 2019

NO

EPA STATEMENT TO FORM 1 - CONTRACTS FOR SALE OF LAND OR BUSINESS

The EPA provides this statement to assist the vendor meet its obligations under section 7(1)(b) of the Land and Business (Sale and Conveyancing) Act 1994. A response to the questions prescribed in Schedule 1-Contracts for sale of land or business-forms (Divisions 1 and 2) of the Land and Business (Sale and Conveyancing) Act 1994 is provided in relation to the land.

I refer to your enquiry concerning the parcel of land comprised in

Title Reference CT Volume 6205 Folio 146

Address Allotment 9010 (DP 114845), Calton Road, GAWLER EAST SA 5118

Schedule - Division 1 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS OF MORTGAGES, CHARGES AND PRESCRIBED ENCUMBRANCES AFFECTING THE LAND

7. Environment Protection Act 1993

7.7

Does the EPA hold any of the following details relating to the Environment Protection Act 1993:

Section 103J - Site remediation order that is registered in relation to the land.

7.1	Section 59 - Environment performance agreement that is registered in relation to the land.	NO
7.2	Section 93 - Environment protection order that is registered in relation to the land.	NO
7.3	Section 93A - Environment protection order relating to cessation of activity that is registered in relation to the land.	NO
7.4	Section 99 - Clean-up order that is registered in relation to the land.	NO
7.5	Section 100 - Clean-up authorisation that is registered in relation to the land.	NO
7.6	Section 103H - Site contamination assessment order that is registered in relation to the land.	NO

CT Volume 6205 Folio 146 page 1 of 4

Page 449 of 851 www.epa.sa.gov.au 7.8 Section 103N - Notice of declaration of special management area in relation to the land (due to possible existence of site contamination).
 7.9 Section 103P - Notation of site contamination audit report in relation to the land.
 NO
 7.10 Section 103S - Notice of prohibition or restriction on taking water affected by site contamination in relation to the land.

Schedule - Division 2 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS RELATING TO ENVIRONMENT PROTECTION

3-Licences and exemptions recorded by EPA in public register

Does the EPA hold any of the following details in the public register:

Does t	Does the EPA hold any of the following details in the public register:		
a)	details of a current licence issued under Part 6 of the <i>Environment Protection Act 1993</i> to conduct, at the land-		
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO	
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO	
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO	
b)	details of a licence no longer in force issued under Part 6 of the <i>Environment Protection Act</i> 1993 to conduct, at the land-		
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO	
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO	
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	YES	
c)	details of a current exemption issued under Part 6 of the <i>Environment Protection Act 1993</i> from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO	
d)	details of an exemption no longer in force issued under Part 6 of the <i>Environment Protection</i> Act 1993 from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO	
e)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to operate a waste depot at the land?	NO	
f)	details of a licence issued under the repealed Waste Management Act 1987 to operate a waste depot at the land?	NO	
g)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to produce waste of a prescribed kind (within the meaning of that Act) at the land?	NO	

CT Volume 6205 Folio 146 page 2 of 4

h)	details of a licence issued under the repealed <i>Waste Management Act 1987</i> to produce prescribed waste (within the meaning of that Act) at the land?	NO
4-Poll	lution and site contamination on the land - details recorded by the EPA in public register	
Does the EPA hold any of the following details in the public register in relation to the land or part of the land:		
a)	details of serious or material environmental harm caused or threatened in the course of an activity (whether or not notified under section 83 of the <i>Environment Protection Act 1993</i>)?	NO
b)	details of site contamination notified to the EPA under section 83A of the <i>Environment Protection Act 1993</i> ?	NO
c)	a copy of a report of an environmental assessment (whether prepared by the EPA or some other person or body and whether or not required under legislation) that forms part of the information required to be recorded in the public register?	YES
d)	a copy of a site contamination audit report?	YES
e)	details of an agreement for the exclusion or limitation of liability for site contamination to which section 103E of the <i>Environment Protection Act 1993</i> applies?	NO
f)	details of an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103l of the <i>Environment Protection Act</i> 1993?	NO
g)	details of an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993?</i>	NO
h)	details of a notification under section 103Z(1) of the <i>Environment Protection Act 1993</i> relating to the commencement of a site contamination audit?	YES
i)	details of a notification under section 103Z(2) of the <i>Environment Protection Act 1993</i> relating to the termination before completion of a site contamination audit?	NO
j)	details of records, held by the former South Australian Waste Management Commission under the repealed Waste Management Act 1987, of waste (within the meaning of that Act) having been deposited on the land between 1 January 1983 and 30 April 1995?	NO
5-Poll	lution and site contamination on the land - other details held by EPA	
Does	the EPA hold any of the following details in relation to the land or part of the land:	
a)	a copy of a report known as a "Health Commission Report" prepared by or on behalf of the South Australian Health Commission (under the repealed South Australian Health Commission Act 1976)?	NO
b)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act 1993?</i>	NO
c)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993</i> ?	NO

CT Volume 6205 Folio 146 page 3 of 4

d) a copy of a pre-1 July 2009 site audit report?

NO

e) details relating to the termination before completion of a pre-1 July 2009 site audit?

NO

Details and/or copies of environmental assessments, licences, exemptions and records on the Public Register may be obtained from the Environment Protection Authority.

Prior to arranging an examination and/or copies of the required above information please telephone (08) 8204 9128 to contact the Public Register Administrator to ensure the required details are available upon arrival.

All care and diligence has been taken to access the above information from available records. Historical records provided to the EPA concerning matters arising prior to 1 May 1995 are limited and may not be accurate or complete and therefore the EPA cannot confirm the accuracy of the historical information provided.

File Reference: EPA/1874; EPA/14132; SC60456

CT Volume 6205 Folio 146 page 4 of 4

Environment Protection Authority

GPO Box 2607 Adelaide SA 5001 211 Victoria Square Adelaide SA 5000 T (08) 8204 2004 Country areas 1800 623 445

Receipt No Admin No

0 :

: 60341 (52829)

LBW Co 184 Magill Road NORWOOD SA 5067 Contact: Section 7
Telephone: (08) 8204 2026
Email: epasection7@sa.gov.au

Contact: Public Register Telephone: (08) 8204 9128

Email: epa.publicregister@sa.gov.au

28 March, 2019

NO

EPA STATEMENT TO FORM 1 - CONTRACTS FOR SALE OF LAND OR BUSINESS

The EPA provides this statement to assist the vendor meet its obligations under section 7(1)(b) of the Land and Business (Sale and Conveyancing) Act 1994. A response to the questions prescribed in Schedule 1-Contracts for sale of land or business-forms (Divisions 1 and 2) of the Land and Business (Sale and Conveyancing) Act 1994 is provided in relation to the land.

I refer to your enquiry concerning the parcel of land comprised in

Title Reference CT Volume 6118 Folio 249

Address Allotment 2 (FP 7765), Calton Road, GAWLER EAST SA 5118

Schedule - Division 1 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS OF MORTGAGES, CHARGES AND PRESCRIBED ENCUMBRANCES AFFECTING THE LAND

7. Environment Protection Act 1993

7.7

Does the EPA hold any of the following details relating to the Environment Protection Act 1993:

Section 103J - Site remediation order that is registered in relation to the land.

7.1	Section 59 - Environment performance agreement that is registered in relation to the land.	NO
7.2	Section 93 - Environment protection order that is registered in relation to the land.	NO
7.3	Section 93A - Environment protection order relating to cessation of activity that is registered in relation to the land.	NO
7.4	Section 99 - Clean-up order that is registered in relation to the land.	NO
7.5	Section 100 - Clean-up authorisation that is registered in relation to the land.	NO
7.6	Section 103H - Site contamination assessment order that is registered in relation to the land.	NO

CT Volume 6118 Folio 249 page 1 of 4

Page 453 of 851 www.epa.sa.gov.au

7.8	Section 103N - Notice of declaration of special management area in relation to the land (due to possible existence of site contamination).	NO
7.9	Section 103P - Notation of site contamination audit report in relation to the land.	NO
7.10	Section 103S - Notice of prohibition or restriction on taking water affected by site contamination in relation to the land.	NO

Schedule – Division 2 – Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS RELATING TO ENVIRONMENT PROTECTION

3-Licences and exemptions recorded by EPA in public register

Does the EPA hold any of the following details in the public register:		
a)	details of a current licence issued under Part 6 of the <i>Environment Protection Act 1993</i> to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
b)	details of a licence no longer in force issued under Part 6 of the <i>Environment Protection Act</i> 1993 to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
c)	details of a current exemption issued under Part 6 of the <i>Environment Protection Act 1993</i> from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
d)	details of an exemption no longer in force issued under Part 6 of the <i>Environment Protection</i> Act 1993 from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
e)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to operate a waste depot at the land?	NO
f)	details of a licence issued under the repealed Waste Management Act 1987 to operate a waste depot at the land?	NO
g)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to produce waste of a prescribed kind (within the meaning of that Act) at the land?	NO

CT Volume 6118 Folio 249 page 2 of 4

h)	details of a licence issued under the repealed <i>Waste Management Act 1987</i> to produce prescribed waste (within the meaning of that Act) at the land?	NO
4-Poll	lution and site contamination on the land - details recorded by the EPA in public register	
Does the EPA hold any of the following details in the public register in relation to the land or part of the land:		
a)	details of serious or material environmental harm caused or threatened in the course of an activity (whether or not notified under section 83 of the <i>Environment Protection Act 1993</i>)?	NO
b)	details of site contamination notified to the EPA under section 83A of the <i>Environment Protection Act 1993</i> ?	NO
c)	a copy of a report of an environmental assessment (whether prepared by the EPA or some other person or body and whether or not required under legislation) that forms part of the information required to be recorded in the public register?	NO
d)	a copy of a site contamination audit report?	NO
e)	details of an agreement for the exclusion or limitation of liability for site contamination to which section 103E of the <i>Environment Protection Act 1993</i> applies?	NO
f)	details of an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103l of the <i>Environment Protection Act</i> 1993?	NO
g)	details of an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993?</i>	NO
h)	details of a notification under section 103Z(1) of the <i>Environment Protection Act 1993</i> relating to the commencement of a site contamination audit?	YES
i)	details of a notification under section 103Z(2) of the <i>Environment Protection Act 1993</i> relating to the termination before completion of a site contamination audit?	NO
j)	details of records, held by the former South Australian Waste Management Commission under the repealed Waste Management Act 1987, of waste (within the meaning of that Act) having been deposited on the land between 1 January 1983 and 30 April 1995?	NO
5-Poll	lution and site contamination on the land - other details held by EPA	
Does	the EPA hold any of the following details in relation to the land or part of the land:	
a)	a copy of a report known as a "Health Commission Report" prepared by or on behalf of the South Australian Health Commission (under the repealed South Australian Health Commission Act 1976)?	NO
b)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act 1993?</i>	NO
c)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993</i> ?	NO

CT Volume 6118 Folio 249 page 3 of 4

d) a copy of a pre-1 July 2009 site audit report?

NO

e) details relating to the termination before completion of a pre-1 July 2009 site audit?

NO

Details and/or copies of environmental assessments, licences, exemptions and records on the Public Register may be obtained from the Environment Protection Authority.

Prior to arranging an examination and/or copies of the required above information please telephone (08) 8204 9128 to contact the Public Register Administrator to ensure the required details are available upon arrival.

All care and diligence has been taken to access the above information from available records. Historical records provided to the EPA concerning matters arising prior to 1 May 1995 are limited and may not be accurate or complete and therefore the EPA cannot confirm the accuracy of the historical information provided.

File Reference: SC60456

CT Volume 6118 Folio 249 page 4 of 4

Environment Protection Authority

GPO Box 2607 Adelaide SA 5001 211 Victoria Square Adelaide SA 5000 T (08) 8204 2004 Country areas 1800 623 445

Receipt No Admin No

:

: 49513 (52832)

LBW Co 184 Magill Road NORWOOD SA 5067 Contact: Section 7 Telephone: (08) 8204 2026 Email: epasection7@sa.gov.au

> Contact: Public Register Telephone: (08) 8204 9128

Email: epa.publicregister@sa.gov.au

28 March, 2019

NO

EPA STATEMENT TO FORM 1 - CONTRACTS FOR SALE OF LAND OR BUSINESS

The EPA provides this statement to assist the vendor meet its obligations under section 7(1)(b) of the Land and Business (Sale and Conveyancing) Act 1994. A response to the questions prescribed in Schedule 1-Contracts for sale of land or business-forms (Divisions 1 and 2) of the Land and Business (Sale and Conveyancing) Act 1994 is provided in relation to the land.

I refer to your enquiry concerning the parcel of land comprised in

Title Reference CT Volume 5697 Folio 87

Address Allotment 94 (FP 163062), Gauge Station Track, KALBEEBA SA 5118

Schedule - Division 1 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS OF MORTGAGES, CHARGES AND PRESCRIBED ENCUMBRANCES AFFECTING THE LAND

7. Environment Protection Act 1993

7.7

Does the EPA hold any of the following details relating to the Environment Protection Act 1993:

Section 103J - Site remediation order that is registered in relation to the land.

7.1	Section 59 - Environment performance agreement that is registered in relation to the land.	NO
7.2	Section 93 - Environment protection order that is registered in relation to the land.	NO
7.3	Section 93A - Environment protection order relating to cessation of activity that is registered in relation to the land.	NO
7.4	Section 99 - Clean-up order that is registered in relation to the land.	NO
7.5	Section 100 - Clean-up authorisation that is registered in relation to the land.	NO
7.6	Section 103H - Site contamination assessment order that is registered in relation to the land.	NO

CT Volume 5697 Folio 87 page 1 of 4

Page 457 of 851 www.epa.sa.gov.au 7.8 Section 103N - Notice of declaration of special management area in relation to the land (due to NO possible existence of site contamination). Section 103P - Notation of site contamination audit report in relation to the land. NO 7.9 7.10 Section 103S - Notice of prohibition or restriction on taking water affected by site NO contamination in relation to the land.

Schedule – Division 2 – Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS RELATING TO ENVIRONMENT PROTECTION

3-Licences and exemptions recorded by EPA in public register

Does t	the EPA hold any of the following details in the public register:	
a)	details of a current licence issued under Part 6 of the <i>Environment Protection Act 1993</i> to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
b)	details of a licence no longer in force issued under Part 6 of the <i>Environment Protection Act</i> 1993 to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
c)	details of a current exemption issued under Part 6 of the <i>Environment Protection Act 1993</i> from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
d)	details of an exemption no longer in force issued under Part 6 of the <i>Environment Protection</i> Act 1993 from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
e)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to operate a waste depot at the land?	NO
f)	details of a licence issued under the repealed Waste Management Act 1987 to operate a waste depot at the land?	NO
g)	details of a licence issued under the repealed <i>South Australian Waste Management Commission Act 1979</i> to produce waste of a prescribed kind (within the meaning of that Act) at the land?	NO

CT Volume 5697 Folio 87 page 2 of 4

h)	details of a licence issued under the repealed Waste Management Act 1987 to produce prescribed waste (within the meaning of that Act) at the land?	NO
4-Poll	lution and site contamination on the land - details recorded by the EPA in public register	
Does the EPA hold any of the following details in the public register in relation to the land or part of the land:		
a)	details of serious or material environmental harm caused or threatened in the course of an activity (whether or not notified under section 83 of the <i>Environment Protection Act 1993</i>)?	NO
b)	details of site contamination notified to the EPA under section 83A of the <i>Environment Protection Act 1993</i> ?	NO
c)	a copy of a report of an environmental assessment (whether prepared by the EPA or some other person or body and whether or not required under legislation) that forms part of the information required to be recorded in the public register?	NO
d)	a copy of a site contamination audit report?	NO
e)	details of an agreement for the exclusion or limitation of liability for site contamination to which section 103E of the <i>Environment Protection Act 1993</i> applies?	NO
f)	details of an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103l of the <i>Environment Protection Act</i> 1993?	NO
g)	details of an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993?</i>	NO
h)	details of a notification under section 103Z(1) of the <i>Environment Protection Act 1993</i> relating to the commencement of a site contamination audit?	YES
i)	details of a notification under section 103Z(2) of the <i>Environment Protection Act 1993</i> relating to the termination before completion of a site contamination audit?	NO
j)	details of records, held by the former <i>South Australian Waste Management Commission</i> under the repealed <i>Waste Management Act 1987</i> , of waste (within the meaning of that Act) having been deposited on the land between 1 January 1983 and 30 April 1995?	NO
5-Poll	ution and site contamination on the land - other details held by EPA	
Does	the EPA hold any of the following details in relation to the land or part of the land:	
a)	a copy of a report known as a "Health Commission Report" prepared by or on behalf of the South Australian Health Commission (under the repealed South Australian Health Commission Act 1976)?	NO
b)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act 1993?</i>	NO
c)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993</i> ?	NO

CT Volume 5697 Folio 87 page 3 of 4

d) a copy of a pre-1 July 2009 site audit report?

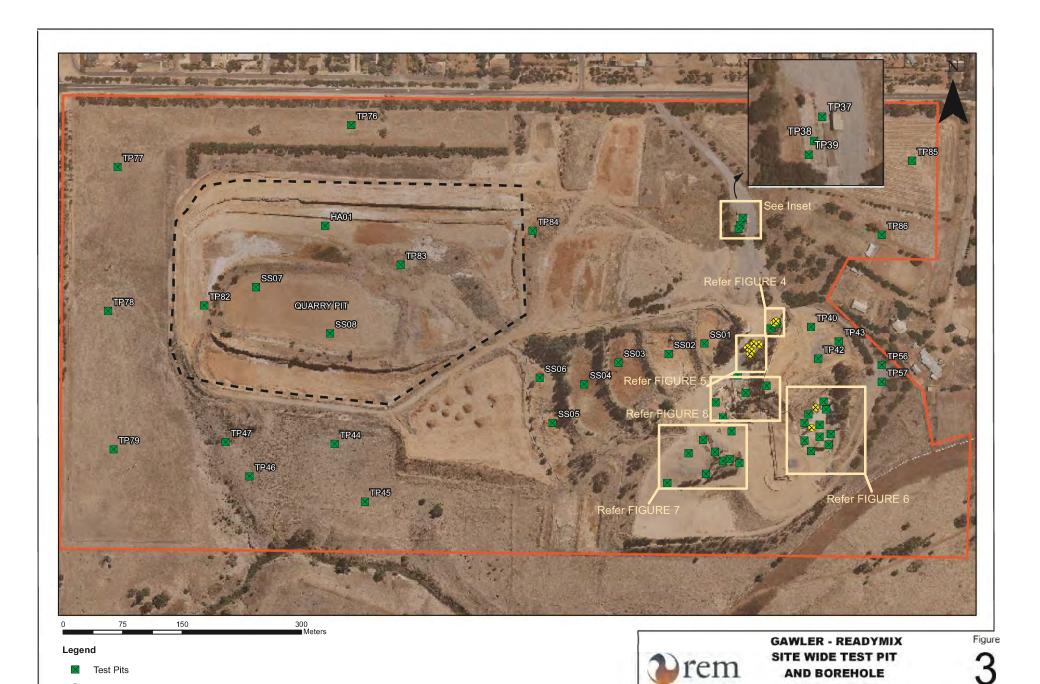
NO

e) details relating to the termination before completion of a pre-1 July 2009 site audit?

NO

Details and/or copies of environmental assessments, licences, exemptions and records on the Public Register may be obtained from the Environment Protection Authority.

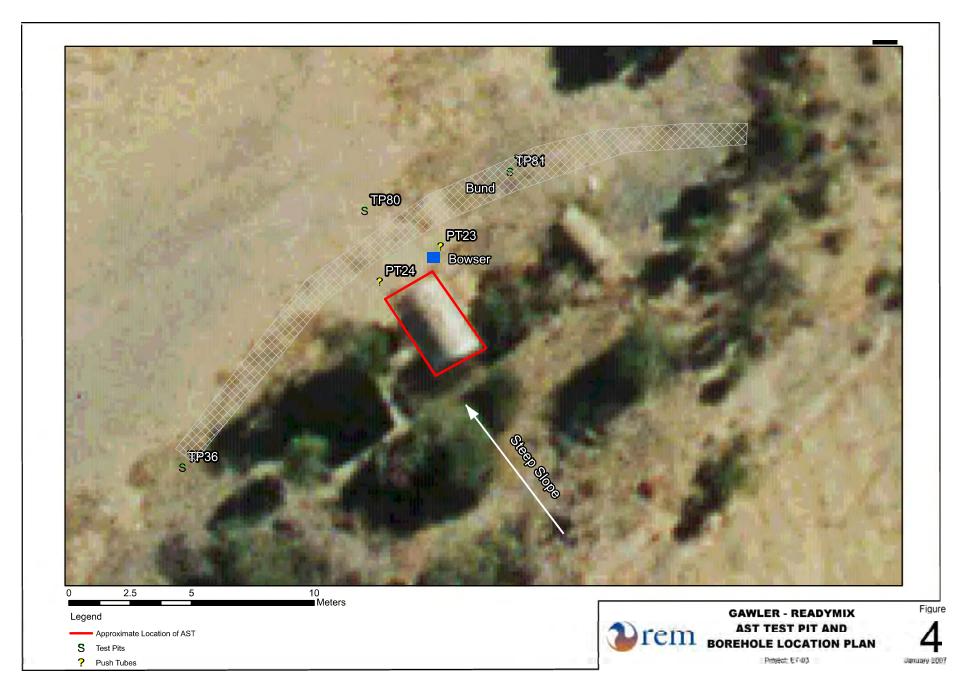
Prior to arranging an examination and/or copies of the required above information please telephone (08) 8204 9128 to contact the Public Register Administrator to ensure the required details are available upon arrival.


All care and diligence has been taken to access the above information from available records. Historical records provided to the EPA concerning matters arising prior to 1 May 1995 are limited and may not be accurate or complete and therefore the EPA cannot confirm the accuracy of the historical information provided.

File Reference: SC60456

CT Volume 5697 Folio 87 page 4 of 4

Appendix H Excerpted Historical Figures



Push Tubes 465 of 1004

05-18912_SCAR_001A Page 462 of 851

JANUARY 2007

LOCATION PLAN Project: ET-03

467 of 1004

468 of 1004

Push Tubes

November 2006

469 of 1004

November 2006

470 of 1004

05-18912_SCAR_001A Page 467 of 851

November 2006

Appendix I Site Photographs

Photograph 1: APEI 1— North portion of former quarry. North-facing view.

Photograph 2: APEI 1—South-west portion of former quarry, showing deposited sediments. West -facing view.

Photograph 3: APEI 1—South-east portion of former quarry, showing deposited sediments and stockpiles. South-east facing view.

Springwood Stage 3 and 4
Preliminary Site Investigation

For

Photograph 4: APEI 1— South portion of former quarry, showing deposited sediments. South-facing view.

Photograph 5: APEI 2—Former sediment drying pan, showing stockpiled mulch. South-facing view.

Photograph 6: APEI 3—Former stockpile area. North-west facing view.

Springwood Stage 3 and 4
Preliminary Site Investigation

For

Photograph 7: APEI 4—Partially filled former sediment pond. North-facing view.

Photograph 8: APEI 4—Abandoned liquid storage container overlooking former quarry. Northwest-facing view.

Photograph 9: APEI 5—Former sediment ponds. North-west-facing view.

Springwood Stage 3 and 4
Preliminary Site Investigation

For

Photograph 10: APEI 5—Typical sediment pond, with residual pipework. North-west facing

Photograph 11: APEI 5—Scrap metal located immediately north of former sediment ponds.

Photograph 12: APEI 6—Former workshop area. South-facing view

Springwood Stage 3 and 4
Preliminary Site Investigation

For

Photograph 13: APEIs 7 and 8—Former Washing and Blending Plants. South-facing view.

Photograph 14: APEI 9—Typical stockpiled soil. North-facing view.

Photograph 15: APEI 9—Typical stockpiled soil. West-facing view

Springwood Stage 3 and 4
Preliminary Site Investigation

For

Photograph 16: APEI 9—Typical stockpiled soil. North-east facing view.

Photograph 17: APEI 10—Typical stockpiled soil. East-facing view.

Photograph 18: APEI 11—Former Concrete Batching Plant. West-facing view

Springwood Stage 3 and 4
Preliminary Site Investigation

For

Photograph 19: APEI 12—Typical stockpiled soil. North-west facing view.

Photograph 20: APEI 14—Fire pit. South-facing view.

rı

Appendix J Bore and Test Pit Logs

PROJECT NUMBER 191076 PROJECT NAME Arcadian Springwood PSI ADDRESS Calton Road, Gawler East

DRILLING DATE 19/03/2019 **DRILLING COMPANY** WDS DRILL RIG Geoprobe **DRILLING METHOD** Push Tube **BOREHOLE DIAMETER (mm)** 50

TOTAL DEPTH (mBGL) 2.5

COORDINATES , COORD SYSTEM LOGGED BY Sam Rady **CHECKED BY**

СОМ	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	SB01-01		0 /0		FILL (REWORKED NATURAL): silty sand, brown, fine to medium, loose, poorly graded, subangular	D	
- 0.5 -	SB01-02		/o \		FILL (REWORKED NATURAL): clay, light red-brown, low-moderate plasticity, hard	D	
_ _ _ 1	SB01-03				FILL (REWORKED NATURAL): silty clay, pale brown -white, low plasticity, stiff, with suspected calcareous inclusions	D	
1.5					FILL (REWORKED NATURAL): clayey sand, brown, fine and coarse, dense, poorly graded, subangular, with weathered sandy lenses at bottom of unit.	SM	
-2	SB01-04						
2.5			<u>/</u> o \		Termination Depth at: 2.500m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

DRILLING DATE 19/03/2019
DRILLING COMPANY WDS
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50

TOTAL DEPTH (mBGL) 3.6

COORDINATES ,
COORD SYSTEM
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

COM	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	SB02-01		<u>/o</u>		FILL (REWORKED NATURAL): clayey sand, brown, fine to medium, loose, poorly graded, subangular	D	
- - 0.5 - - - -	SB02-02		<u>/</u> 0 \		FILL (REWORKED NATURAL): gravelly sand, brown -white, fine and coarse, loose, poorly graded, subangular, with suspected calcareous inclusions	D	
_	SB02-03		0		FILL (REWORKED NATURAL): sand, brown, fine to medium, loose, poorly graded, subangular	D	
- 1.5 - - - - - 2	SB02-04		<u>/0 \</u>		FILL (REWORKED NATURAL): gravelly sand, brown-orange -white, fine to medium, medium dense, poorly graded, subangular	D	
2.5							
_3							
- 3.5 					Termination Depth at: 3.600m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

DRILLING DATE 19/03/2019
DRILLING COMPANY WDS
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50

TOTAL DEPTH (mBGL) 1.700

COORDINATES ,
COORD SYSTEM
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

СОМ	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	SB03-01		<u>/o</u>	\bigotimes	FILL (REWORKED NATURAL): gravelly sand, brown, fine to medium, loose, poorly graded, angular	D	
			/o \		FILL (REWORKED NATURAL): sand, brown-orange, fine to medium, loose, well graded, subrounded	D	
0.5	SB03-02				FILL (REWORKED NATURAL): silty sand, brown, fine to medium, medium dense, well graded, subrounded, with gravel	D	
- 0.5			/o \				
-1	SB03-03		(0 ()		GRAVELLY SAND: red-orange -brown, fine and coarse, dense, poorly graded, angular	D	
— 1.5 - _	SB03-04		,,,		SAND: grey -white, coarse, very dense, poorly graded, angular, with calcareous inclusions	D	
					Termination Depth at:1.700 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

DRILLING DATE 19/03/2019
DRILLING COMPANY WDS
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 4.8

COORDINATES ,
COORD SYSTEM
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

сом	MENTS							
Depth (mBGL)	Samples	Duplicate	Triplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	SB04-01	SB04-02	SB04-03	/o \	$\overset{\times}{\otimes}$	FILL (REWORKED NATURAL): clay, red-brown, moderate plasticity, hard	D	
- - 0.5 -						FILL (REWORKED NATURAL): clay, red-brown, high plasticity, very stiff	VM	
_ _ _ 1 _	SB04-04			<u></u>	$\overset{\times}{\otimes}$			
- 1.5					$\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}$			
- - 2 -				[
2.5	SB04-05			70 1	$\overset{\sim}{\sim}$	FILL (REWORKED NATURAL): clay, brown, high plasticity, very stiff	wet	
_ _ 3					$\overset{\otimes}{\otimes}$			
3.5	SB04-06			, - \				
4					$\overset{\otimes}{\otimes}$			
— 4.5 -	SB04-07			/o \	₩	GRAVELLY SAND: brown-orange, fine and coarse,	SM	
_	SB04-08				2	dense, poorly graded, subangular Termination Depth at: 4.800m		
$\overline{}$								I

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

DRILLING DATE 19/03/2019
DRILLING COMPANY WDS
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50

TOTAL DEPTH (mBGL)

COORDINATES ,
COORD SYSTEM
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

COM	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
_	SB05-01 SB05-02		/o \ /o \		FILL (REWORKED NATURAL): silty sand, brown, fine and coarse, loose, poorly graded, subrounded	D	
0.5	0000 02				GRAVELLY SAND: red-brown, fine and coarse, dense, poorly graded, subangular	D	
_ _ 1 _	SB05-03		<u>/o</u>	7.00.00.5			
_ _ 1.5 _							
_ _ 2				0.0000			
- 2.5 -	SB05-04		0				
_ _ 3 _							
- - 3.5							
4					SAND: brown, coarse, very loose, well graded, subrounded	D	
4.5	SB05-05		<u>/o</u>		SAND: red-brown with white mottling, fine and coarse, medium dense, poorly graded, subangular, with calcareous inclusions	SM	
	3200 00				Termination Depth at: 4.800m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

DRILLING DATE 19/03/2019
DRILLING COMPANY WDS
DRILL RIG Geoprobe
DRILLING METHOD Push Tube
BOREHOLE DIAMETER (mm) 50
TOTAL DEPTH (mBGL) 3.600

COORDINATES ,
COORD SYSTEM
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

СОМ	MENTS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	SB06-01		/o \	\times	FILL (REWORKED NATURAL): silty sand, brown, fine and	D	
				\bowtie	coarse, loose, poorly graded, subangular		
			0	\bowtie			
	SB06-02			\bowtie	FILL (REWORKED NATURAL): sand, red-brown, fine and coarse, loose, poorly graded, subangular, with calcareous	D	
0.5				\bowtie	inclusions		
_				\bowtie			
_				\bowtie			
-				\bowtie			
_				\bowtie			
1				\bowtie			
				\bowtie			
				\bowtie			
_ 1.5				\bowtie			
			/o \	\bowtie			
_	SB06-03		0	\bowtie	ODAVELLY ON DE LEE STATE OF THE	_	
_	SB06-04			0.0	GRAVELLY SAND: red-brown -white, fine and coarse, medium dense, poorly graded, subangular, trace calcareous inclusions	D	
_				000			
2				0.00			
				0.0			
				0.0			
				0000			
2.5				0.0			
2.5				0.0			
				0.0			
				P A			
_3				000			
_				0.0			
-				0,0			
				1.0			
			0	0000			
3.5	SB06-05			, ° °			
					Termination Depth at:3.600 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI

ADDRESS Calton Road, Gawler East

EXCAVATION DATE 20/03/2019
MACHINERY Geoprobe
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES ,
COORD SYSTEM
GROUND ELEVATION (mAHD)
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

	1 1		I			I	Γ
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP01-01				FILL: sandy cobbles, grey-brown, fine to medium, loose, poorly graded, subangular	D	
- 0.5	TP01-02				FILL (REWORKED NATURAL): gravelly sand, brown-orange, fine and coarse, loose, poorly graded, subrounded	D	
_ 1							
- 1.5	TP01-03				FILL (REWORKED NATURAL): silty clay, dark brown, moderate plasticity, stiff, with gravel	SM	
-2	., 51 07				Termination Depth at:2.000 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

EXCAVATION DATE 20/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m)
TEST PIT WIDTH (m)
TOTAL DEPTH (mBGL) 2.000

COORDINATES ,
COORD SYSTEM
GROUND ELEVATION (mAHD)
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

COMIN	ILINIS						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP02-01	TP02-06			FILL: sand, brown, fine to medium, loose, poorly graded, subrounded	D	
_	TP02-02				FILL (REWORKED NATURAL): sand, brown-orange, fine to medium, loose, poorly graded, subrounded	D	
				\otimes			
- 0.5							
	TP02-03			\bowtie	FILL (REWORKED NATURAL): silty clay, dark brown, moderate plasticity, stiff, with gravel	SM	
_ _ 1							
- 1.5	TP02-04				FILL (REWORKED NATURAL); sandy clay red-brown with	SM	
	1 - 02-04				FILL (REWORKED NATURAL): sandy clay, red-brown with light brown mottling, moderate-high plasticity, stiff	SIVI	
2							
					Termination Depth at:2.000 m		
				1			

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

EXCAVATION DATE 20/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES ,
COORD SYSTEM
GROUND ELEVATION (mAHD)
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

0011111							T
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
_	TP03-01				FILL: sandy cobbles, grey-brown, fine to medium, loose, poorly graded, subangular	D	
- 0.5	TP03-02				FILL (REWORKED NATURAL): gravelly sand, red-brown, fine and coarse, loose, poorly graded, subrounded	D	
	TP03-03				FILL (REWORKED NATURAL): gravelly sand, brown-orange, fine and coarse, loose, poorly graded, subrounded	D	
- 1					FILL (REWORKED NATURAL): clay, brown-orange, fine	D	
- 1.5					and coarse, subrounded, with sand		
_ - 2	TP03-04				Termination Depth at:2.000 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

EXCAVATION DATE 20/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES ,
COORD SYSTEM
GROUND ELEVATION (mAHD)
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

0011111							
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP04-01				FILL (REWORKED NATURAL): clayey sand, brown with white mottling, fine to medium, medium dense, well graded, subrounded, with calcareous inclusions	D	
- 0.5							
- 1 -	TP04-02						
- 1.5 -	TP04-04				CLAYEY SAND: brown, fine to medium, medium dense, well graded, subrounded	D	
-2					Termination Depth at:2.000 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI

ADDRESS Calton Road, Gawler East

EXCAVATION DATE 20/03/2019 11:08:32 AM

MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES ,
COORD SYSTEM
GROUND ELEVATION (mAHD)
LOGGED BY Sam Rady

CHECKED BY

COMMENTS

							,
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP05-01			\bigotimes	FILL (REWORKED NATURAL): gravelly sand, brown, fine to medium, medium dense, well graded, subrounded, with rock fragments	D	
				\bowtie	rock tragments		
				\bigotimes			
				\bowtie			
				\bigotimes			
0.5				\bigotimes			
				\bowtie			
				\bowtie			
				\bowtie			
				\bowtie			
<u> </u>	TP05-02			\bowtie			
				\bowtie			
				\bowtie			
- 1.5	TP05-03				SAND: brown, fine to medium, medium dense, well graded, subrounded, with weathered rock, pale,	D	
	TP05-04				sedimentary, possibly limestone		
-2					Termination Depth at:2.000 m		
					-		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI

ADDRESS Calton Road, Gawler East

EXCAVATION DATE 20/03/2019 12:49:14 PM

MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 1.500

COORDINATES ,
COORD SYSTEM
GROUND ELEVATION (mAHD)
LOGGED BY Sam Rady

CHECKED BY

COMMENTS

COMM	IEN I S						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 0.5	TP06-01				FILL: gravelly sand, brown with light brown mottling, fine to medium, medium dense, poorly graded, subangular	D	
- 0.5	TP06-02				SCHIST: green -brown, moderately weathered		
-1	TP06-03						
1.5					Termination Depth at:1.500 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076 PROJECT NAME Arcadian Springwood PSI

ADDRESS Calton Road, Gawler East

EXCAVATION DATE 20/03/2019 **MACHINERY** Excavator TEST PIT LENGTH (m) 3 TEST PIT WIDTH (m) 0.6 TOTAL DEPTH (mBGL) 2.000

COORDINATES , COORD SYSTEM **GROUND ELEVATION (mAHD)** LOGGED BY Sam Rady **CHECKED BY**

COMMENTS

COMIN	IEN I S						
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
-	TP07-01				FILL (REWORKED NATURAL): sandy clay, red-brown, moderate plasticity, stiff	D	
- 0.5 - -	TP07-02				CLAYEY SAND: light brown with white mottling, fine to medium, medium dense, well graded, subrounded, with calcareous inclusions	D	
1 							
- 1.5	TP07-03						
-2					Termination Depth at:2.000 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI
ADDRESS Calton Road, Gawler East

MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 0.600

EXCAVATION DATE 20/03/2019

COORDINATES ,
COORD SYSTEM
GROUND ELEVATION (mAHD)
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

							,
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP08-01				CLAYEY SAND: light brown, fine to medium, medium dense, well graded, subrounded	D	
- 0.5	TP08-02			0,0000000000000000000000000000000000000		D	
					Termination Depth at:0.600 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076
PROJECT NAME Arcadian Springwood PSI

ADDRESS Calton Road, Gawler East

EXCAVATION DATE 20/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 1.800

COORDINATES ,
COORD SYSTEM
GROUND ELEVATION (mAHD)
LOGGED BY Sam Rady
CHECKED BY

COMMENTS

0011111							
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
_	TP09-01				FILL: gravelly sand, brown, fine to medium, loose, poorly graded, subangular	D	
- 0.5 -	TP09-02				CLAY: dark brown, moderate plasticity, very stiff, with rootlets, trace ash & cinders	SM	
- -1 -							
- - 1.5	TP09-03				SCHIST: green -brown, moderately weathered	D	
					Termination Depth at:1.800 m		

Disclaimer This log was prepared by LBWco Pty Ltd for environmental purposes only. produced by ESlog.ESdat.net on 21 Mar 2019

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 21/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.350' S, 138°46.291' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP10-01		0		FILL (REWORKED NATURAL): clay, brown, low plasticity, stiff, with rootlets, with rock fragments	D	
- 0.5 	TP10-02		0		FILL (REWORKED NATURAL): sandy clay, brown-orange, low plasticity, soft	SM	
- - - -1.5	TP10-03		0		FILL (REWORKED NATURAL): clayey sand, brown-orange, low plasticity	SM	
- 2	TP10-04		0		CLAYEY SAND: grey-brown, fine to medium, loose, poorly graded, subangular Termination Depth at:2.000 m	D	

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 21/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.370' S, 138°46.299' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 8	TP11-01		0		FILL: clay, brown, low-moderate plasticity, stiff, with rootlets, with rock fragments	D	
	TP11-02		0		FILL: sand, light orange, coarse, loose, with gravel		
- 0.5 - -							
-1	TP11-03		0		SANDY CLAY: light brown-orange, moderate plasticity	SM	
- 1.5 - -					CLAY: brown-orange, moderate plasticity	wet	
- -2	TP11-04		0		Termination Depth at:2.000 m		
					Tommadon Deput at.2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI

ADDRESS Calton Road, Gawler East

EXCAVATION DATE 21/03/2019 MACHINERY Excavator TEST PIT LENGTH (m) 3 TEST PIT WIDTH (m) 0.6 TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.401′ S, 138°46.299′ E COORD SYSTEM Latitude, Longitude **GROUND ELEVATION (mAHD)** LOGGED BY T Horwood **CHECKED BY**

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
_	TP12-01		0		FILL: cobbles, brown-orange, fine to coarse, very loose, poorly graded, with sand, with gravel, with rock fragments	D	
- 0.5	TP12-02		0		FILL: cobbles, pale brown-orange, fine to coarse, very loose, poorly graded, with sand, with gravel, with rock fragments	D	
-1					FILL: sand, brown, fine to coarse, very loose, poorly graded, with sand, with gravel, with rock fragments	D	
- 1.5	TP12-03		0				
					Termination Depth at:2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 21/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.349' S, 138°45.487' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

	ı	1		1			
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 8	TP13-01		0		FILL: gravel, blue -grey, fine to coarse, very loose, poorly graded, angular, with sand, with gravel	D	
-	TP13-02	TP13-06	0		FILL: sand, brown-orange, fine to coarse, loose, poorly graded, with gravel, with rock fragments	D	
- 0.5 -	TP13-03		0		FILL: sand, brown, fine to coarse, loose, poorly graded, with gravel, with rock fragments	SM	
- 1 -							
-					CLAY: brown-orange, fine to coarse, moderate plasticity, trace rock fragments	VM	
- 1.5 -							
	TD40						
_2	TP13-04		0		Termination Depth at:2.000 m		
							<u> </u>

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 21/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.311' S, 138°46.025' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

	<u> </u>	1				I	
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP14-01	TP14-05	0	\bowtie	FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	D	
- 8				\otimes	on motorate presently, tun		
-	TD1100			\bigotimes			
	TP14-02		0	\bowtie	FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	VM	
				\bowtie			
-				\bowtie			
- 0.5				\otimes			
				\bowtie			
				\otimes	FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, very soft	wet	
				\otimes	S (1992) 1501		
-				\bowtie			
				\bowtie			
400				\bowtie			
- 1				\bowtie			
-				\bowtie			
				\bowtie			
				\otimes			
_				\bowtie			
- 1.5				\bowtie			
				\bigotimes			
				\bowtie			
<u></u>				\bigotimes			
				\bowtie			
	TP14-03		0	\bigotimes			
2				\sim	Termination Depth at: 2.000 m		

TEST PIT: TP15.

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI

ADDRESS Calton Road, Gawler East

EXCAVATION DATE 21/03/2019 MACHINERY Excavator TEST PIT LENGTH (m) 3 TEST PIT WIDTH (m) 0.6 TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.322′ S, 138°45.990′ E COORD SYSTEM Latitude, Longitude **GROUND ELEVATION (mAHD)** LOGGED BY T Horwood **CHECKED BY**

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 8	TP1501		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	D	
- 0.5	TP1502		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	VM	
-					FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, very soft	wet	
- 1 - -							
- - 1.5 -							
-	TP1503		0		Termination Depth at: 2.000 m		
					•		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

EXCAVATION DATE 21/03/2019

COORDINATES -34°36.314' S, 138°45.965' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 8	TP16-01		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	D	
-	TP16-02		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	SM	
- 0.5 - -	TP16-03		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, soft	wet	
-1							
- - - 1.5					FILL (REWORKED NATURAL): clay, red-brown, moderate plasticity, very soft	S	
- 2	TP16-04		0		Termination Depth at: 2.000 m		
					теппінацоп рерці аt. 2.000 п		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 21/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.331' S, 138°45.969' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP17-01		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	D	
- - - 0.5	TP17-02		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	VM	
6 J					FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, very soft	wet	
-1							
- - 1.5							
- 2	TP17-03		0		Termination Depth at: 2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 21/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.331' S, 138°46.029' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

							T
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
000	TP18-01		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	D	
	TP18-02		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	SM	
- 0.5 - - - - 1	TP18-03		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, soft	wet	
- 1.5	TP18-04		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	D	
2					Termination Depth at: 2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI

ADDRESS Calton Road, Gawler East

EXCAVATION DATE 21/03/2019 MACHINERY Excavator TEST PIT LENGTH (m) 3 TEST PIT WIDTH (m) 0.6 TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.362′ S, 138°45.988′ E COORD SYSTEM Latitude, Longitude **GROUND ELEVATION (mAHD)** LOGGED BY T Horwood **CHECKED BY**

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 3	TP19-01		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	D	
- - 0.5	TP19-02		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, soft	wet	
_ 1					FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, very soft	S	
-1.5	TP19-03		0				
-2				××	Termination Depth at: 2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 21/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.364' S, 138°45.945' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 00	TP20-01		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	D	
- 0.5	TP20-02		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, soft	wet	
- 1 1 1.5					FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, very soft	S	
	TP20-03		0		Termination Depth at: 2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 21/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34°36.337' S, 138°46.107' E
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
0	TP21-01		0		FILL (REWORKED NATURAL): clay, red-brown -orange, low plasticity, with rootlets	D	
- 0.5	TP21-02		0		FILL (REWORKED NATURAL): clay, red-brown, low-moderate plasticity, stiff	SM	
-1							
- 1.5 -	TP21-03		Q		CLAYEY SAND: light brown, fine to medium, loose, with gravel, with rock fragments	SM	
2			1.71		Termination Depth at: 2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 22/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34.60347128, 138.7712471
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

	ı	I				ı	
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
- 8	TP22-01		0		FILL (REWORKED NATURAL): sandy clay, brown, low-moderate plasticity, hard, trace rock fragments	D	
- 0.5 	TP22-02		0		FILL (REWORKED NATURAL): sandy clay, red-brown, low-moderate plasticity, hard, trace rock fragments	D	
50	TP22-03		0		FILL (REWORKED NATURAL): sandy clay, red-brown, low-moderate plasticity, stiff	SM	
- 1.5 - - -	TP22-04		0		CLAY: red-brown, low-moderate plasticity, stiff	SM	
					Termination Depth at: 2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 22/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34.60354271, 138.77100384
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

	1	1				1	
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
	TP23-01	TP23-05	0		FILL (REWORKED NATURAL): sandy clay, brown, low-moderate plasticity, hard, trace rock fragments, trace	D	
-				+	rootlets		
				\bowtie			
76	TP23-02		0	//	CLAYEY SAND: brown-orange, fine to medium, loose, with gravel	SM	
_				//			
				//			
				//			
- 0.5				//			
				//			
				//			
				//			
			1		CLAY, and house with any matter law and death		
					CLAY: red-brown with grey mottling, low-moderate plasticity, stiff	М	
-							
– 1							
-							
-							
- 1.5							
1.5							
-							
-							
	TDOC 00						
	TP23-03		0				
2				1////	Termination Depth at: 2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 22/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34.60420074, 138.77112164
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
70	TP24-01		0		FILL (REWORKED NATURAL): sandy clay, red-brown, low plasticity, hard, trace rootlets	D	
- 0.5 -	TP24-02		0		FILL (REWORKED NATURAL): sandy clay, red-brown, low plasticity, hard, with rock fragments	D	
- - 1	TP24-03		0		FILL (REWORKED NATURAL): clayey sand, red-brown, fine to medium, low plasticity, with rock fragments	D	
					FILL (REWORKED NATURAL): sand, red-brown, fine to coarse, low plasticity, with rock fragments, with clay	D	
- 2	TP24-04		0		Termination Depth at: 2.000 m		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 22/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34.60751025, 138.77323923
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
8	TP25-01		0		FILL (REWORKED NATURAL): clay, brown, low-moderate plasticity, hard, with rock fragments, trace rootlets	D	
0.5	TP25-02		0		FILL (REWORKED NATURAL): clayey sand, brown, fine to medium, medium dense, poorly graded, with rock fragments	D	
1.5					FILL (REWORKED NATURAL): clayey sand, dark brown,	D	
	TP25-03		0		fine to medium, medium dense, poorly graded, trace rock fragments		

PROJECT NUMBER 191076

PROJECT NAME Arcadian Springwood PSI **ADDRESS** Calton Road, Gawler East

EXCAVATION DATE 22/03/2019
MACHINERY Excavator
TEST PIT LENGTH (m) 3
TEST PIT WIDTH (m) 0.6
TOTAL DEPTH (mBGL) 2.000

COORDINATES -34.60753279, 138.77312523
COORD SYSTEM Latitude, Longitude
GROUND ELEVATION (mAHD)
LOGGED BY T Horwood
CHECKED BY

	1	1	1			1	T
Depth (mBGL)	Samples	Duplicate	PID (ppm)	Graphic Log	Material Description	Moisture	Additional Observations
-	TP26-01		0		FILL (REWORKED NATURAL): sandy clay, brown, low-moderate plasticity, hard, with rock fragments, with rootlets, with gravel	D	
- - 0.5	TP26-02		0		FILL (REWORKED NATURAL): clayey sand, brown, fine to medium, low plasticity, loose, with rock fragments	D	
-1					FILL: sand, grey-brown, fine to medium, loose, poorly graded, with rock fragments	D	
- 1.5 - -	TP26-03		0		Townication Double at 0.000 m		
					Termination Depth at: 2.000 m		

Appendix K Tabulated Analytical Data

								Metals							
	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Nickel	Silver	Zinc
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	2	10	1	0.4	0.5	2	2	5	50	5	5	0.1	2	2	5

Location	Field ID	Depth	Date	Sample Type															
Soil Bore	SB01-01	0.0 - 0.1	19/03/2019	Normal	<5	10	<1	<1	<0.5	5	<2	<5	5,970	<5	16	<0.1	<2	<2	<5
Soil Bore	SB01-03	0.9 - 1.0	19/03/2019	Normal	<5	-	-	<1	-	29	-	7	-	6	-	<0.1	11	-	13
Soil Bore	SB01-04	2.1 - 2.2	19/03/2019	Normal	<5	-	-	<1	-	24	-	6	-	6	-	<0.1	8	-	14
Soil Bore	SB02-01	0.0 - 0.1	19/03/2019	Normal	5	-	-	<1	-	24	-	5	-	<5	-	<0.1	4	-	10
Soil Bore	SB02-04	1.5 - 1.6	19/03/2019	Normal	<5	-	-	<1	-	7	-	<5	-	<5	-	<0.1	<2	-	<5
Soil Bore	SB03-01	0.0 - 0.1	19/03/2019	Normal	<5	20	<1	<1	<0.5	12	<2	<5	19,000	<5	13	<0.1	<2	<2	<5
Sest Pit	SB03-02	0.35 - 0.45	19/03/2019	Normal	<5	-	-	<1	-	11	-	<5	-	<5	-	<0.1	4	-	<5
Sest Pit	SB03-03	0.9 - 1.0	19/03/2019	Normal	<5	-	-	<1	-	13	-	<5	-	<5	-	<0.1	<2	-	<5
Soil Bore	SB04-01	0.0 - 0.3	19/03/2019	Normal	10	-	-	<1	-	47	-	8	-	<5	-	<0.1	4	-	11
Soil Bore	SB04-02	0.0 - 0.3	19/03/2019	Field_D	6	-	-	<1	-	36	-	6	-	<5	-	< 0.1	4	-	14
Soil Bore	SB04-03	0.0 - 0.3	19/03/2019	Interlab_D	11	-	-	< 0.4	-	54	-	9.0	-	6.6	-	< 0.1	6.1	-	19
Soil Bore	SB04-04	0.9 - 1.0	19/03/2019	Normal	7	-	-	<1	-	38	-	6	-	<5	-	<0.1	4	-	11
Soil Bore	SB04-06	3.3 - 3.4	19/03/2019	Normal	5	30	<1	<1	<0.5	40	<2	6	52,200	5	30	<0.1	4	<2	12
Sest Pit	SB05-01	0.0 - 0.1	19/03/2019	Normal	<5	-	-	<1	-	16	-	<5	-	<5	-	<0.1	4	-	8
Sest Pit	SB05-03	1.2 - 1.3	19/03/2019	Normal	<5	-	-	<1	-	10	-	<5	-	<5	-	<0.1	<2	-	<5
Sest Pit	SB05-05	4.7 - 4.8	19/03/2019	Normal	<5	-	-	<1	-	10	-	<5	-	<5	-	<0.1	<2	-	<5
Sest Pit	SB06-02	0.3 - 0.4	19/03/2019	Normal	<5	60	<1	<1	<0.5	11	<2	<5	12,200	<5	39	<0.1	3	<2	<5
Sest Pit	SB06-05	3.5 - 3.6	19/03/2019	Normal	<5	-	-	<1	-	8	-	<5	-	<5	-	<0.1	<2	-	<5
Test Pit	TP01-01	0.0 - 0.1	20/03/2019	Normal	<5	80	<1	<1	<0.5	58	11	21	41,300	9	99	<0.1	17	<2	41
Test Pit	TP01-03	1.4 - 1.5	20/03/2019	Normal	<5	-	-	<1	-	7	-	<5	-	<5	-	<0.1	<2	-	<5
Test Pit	TP02-02	0.3 - 0.4	20/03/2019	Normal	<5	-	-	<1	-	12	-	<5	-	<5	-	<0.1	<2	-	<5
Test Pit	TP02-04	1.5 - 1.6	20/03/2019	Normal	<5	-	-	<1	-	19	-	6	-	6	-	<0.1	6	-	10
Test Pit	TP02-05	0.0 - 0.1	20/03/2019	Field_D	<5	-	-	<1	-	6	-	<5	-	<5	-	< 0.1	<2	-	<5
Test Pit	TP02-06	0.0 - 0.1	20/03/2019	Interlab_D	2.1	-	-	< 0.4	-	6.9	-	<5	-	<5	-	< 0.1	<5	-	<5
Test Pit	TP03-02	0.3 - 0.4	20/03/2019	Normal	<5	-	-	<1	-	13	-	<5	-	<5	-	<0.1	2	-	<5
Test Pit	TP03-04	1.9 - 2.0	20/03/2019	Normal	<5	-	-	<1	-	22	-	6	-	7	-	<0.1	8	-	13
Test Pit	TP04-01	0.0 - 0.1	20/03/2019	Normal	<5	-	-	<1	-	28	-	11	-	6	-	<0.1	11	-	18
Test Pit	TP04-03	1.4 - 1.5	20/03/2019	Normal	<5	-	-	<1	-	25	-	9	-	7	-	<0.1	17	-	15
Test Pit	TP05-02	1.0 - 1.1	20/03/2019	Normal	<5	-	-	<1	-	32	-	12	-	6	-	<0.1	9	-	23
Test Pit	TP05-03	1.5 - 1.6	20/03/2019	Normal	<5	-	-	<1	-	40	-	8	-	5	-	<0.1	12	-	24
Test Pit	TP06-01	0.0 - 0.1	20/03/2019	Normal	<5	-	-	<1	-	45	-	24	-	8	-	<0.1	24	-	35
Test Pit	TP06-02	0.5 - 0.6	20/03/2019	Normal	7	-	-	<1	-	42	-	16	-	11	-	<0.1	22	-	41
Test Pit	TP07-01	0.0 - 0.1	20/03/2019	Normal	<5	70	1	<1	<0.5	32	7	19	30,600	8	212	<0.1	18	<2	24
Test Pit	TP07-02	0.5 - 0.6	20/03/2019	Normal	<5	-	-	<1	-	37	-	19	-	9	=	<0.1	20	-	26
Test Pit	TP08-01	0.0 - 0.1	20/03/2019	Normal	5	-	-	<1	-	40	-	33	-	14	=	<0.1	10	-	30
Test Pit	TP08-02	0.4 - 0.5	20/03/2019	Normal	<5	-	-	<1	-	33	-	17	-	10	-	<0.1	13	-	36
Test Pit	TP09-01	0.0 - 0.1	20/03/2019	Normal	<5	-	-	<1	-	35	-	16	-	8	-	<0.1	11	-	36
Test Pit	TP09-02	0.5 - 0.6	20/03/2019	Normal	<5	-	-	<1	-	34	-	19	-	9	-	<0.1	12	-	31
Test Pit	TP10-01	0.0 - 0.1	21/03/2019	Normal	5	-	-	<1	-	36	-	8	-	6	-	<0.1	7	-	22
Test Pit	TP10-03	1.1 - 1.2	21/03/2019	Normal	<5	-	-	<1	-	23	-	12	-	6	-	<0.1	14	-	17
Test Pit	TP11-01	0.0 - 0.1	21/03/2019	Normal	6	-	1 0	16<1	-	31	_	6	_	<5	-	<0.1	3	_	10

								Metals							
	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Cobalt	Copper	lron	lead	Manganese	Mercury	Nickel	Silver	Zinc
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	2	10	1	0.4	0.5	2	2	5	50	5	5	0.1	2	2	5

Location	Field ID	Depth	Date	Sample Type															
Test Pit	TP11-03	1.0 - 1.1	21/03/2019	Normal	6	-	-	<1	-	22	-	<5	-	<5	-	<0.1	3	-	10
Test Pit	TP12-01	0.0 - 0.1	21/03/2019	Normal	<5	<10	<1	<1	<0.5	4	<2	<5	7,240	<5	10	<0.1	<2	<2	<5
Test Pit	TP12-03	1.9 - 2.0	21/03/2019	Normal	<5	-		<1	-	15	-	<5	-	<5	-	<0.1	3	-	8
Test Pit	TP13-02	0.2 - 0.3	21/03/2019	Normal	<5	-		<1	-	6	-	<5	-	<5	-	<0.1	<2	-	<5
Test Pit	TP13-03	0.5 - 0.6	21/03/2019	Normal	<5	-	-	<1	-	4	-	<5	-	<5	-	<0.1	<2	-	7
Test Pit	TP13-05	0.2 - 0.3	21/03/2019	Field_D	<5	-	-	<1	-	8	-	<5	-	<5	-	< 0.1	<2	-	<5
Test Pit	TP13-06	0.2 - 0.3	21/03/2019	Interlab_D	2.5	-	-	< 0.4	-	9.2	-	<5	-	<5	-	< 0.1	<5	-	<5
Test Pit	TP14-01	0.0 - 0.1	21/03/2019	Normal	6	-	-	<1	-	46	-	7	-	7	-	<0.1	5	-	13
Test Pit	TP14-03	1.9 - 2.0	21/03/2019	Normal	8	-	-	<1	-	36	-	6	-	<5	-	<0.1	3	-	10
Test Pit	TP14-04	0.0 - 0.1	21/03/2019	Field_D	6	-	-	<1	-	45	-	7	-	6	-	< 0.1	4	-	13
Test Pit	TP14-05	0.0 - 0.1	21/03/2019	Interlab_D	6.6	-	-	< 0.4	-	53	-	7.6	-	9.8	-	< 0.1	6.9	-	19
Test Pit	TP15-02	0.2 - 0.3	21/03/2019	Normal	6	40	<1	<1	<0.5	45	<2	7	58,600	5	30	<0.1	4	<2	12
Test Pit	TP15-03	1.9 - 2.0	21/03/2019	Normal	10	-	-	<1	-	39	-	7	-	5	-	<0.1	5	-	16
Test Pit	TP16-01	0.0 - 0.1	21/03/2019	Normal	6	-	-	<1	-	44	-	7	-	6	-	< 0.1	4	-	13
Test Pit	TP16-03	0.5 - 0.6	21/03/2019	Normal	9	-	-	<1	-	38	-	6	-	<5	-	<0.1	5	-	15
Test Pit	TP17-02	0.2 - 0.3	21/03/2019	Normal	6	-	-	<1	-	44	-	7	-	6	-	<0.1	5	-	14
Test Pit	TP17-03	1.9 - 2.0	21/03/2019	Normal	9	-	-	<1	-	42	-	7	-	<5	-	<0.1	4	-	13
Test Pit	TP18-01	0.0 - 0.1	21/03/2019	Normal	7	-	-	<1	-	45	-	7	-	7	-	<0.1	5	-	14
Test Pit	TP18-03	0.5 - 0.6	21/03/2019	Normal	7	-	-	<1	-	30	-	5	-	<5	-	<0.1	3	-	11
Test Pit	TP19-01	0.0 - 0.1	21/03/2019	Normal	9	-	-	<1	-	45	-	7	-	<5	-	<0.1	4	-	14
Test Pit	TP19-03	1.9 - 2.0	21/03/2019	Normal	7	-	-	<1	-	40	-	7	-	5	-	<0.1	4	-	12
Test Pit	TP20-01	0.0 - 0.1	21/03/2019	Normal	8	-	-	<1	-	46	-	8	-	7	-	<0.1	6	-	18
Test Pit	TP20-03	1.9 - 2.0	21/03/2019	Normal	10	-	-	<1	-	51	-	7	-	<5	-	<0.1	4	-	10
Test Pit	TP21-01	0.0 - 0.1	21/03/2019	Normal	<5	-	-	<1	-	10	-	<5	-	<5	-	<0.1	<2	-	<5
Test Pit	TP21-03	1.9 - 2.0	21/03/2019	Normal	<5	-	-	<1	-	13	-	<5	-	<5	-	<0.1	6	-	7
Test Pit	TP22-01	0.0 - 0.1	22/03/2019	Normal	7	-	-	<1	-	24	-	11	-	9	-	<0.1	15	-	18
Test Pit	TP22-03	1.0 - 1.1	22/03/2019	Normal	12	-	-	<1	-	26	-	12	-	13	-	<0.1	26	-	19
Test Pit	TP23-01	0.0 - 0.1	22/03/2019	Normal	7	-	-	<1	-	22	-	10	-	10	-	< 0.1	13	-	15
Test Pit	TP23-02	0.2 - 0.3	22/03/2019	Normal	<5	-	-	<1	-	28	-	10		12	-	<0.1	11	-	18
Test Pit	TP23-04	0.0 - 0.1	22/03/2019	Field_D	8	-	-	<1	-	25	-	12	-	10	-	< 0.1	14	-	18
Test Pit	TP23-05	0.0 - 0.1	22/03/2019	Interlab_D	10	-	-	< 0.4	-	39	-	13	-	14	-	< 0.1	21	-	33
Test Pit	TP24-01	0.0 - 0.1	22/03/2019	Normal	<5	210	<1	<1	<0.5	24	<2	6	24,100	<5	42	<0.1	5	<2	52
Test Pit	TP24-03	0.8 - 0.9	22/03/2019	Normal	<5	-	-	<1	-	20	-	<5	-	<5	-	<0.1	3	-	7
Test Pit	TP25-01	0.0 - 0.1	22/03/2019	Normal	<5	-	-	<1	-	24	-	12		8	-	<0.1	12	-	18
Test Pit	TP25-02	0.3 - 0.4	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP25-03	1.9 - 2.0	22/03/2019	Normal	<5	-		<1	-	23	-	12	-	8	-	<0.1	15	-	17
Test Pit	TP26-01	0.0 - 0.1	22/03/2019	Normal	<5	-		<1	-	24	-	13	-	8	-	<0.1	13	-	17
Test Pit	TP26-03	1.9 - 2.0	22/03/2019	Normal	<5	-	-	<1	-	15	-	10	-	6	-	<0.1	10	-	11
Surface	TP27-01	-	20/03/2019	Normal	6	-	-	<1	-	40	-	11	-	6	-	<0.1	8	-	22
Surface	TP28-01	-	20/03/2019	Normal	<5	-	-	<1	-	38	-	14	-	6	-	<0.1	10	-	28
Surface	TP29-01	-	20/03/2019	Normal	<5	-	-2 of	16<1	-	25	-	<5	-	<5	-	<0.1	3	-	9

								Metals							
	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Nickel	Silver	Zinc
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	2	10	1	0.4	0.5	2	2	5	50	5	5	0.1	2	2	5

Location	Field ID	Depth	Date	Sample Type															
Surface	TP30-01	-	20/03/2019	Normal	<5	-	-	<1	-	13	-	<5	-	<5	-	<0.1	<2	-	<5
Stockpile	TP31-01	-	21/03/2019	Normal	<5	-	-	<1	-	19	-	24	-	5	-	<0.1	10	-	11
Surface	TP31-02	-	21/03/2019	Normal	<5	-	-	<1	-	20	-	18	-	6	-	<0.1	9	-	13
Stockpile	TP32-01	-	20/03/2019	Normal	<5	-	-	<1	-	19	-	9	-	<5	-	<0.1	8	-	11
Stockpile	TP33-01	-	20/03/2019	Normal	<5	-	-	<1	-	41	-	26	-	12	-	<0.1	16	-	36
Stockpile	TP34-01	-	20/03/2019	Normal	<5	-	-	<1	-	20	-	11	-	6	-	<0.1	9	-	19
Stockpile	TP35-01	-	20/03/2019	Normal	<5	-	-	<1	-	22	-	11	-	7	-	<0.1	10	-	16
Stockpile	TP36-01	-	20/03/2019	Normal	<5	-	-	<1	-	21	-	14	-	6	-	<0.1	9	-	17
Stockpile	TP37-01	-	20/03/2019	Normal	<5	-	,	<1		17	-	8	-	<5	-	<0.1	7	-	7
Stockpile	TP38-01	-	20/03/2019	Normal	<5	-	-	<1	-	26	-	22	-	8	-	<0.1	11	-	16
Stockpile	TP39-01	-	20/03/2019	Normal	<5	-	-	<1	-	17	-	6	-	<5	-	<0.1	5	-	8
Stockpile	TP40-01	-	22/03/2019	Normal	<5	-	-	<1	-	15	-	10	-	<5	-	<0.1	10	-	12
Surface	TP40-02	-	22/03/2019	Normal	<5	-	,	<1		23	-	13	-	7	-	<0.1	12	-	14
Stockpile	TP40-03	-	22/03/2019	Normal	<5	-	,	<1		16	-	11	-	5	-	<0.1	11	-	14
Stockpile	TP40-04	-	22/03/2019	Interlab_D	3.3	-	-	< 0.4	-	19	-	9.9	-	6.6	-	< 0.1	12	-	21
Stockpile	TP41-01	-	22/03/2019	Normal	<5	80	<1	<1	<0.5	20	5	10	17,500	6	138	<0.1	10	<2	17
Surface	TP41-02	-	22/03/2019	Normal	<5	-	-	<1	-	28	-	14	-	8	-	<0.1	14	-	19
Stockpile	TP42-01	-	22/03/2019	Normal	<5	-	ï	<1		20	-	13	-	6	-	<0.1	12	-	14
Surface	TP42-02	-	22/03/2019	Normal	<5	-		<1		18	-	12	-	7	-	<0.1	11	-	16
Stockpile	TP43-01	-	21/03/2019	Normal	<5	190	<1	<1	<0.5	54	15	22	36,900	6	141	<0.1	18	<2	37
Surface	TP43-02	-	21/03/2019	Normal	<5	-	-	<1	-	57	-	23	-	6	-	<0.1	19	-	40
Stockpile	TP44-01	-	21/03/2019	Normal	<5	-	-	<1	-	13	-	5	-	<5	-	<0.1	6	-	6
Surface	TP44-02	-	21/03/2019	Normal	<5	-	ï	<1		15	-	7	-	9	-	<0.1	6	-	13
Stockpile	TP45-01	-	21/03/2019	Normal	<5	-	ï	<1		56	-	30	-	10	-	<0.1	22	-	46
Surface	TP45-02	-	21/03/2019	Normal	<5	-	-	<1	-	56	-	28	-	11	-	<0.1	21	-	42
Stockpile	TP46-01	-	21/03/2019	Normal	5	-	-	<1	-	14	-	5	-	<5	-	<0.1	6	-	10
Surface	TP46-02	-	21/03/2019	Normal	<5	-	-	<1	-	21	-	7	-	6	-	<0.1	8	-	12
Stockpile	TP47-01	-	21/03/2019	Normal	<5	-	-	<1	-	51	-	18	-	7	-	<0.1	16	-	33
Surface	TP47-02	-	21/03/2019	Normal	<5	-	-	<1	-	52	-	20	-	8	-	<0.1	17	-	36
Stockpile	TP48-01	-	21/03/2019	Normal	5	-	-	<1	-	25	-	24	-	<5	-	<0.1	7	-	15
Surface	TP48-02	-	21/03/2019	Normal	<5	-	-	<1	-	26	-	14	-	7	-	<0.1	12	-	16
Stockpile	TP49-01	-	21/03/2019	Normal	<5	-	-	<1	-	28	-	16	-	8	-	<0.1	16	-	19
Surface	TP49-02	-	21/03/2019	Normal	<5	-	-	<1	-	32	-	15	-	8	-	<0.1	14	-	22
Stockpile	TP50-01	-	21/03/2019	Normal	<5	-	-	<1	-	20	-	14	-	8	-	<0.1	10	-	16
Surface	TP50-02	-	21/03/2019	Normal	<5	-	-	<1	1	21	-	12	-	8	-	<0.1	11	-	15
Stockpile	TP51-01	-	21/03/2019	Normal	8	100	<1	<1	<0.5	24	7	9	24,600	8	232	<0.1	12	<2	15
Surface	TP51-02	-	21/03/2019	Normal	<5	-	-	<1	-	31	-	16	-	10	-	<0.1	18	-	21
Stockpile	TP51-03	-	21/03/2019	Field_D	8	-	-	<1	-	24	-	10	-	10	-	< 0.1	13	-	17
Stockpile	TP51-04	-	21/03/2019	Normal	8	-	-	<1	1	21	-	8	-	8	-	<0.1	12	-	15
Stockpile	TP52-01	-	21/03/2019	Normal	<5	-	-	<1	1	17	-	10	-	14	-	<0.1	8	-	20
Surface	TP52-02	-	21/03/2019	Normal	<5	-	-3 of	16<1	-	16	-	14	-	5	-	<0.1	10	-	12

EQL

							Metals							
Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Cobalt	Copper	lron	Lead	Manganese	Mercury	Nickel	Silver	Zinc
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2	10	1	0.4	0.5	2	2	5	50	5	5	0.1	2	2	5

Location	Field ID	Depth	Date	Sample Type															
Stockpile	TP53-01	-	21/03/2019	Normal	<5	-	-	<1	-	14	-	8	-	10	-	<0.1	6	-	14
Surface	TP53-02	-	21/03/2019	Normal	<5	-	-	<1	-	12	-	7	-	9	-	<0.1	5	-	14
Stockpile	TP54-01	-	21/03/2019	Normal	<5	-	-	<1	-	29	-	15	-	9	-	<0.1	14	-	19
Surface	TP54-02	-	21/03/2019	Normal	<5	-	-	<1	-	23	-	12	-	7	-	<0.1	12	-	17
Surface	TP55-01	-	22/03/2019	Normal	6	120	1	<1	<0.5	21	10	10	18,800	9	240	<0.1	13	<2	15
Surface	TP56-01	-	22/03/2019	Normal	<5	-	-	<1	-	13	-	<5	-	5	-	<0.1	5	-	7
Stockpile	SP01-01	-	20/03/2019	Normal	6	-	-	<1	-	29	-	31	-	<5	-	<0.1	15	-	23
Stockpile	SP02-01	-	20/03/2019	Normal	<5	-	-	<1	-	8	-	6	-	8	-	<0.1	4	-	130
Stockpile	SP03-01	-	20/03/2019	Normal	<5	-	-	<1	-	18	-	14	-	<5	-	<0.1	9	-	11
Stockpile	SP04-01	-	20/03/2019	Normal	<5	80	<1	<1	<0.5	19	5	12	20,500	5	136	<0.1	10	<2	12
Stockpile	SP05-01	-	20/03/2019	Normal	<5	-	-	<1	-	11	-	27	-	<5	-	<0.1	7	-	13
Stockpile	SP06-01	-	20/03/2019	Normal	<5	-	-	<1	-	17	-	10	-	5	-	<0.1	10	-	13
Stockpile	SP07-01	-	20/03/2019	Normal	<5	-	-	<1	-	25	-	12	-	6	-	<0.1	11	-	16
Stockpile	SP08-01	-	20/03/2019	Normal	<5	-	-	<1	-	25	-	16	-	6	-	<0.1	12	-	18

														PA	ΑH													BTEX			
					Acenaphthene	Acenaphthylene	Mg/kg	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzo[b+j]fluoranthene	Chrysene Wg/kg	Dibenz(a,h)anthracene	mg/kg	mg/kg	indeno(1,2,3-c,d)pyrene	Naphthalene	mg/kg	mg/kg	mg/kg	Garcinogenic PAH (BaP	Garcinogenic PAH (BaP	G Carcinogenic PAH (BaP	Benzene Mg/kg	Toluene Mg/kg	@ Effrylbenzene	Xylene (o)	Xylene (m & p)	Mg/kg Xylene Total	mg/kg
EQL					0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.2	0.3	0.2
Location	Field ID	Depth	Date	Sample Type																											
Soil Bore	SB01-01	0.0 - 0.1	19/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Soil Bore	SB01-03	0.9 - 1.0	19/03/2019	Normal	-		-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Soil Bore	SB01-04	2.1 - 2.2	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Soil Bore Soil Bore	SB02-01 SB02-04	0.0 - 0.1 1.5 - 1.6	19/03/2019	Normal Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.2
Soil Bore	SB03-01	0.0 - 0.1	19/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Sest Pit	SB03-01	0.35 - 0.45	19/03/2019	Normal	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	~0.5	-0.5	~0.5	-0.5	-0.5	-0.5	<1	-0.5	-0.5	-0.5	-0.5	0.0	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Sest Pit	SB03-03	0.9 - 1.0	19/03/2019	Normal	-	-	_	-	-	_	_	_	-	_	-	_	-	<1	-	_	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Soil Bore	SB04-01	0.0 - 0.3	19/03/2019	Normal	-	-	-	-	_	-	-	-	-	-	-	_	_	<1	-	-	-	_	-	_	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Soil Bore	SB04-02	0.0 - 0.3	19/03/2019	Field D	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.2
Soil Bore	SB04-03	0.0 - 0.3	19/03/2019	Interlab D	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.5	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	-
Soil Bore	SB04-04	0.9 - 1.0	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Soil Bore	SB04-06	3.3 - 3.4	19/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Sest Pit	SB05-01	0.0 - 0.1	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	1	<0.2	<0.5	<0.5	<0.5	0.7	0.7	0.7
Sest Pit	SB05-03	1.2 - 1.3	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Sest Pit	SB05-05	4.7 - 4.8	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Sest Pit	SB06-02	0.3 - 0.4	19/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Sest Pit	SB06-05	3.5 - 3.6	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP01-01	0.0 - 0.1	20/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP01-03	1.4 - 1.5	20/03/2019	Normal	-	~	~	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP02-02	0.3 - 0.4	20/03/2019	Normal	-	~	~	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP02-04	1.5 - 1.6	20/03/2019	Normal	-	~	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP02-05	0.0 - 0.1	20/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP02-06	0.0 - 0.1	20/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	-
Test Pit	TP03-02	0.3 - 0.4	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP03-04 TP04-01	1.9 - 2.0 0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.2
Test Pit Test Pit	TP04-01	1.4 - 1.5	20/03/2019	Normal Normal	-	-		-	-	-		-	-	-	-	-	-	<1	-	-	-		-	-	<0.2	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.2
Test Pit	TP05-02	1.0 - 1.1	20/03/2017	Normal	-	-			-	-			_		-	-		<1	_	_	-		_	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP05-03	1.5 - 1.6	20/03/2019	Normal	-	-	-	-	-	_	_	-	-	_	-	-	-	<1	-	_	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP06-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	_	_	-	-	_	-	-	-	<1	-	_	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP06-02	0.5 - 0.6	20/03/2019	Normal	-	_	_	-	-	_	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP07-01	0.0 - 0.1	20/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP07-02	0.5 - 0.6	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP08-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP08-02	0.4 - 0.5	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP09-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP09-02	0.5 - 0.6	20/03/2019	Normal	-	-	÷	-	-	-	-	-	-		-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP10-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	1	-	-	-	-	-	-	1	-	<1	-	-	-	-	-	1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP10-03	1.1 - 1.2	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-]	-	-	<1	-	-	-	-	-	1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Test Pit	TP11-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-5 of	16 -	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2

FQL	g mg/kg	Ethylbenzene 0.1		Mg/kgmg/kgb)	walka wa
Part Part	g mg/kg	mg/kg	mg/kg	Xylene (m &	
EQL				11197109	
Location Field ID Depth Date Sample Type Test Pit TP11-03 1.0 - 1.1 21/03/2019 Normal -		_	0.1	0.2	0.3
Test Pit TP12-01 0.0 - 0.1 21/03/2019 Normal <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5					
			<0.5	<0.5	<0.5 <
lesirii iriz-us 1,7 - z.u zi/us/zuiz Nomai - - - - - - - - -			<0.5	<0.5	<0.5 <
T-+104 T012 00 0.0 0.0 0.1 01/03/0010 NI			<0.5	<0.5	<0.5 <
Test Pit TP13-02 0.2-0.3 21/03/2019 Normal		_	_	<0.5	<0.5 <
Test Pit TP13-03 0.5-0.6 21/03/2019 Normal <1		_	_	<0.5	<0.5 <
Test Pit TP13-05 0.2-0.3 21/03/2019 Field_D		<0.5	<0.5	<0.5	<0.5 <0
Test Pit TP13-06 0.2-0.3 21/03/2019 Interlab_D	<0.1	<0.1	<0.1	<0.2	<0.3
Test Pit TP14-01 0.0 - 0.1 21/03/2019 Normal <1 <0.2	_	_	<0.5	<0.5	<0.5 <
Test Pit TP14-03 1.9-2.0 21/03/2019 Normal <1	_	_	_	<0.5	<0.5 <
Test Pit	_	<0.5	<0.5	<0.5	<0.5 <0
Test Pit TP14-05 0.0 - 0.1 21/03/2019 Interlab_D -	<0.1	<0.1	<0.1	<0.2	<0.3
Test Pit TP15-02 0.2 - 0.3 21/03/2019 Normal <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5			_	<0.5	<0.5 <
Test Pit TP15-03 1.9 - 2.0 21/03/2019 Normal <1	_	_	<0.5	<0.5	<0.5 <
Test Pit		_	<0.5	<0.5	<0.5 <
Test Pit	_		<0.5	<0.5	<0.5 <
Test Pit		_	<0.5	<0.5	<0.5 <
Test Pit			_	<0.5	
Test Pit			<0.5	<0.5	<0.5 <
Test Pit		_	<0.5	<0.5	<0.5
Test Pit			<0.5	<0.5	<0.5
Test Pit			<0.5	<0.5	<0.5
Test Pit TP20-01 0.0 - 0.1 21/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit TP20-03 1.9 - 2.0 21/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit TP21-01 0.0 - 0.1 21/03/2019 Normal <1			<0.5	<0.5	<0.5
Test Pit TP21-03 1.9 - 2.0 21/03/2019 Normal <1	_		<0.5	<0.5	<0.5
Test Pit TP22-01 0.0 - 0.1 22/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit	<0.5	<0.5	<0.5	<0.5	<0.5 <
Test Pit TP23-01 0.0 - 0.1 22/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit TP23-02 0.2 - 0.3 22/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit	< 0.5	< 0.5	< 0.5	< 0.5	<0.5 <0
Test Pit TP23-05 0.0 - 0.1 22/03/2019 Interlab_D	< 0.1	<0.1	< 0.1	< 0.2	<0.3
Test Pit	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit TP24-03 0.8 - 0.9 22/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit TP25-02 0.3 - 0.4 22/03/2019 Normal	-	-	-	-	-
Test Pit TP25-03 1.9 - 2.0 22/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit TP26-01 0.0 - 0.1 22/03/2019 Normal < 1	<0.5	<0.5	<0.5	<0.5	<0.5
Test Pit TP26-03 1.9 - 2.0 22/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Surface TP27-01 - 20/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Surface TP28-01 - 20/03/2019 Normal <1	<0.5	<0.5	<0.5	<0.5	<0.5
Surface TP29-01 - 20/03/2019 Normal	<0.5	<0.5	<0.5	<0.5	<0.5

														P	АН													BTEX			
					Acenaphthene	Bay/ga	mg/kg	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzo[b+j]fluoranthene	mg/kg	Dibenz(a,h)anthracene	mg/kg	Eluorene	Indeno(1,2,3-c,d)pyrene	Maphthalene	mg/kg	Byrene Pyrene	mg/kg	Garcinogenic PAH (BaP S≯ TEQ zero LOR)	Garcinogenic PAH (BaP	Garcinogenic PAH (BaP BY/REQ LOR)	Benzene mg/kg	Toluene mg/kg	Effylbenzene	Xylene (o)	Xylene (m & p)	Mg/kg	mg/kg
EQL					0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.2	0.3	0.2
						-				ļ.		ļ.						!	ļ.			ļ.			Į.						
Location	Field ID	Depth	Date	Sample Type	1					1		I						-1	ı			1			-0.0	-O.F	-O.F	-0.5	-O F	40 F	-0.0
Surface Stockpile	TP30-01 TP31-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1 <1	-	-	-	-	-	-	<0.2	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.2
Surface	TP31-01	-	21/03/2019	Normal	-	_	-	-	-	_	-	-	-	_	-	-	-	<1	-	-	_	-	_	_	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP32-01	_	20/03/2019	Normal	-	-	-	-	-	_	_	_	_	_	_	_	_	<1	-	-	-	_	_	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP33-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP34-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP35-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP36-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP37-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP38-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP39-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-		-	<1	-	-	1	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP40-01	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-		-	<1	-	-	1	-	-	-	<0.2	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP40-02	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP40-03	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP40-04	-	22/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.5	-	-	-	-	-	-	< 0.1	<0.1	< 0.1	< 0.1	< 0.2	< 0.3	-
Stockpile	TP41-01	-	22/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP41-02	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	ï	<1	-	-	1	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP42-01	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP42-02	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP43-01	-	21/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP43-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP44-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	~	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP44-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	~	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP45-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	~	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP45-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP46-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	~	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP46-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP47-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP47-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP48-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP48-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP49-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
							-					-	-																		
							-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-							
									-0.5	- CO E		- CO E	-0.5	-O F	- C E	-0.5	-0.5		-0.5	-0.5	-0 =	-0.5	0.4	1.0							
							\U.3		\U.3	\U.5	\U.5	~U.5	~U.3	~U.5	\U.5	~ ∪.5			\U.3		~∪.5	\U.5		1.2							
							-	-	 -	-	<u> </u>	ļ -	 -	-	<u> </u>	-	_		ļ -	-		-	-	-							
							-	-	-	-	-	-	-	-	-		-		 -		-	-	-	-							
						_	-			_		 		-	1 -		-		<u> </u>	_		-	-	-							
		-			-	-	-	-	-	-	-	-	-7 nt	16 -	-	-			-	-	-	-	-	-							
Surface Stockpile Surface Stockpile Surface Stockpile Surface Stockpile Stockpile Stockpile Stockpile	TP49-02 TP50-01 TP50-02 TP51-01 TP51-02 TP51-03 TP51-04 TP52-01 TP52-02	-	21/03/2019 21/03/2019 21/03/2019 21/03/2019 21/03/2019 21/03/2019 21/03/2019 21/03/2019 21/03/2019 21/03/2019	Normal Normal Normal Normal Normal Normal Field_D Normal Normal Normal	- - - <0.5 - - - -		-	- - - <0.5 - - -	- - - <0.5 - - -	- - <0.5 - - -	- - - <0.5 - - - -	-	- - <0.5 - - - - - -7 of	-	-	- - <0.5 - - - -	- - <0.5 - - - -	<1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- - <0.5 - - -	- - <0.5 - - -	- - <0.5 - - - -	- - <0.5 - - -	- - 0.6 - - -	- - 1.2 - - -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>

														PA	ХH													BTEX			
					Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzo[b+j]fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH	Carcinogenic PAH (BaP TEQ zero LOR)	Carcinogenic PAH (BaP TEQ Half LOR)	Carcinogenic PAH (BaP TEQ LOR)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Total BTEX
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg		mg/kg
EQL					0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.2	0.3	0.2
Location	Field ID	Depth	Date	Sample Type																											
Stockpile	TP53-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP53-02	-	21/03/2019	Normal	-	-	1	-	-	-		-	-	-	-	-	-	<1	1	-	1	-	-	1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	TP54-01	-	21/03/2019	Normal	-	-		-	-	-		-	-	-	-	-	-	<1		-		-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP54-02	-	21/03/2019	Normal	-	-		-	-	-		-	-	-	-	-	-	<1		-		-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP55-01	-	22/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Surface	TP56-01	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	SP01-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	SP02-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	=	<1	-	-	-	-	=	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	SP03-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	=	<1	-	-	-	-	=	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	SP04-01	-	20/03/2019	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	SP05-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-		<1	- 1	-	- 1	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	SP06-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	SP07-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Stockpile	SP08-01	-	20/03/2019	Normal	-	~	-	-	~	-	-	-	-	-	-	-	-	<1	-	÷	-	~	-	-	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2

Test Pit

TP11-01

0.0 - 0.1 21/03/2019

															Orgo	anochlor	ine Pestic	cides										
					.4-DDD	,4-DDE	,4-DDT	DDT+DDE+DDD	-BHC	р-вис	-BHC	-BHC (Lindane)	Aldrin	Dieldrin	Aldrin + Dieldrin	chlordane	Chlordane (cis)	Chlordane (trans)	Endosulfan	Endosulfan I	indosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL					0.05	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2
					1		ı					ı								ı								
Location	Field ID	Depth	Date	Sample Type	-0.05	-0.05	-0.0	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	.0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	
Soil Bore Soil Bore	SB01-01 SB01-03	0.0 - 0.1	19/03/2019 19/03/2019	Normal Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Soil Bore	SB01-03	2.1 - 2.2	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-
Soil Bore	SB02-01	0.0 - 0.1	19/03/2019	Normal	-	_	_	_	-	_		-	-	-	-		-	-	_	-	-			_	_	_	-	-
Soil Bore	SB02-04	1.5 - 1.6	19/03/2019	Normal	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_		_	_	_	-	_	_
Soil Bore	SB03-01	0.0 - 0.1	19/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Sest Pit	SB03-02	0.35 - 0.45	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sest Pit	SB03-03	0.9 - 1.0	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-
Soil Bore	SB04-01	0.0 - 0.3	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
Soil Bore	SB04-02	0.0 - 0.3	19/03/2019	Field D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil Bore	SB04-03	0.0 - 0.3	19/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil Bore	SB04-04	0.9 - 1.0	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil Bore	SB04-06	3.3 - 3.4	19/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Sest Pit	SB05-01	0.0 - 0.1	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sest Pit	SB05-03	1.2 - 1.3	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sest Pit	SB05-05	4.7 - 4.8	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sest Pit	SB06-02	0.3 - 0.4	19/03/2019	Normal	< 0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Sest Pit	SB06-05	3.5 - 3.6	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP01-01	0.0 - 0.1	20/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Test Pit	TP01-03	1.4 - 1.5	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP02-02	0.3 - 0.4	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP02-04	1.5 - 1.6	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP02-05	0.0 - 0.1	20/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP02-06	0.0 - 0.1	20/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP03-02	0.3 - 0.4	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP03-04	1.9 - 2.0	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
Test Pit	TP04-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP04-03	1.4 - 1.5	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP05-02	1.0 - 1.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP05-03	1.5 - 1.6	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP06-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP06-02	0.5 - 0.6	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP07-01	0.0 - 0.1	20/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Test Pit	TP07-02	0.5 - 0.6	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP08-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP08-02	0.4 - 0.5	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP09-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP09-02	0.5 - 0.6	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP10-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP10-03	1.1 - 1.2	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

9 of 16

											Orgo	ınochlori	ne Pestic	ides										
	4,4-DDD	4,4-DDE	4,4-DDT	DDT+DDE+DDD	a-BHC	D-BHC	д-вис	g-BHC (Lindane)	Aldrin	Dieldrin	Aldrin + Dieldrin	chlordane	Chlordane (cis)	Chlordane (frans)	Endosulfan	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
QL	0.05	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2

Location	Field ID	Depth	Date	Sample Type																								
Test Pit	TP11-03	1.0 - 1.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP12-01	0.0 - 0.1	21/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.2
Test Pit	TP12-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP13-02	0.2 - 0.3	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP13-03	0.5 - 0.6	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP13-05	0.2 - 0.3	21/03/2019	Field D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP13-06	0.2 - 0.3	21/03/2019	Interlab D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP14-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP14-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP14-04	0.0 - 0.1	21/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP14-05	0.0 - 0.1	21/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP15-02	0.2 - 0.3	21/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.2
Test Pit	TP15-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP16-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP16-03	0.5 - 0.6	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP17-02	0.2 - 0.3	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP17-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP18-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP18-03	0.5 - 0.6	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP19-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP19-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP20-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP20-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-		-
Test Pit	TP21-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-		-
Test Pit	TP21-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
Test Pit	TP22-01	0.0 - 0.1	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
Test Pit	TP22-03	1.0 - 1.1	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP23-01	0.0 - 0.1	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	,	-	-	,	-	,	-
Test Pit	TP23-02	0.2 - 0.3	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	,	-	-	,	-	,	-
Test Pit	TP23-04	0.0 - 0.1	22/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP23-05	0.0 - 0.1	22/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	1	-	1	-
Test Pit	TP24-01	0.0 - 0.1	22/03/2019	Normal	< 0.05	<0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.2
Test Pit	TP24-03	0.8 - 0.9	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
Test Pit	TP25-01	0.0 - 0.1	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP25-02	0.3 - 0.4	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	,	-	-	,	-	,	-
Test Pit	TP25-03	1.9 - 2.0	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP26-01	0.0 - 0.1	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit	TP26-03	1.9 - 2.0	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP27-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP28-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP29-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	10 of 16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Test Pit Surface Surface	TP26-03 TP27-01 TP28-01	1.9 - 2.0	22/03/2019 20/03/2019 20/03/2019	Normal Normal	-			-	-	-	-	- - - 10 of 16	-	-	-		-	-	1 1	-	-	-	-		-	-		-

															Orgo	anochlori	ine Pestic	ides										
																						ı	ı			l		
					4,4-DDD	4,4-DDE	4,4-DDT	DDT+DDE+DDD	a-BHC	р-внс	д-внС	g-BHC (Lindane)	Aldrin	Dieldrin	Aldrin + Dieldrin	chlordane	Chlordane (cis)	Chlordane (frans)	Endosulfan	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL					0.05	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2
Location	Field ID	Depth	Date	Sample Type																								
Surface	TP30-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP31-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP31-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-
Stockpile	TP32-01	-	20/03/2019	Normal	-	-	-	-	-	-	-		-	_	-	_	-	-	_	-	-	-	-	<u> </u>	H	-	-	-
Stockpile	TP33-01	-	20/03/2017	Normal	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP34-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	_	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP35-01	_	20/03/2019	Normal	_	-	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	\vdash	_	_	_
Stockpile	TP36-01	-	20/03/2017	Normal	-	-	-	-	_	-	-		-		_	_			_	-	-	-	-	-	\vdash	_	-	-
Stockpile	TP37-01	-	20/03/2019	Normal	-	-	-	-	-	_	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-
Stockpile	TP38-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	\vdash \vdash \vdash	-	-	-
Stockpile	TP39-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
	TP40-01	-	22/03/2019		-	_			-	-			-			-						-				-		-
Stockpile				Normal		-	-	-			-	-		-	-	-	-	-	-	-	-		-	-	-		-	
Surface	TP40-02	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-
Stockpile	TP40-03	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Stockpile	TP40-04	-	22/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-	- 1	-
Stockpile	TP41-01	-	22/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Surface	TP41-02	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP42-01	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP42-02	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP43-01	-	21/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Surface	TP43-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP44-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP44-02	-	21/03/2019	Normal	-	-	1	-	-	-	-	-	-	·	-	-	-	-	-		-	-	-	-	<u> </u>	-	-	-
Stockpile	TP45-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP45-02	-	21/03/2019	Normal	-	-	1	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP46-01	-	21/03/2019	Normal	-	-	1	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP46-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP47-01	-	21/03/2019	Normal	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP47-02	-	21/03/2019	Normal	-	-	-	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷	-	-
Stockpile	TP48-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP48-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
Stockpile	TP49-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP49-02	_	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-
Stockpile	TP50-01	_	21/03/2019	Normal	-	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_		_	-	_
Surface	TP50-02	-	21/03/2019	Normal	-	-	-	_	_	-	-	_	_	_	_	_	_		-	-				-		-		-
Stockpile	TP51-01	-	21/03/2017	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
	TP51-02		21/03/2017		-0.05	-0.03	-0.2	₹0.05	NO.00	-0.03	-0.03	₹0.05	<0.05	-0.03	-0.03	~0.05	₹0.05	~0.05	-0.03	~0.03	-0.03	-0.03	-0.03	-0.03	₹0.05		-0.05	
Surface				Normal				-	-	-		-	-	-		-	-	-							⊢ ⊢	· -		
Stockpile	TP51-03	-	21/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		=	=	-			-	-
Stockpile	TP51-04	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP52-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Surface	TP52-02	-	21/03/2019	Normal	-	-	=	-	-	-	-	11 of 16	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-

															Org	anochlor	ine Pesti	cides										
					4,4-DDD	4,4-DDE	4,4-DDT	001+00E+000	a-BHC	P-BHC	d-BHC	g-BHC (Lindane)	Aldrin	Dieldrin	Aldrin + Dieldrin	chlordane	Chlordane (cis)	Chlordane (frans)	Endosulfan	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor
EQL					mg/kg 0.05	mg/kg 0.05	mg/kg 0.2	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.2
Location	Field ID	Depth	Date	Sample Type																								
Stockpile	TP53-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP53-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	TP54-01	-	21/03/2019	Normal	-	÷	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP54-02	-	21/03/2019	Normal	-	÷	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface	TP55-01	-	22/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Surface	TP56-01	-	22/03/2019	Normal	-	~	~	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-
Stockpile	SP01-01	-	20/03/2019	Normal	-	~	~	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-
Stockpile	SP02-01	-	20/03/2019	Normal	-	÷	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	SP03-01	-	20/03/2019	Normal	-	~	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	SP04-01	-	20/03/2019	Normal	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Stockpile	SP05-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	SP06-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	SP07-01	-	20/03/2019	Normal	-	~	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile	SP08-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	Phe	enols		Halogenated Benzenes	Halogenated Phenols					ı	norganic	s					Polychlorinated Biphenyls	Anions	рН
2-mefhylphenol	3-&4-methylphenol	Total Phenols	Sum of Phenols	Нехаспіого Бепгепе	Pentachlorophenol	Calcium/Magnesium Ratio	Exchangeable Sodium	Cation Exchange Capacity (CEC)	Exchangeable Sodium Percent	Exchangeable Magnesium	Exchangeable Calcium	Exchangeable Potassium	Moisture Content	Moisture Content (103°C)	pH (aqueous extract)	рн (Гаb)	PCBs (Sum of total)	Sulphate	рн (СаСі2)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	cmol/kg	cmol/kg	%	cmol/kg	cmol/kg	cmol/kg	%	%	pH_Units	pH_Units	mg/kg	mg/kg	pH Unit
0.5	1	0.5	0.5	0.05	2		0.2	0.2		0.2	0.2	0.2	0.1	1	0.1	0.01	0.1	30	0.1

Location	Field ID	Depth	Date	Sample Type																				
Soil Bore	SB01-01	0.0 - 0.1	19/03/2019	Normal	< 0.5	<1	<0.5	<0.5	< 0.05	<2	-	-	-	-	-	-	-	<1.0	-	-	-	<0.1	<50	-
Soil Bore	SB01-03	0.9 - 1.0	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	13.5	-	-	-	-	160	8.2
Soil Bore	SB01-04	2.1 - 2.2	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	13.0	-	-	-	-	240	8.2
Soil Bore	SB02-01	0.0 - 0.1	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5	-	-	-	-	<50	7.8
Soil Bore	SB02-04	1.5 - 1.6	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-	-	-	100	8.1
Soil Bore	SB03-01	0.0 - 0.1	19/03/2019	Normal	<0.5	<1	<0.5	<0.5	< 0.05	<2	-	-	-	-	-	-	-	1.7	-	-	-	<0.1	<50	-
Sest Pit	SB03-02	0.35 - 0.45	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	-	-	<50	8.0
Sest Pit	SB03-03	0.9 - 1.0	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.2	-	-	-	-	<50	7.4
Soil Bore	SB04-01	0.0 - 0.3	19/03/2019	Normal	-	,	-	-	-	-	-	-	-	-	-	-	-	10.2	-	-	-	-	150	7.7
Soil Bore	SB04-02	0.0 - 0.3	19/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	8.8	-	-	-	-	130	7.8
Soil Bore	SB04-03	0.0 - 0.3	19/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	8.8	-	-	230	-
Soil Bore	SB04-04	0.9 - 1.0	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	27.2	-	-	-	1	300	7.0
Soil Bore	SB04-06	3.3 - 3.4	19/03/2019	Normal	<0.5	<1	<0.5	<0.5	< 0.05	<2	-	-	-	-	-	-	-	36.1	-	-	-	<0.1	280	-
Sest Pit	SB05-01	0.0 - 0.1	19/03/2019	Normal	-	,	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	-	-	60	7.9
Sest Pit	SB05-03	1.2 - 1.3	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	-	-	50	8.0
Sest Pit	SB05-05	4.7 - 4.8	19/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.5	-	-	-	-	<50	7.7
Sest Pit	SB06-02	0.3 - 0.4	19/03/2019	Normal	<0.5	<1	<0.5	< 0.5	< 0.05	<2	-	-	-	-	-	-	-	5.0	-	-	-	<0.1	<50	-
Sest Pit	SB06-05	3.5 - 3.6	19/03/2019	Normal	-	,	-	-	-	-	-	-	-	-	-	-	-	9.3	-	-	-	-	50	6.9
Test Pit	TP01-01	0.0 - 0.1	20/03/2019	Normal	<0.5	<1	<0.5	<0.5	< 0.05	<2	-	-	-	-	-	-	-	1.7	-	-	-	<0.1	<50	-
Test Pit	TP01-03	1.4 - 1.5	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	-	-	70	7.9
Test Pit	TP02-02	0.3 - 0.4	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	-	-	150	7.8
Test Pit	TP02-04	1.5 - 1.6	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	16.8	-	-	-	-	270	8.0
Test Pit	TP02-05	0.0 - 0.1	20/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	<50	6.5
Test Pit	TP02-06	0.0 - 0.1	20/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	7.5	-	=	<30	-
Test Pit	TP03-02	0.3 - 0.4	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-		-	6.4		-	-	1	230	8.0
Test Pit	TP03-04	1.9 - 2.0	20/03/2019	Normal	-	-	-		-	-	-	-	-	-	-		-	17.4	,	-	-	-	320	8.1
Test Pit	TP04-01	0.0 - 0.1	20/03/2019	Normal	-	-	-		-	-	-	-	-	-	-		-	6.3	,	-	-	-	<50	7.7
Test Pit	TP04-03	1.4 - 1.5	20/03/2019	Normal	-	-	-		-	-	1	-	-	-	-		-	13.6	1	-	-	=	<50	7.9
Test Pit	TP05-02	1.0 - 1.1	20/03/2019	Normal	-	-	-		-	-	1	-	-	-	-		-	5.4	1	-	-	=	50	7.6
Test Pit	TP05-03	1.5 - 1.6	20/03/2019	Normal	-	-	-	1	-	-	-	-	-	-	-		-	11.6		-	-	1	580	8.0
Test Pit	TP06-01	0.0 - 0.1	20/03/2019	Normal	-	-	-		-	-	-	-	-	-	-		-	4.8	,	-	-	-	70	8.0
Test Pit	TP06-02	0.5 - 0.6	20/03/2019	Normal	-	-	-	-	=	-	-	-	-	-	-	-	-	14.9	-	-	-	=	<50	8.1
Test Pit	TP07-01	0.0 - 0.1	20/03/2019	Normal	<0.5	<1	<0.5	<0.5	<0.05	<2	-	-	-	-	-	-	-	7.9	-	-	-	<0.1	<50	-
Test Pit	TP07-02	0.5 - 0.6	20/03/2019	Normal	-	-	-		-	-	1	-	-	-	-		-	10.2	1	-	-	=	<50	7.3
Test Pit	TP08-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.3	-	-	-	-	<50	7.8
Test Pit	TP08-02	0.4 - 0.5	20/03/2019	Normal	-		-	-	=	=	-	-	-	-	-	-	-	6.0		-	-	=	<50	7.9
Test Pit	TP09-01	0.0 - 0.1	20/03/2019	Normal	-	-	-	-	=	=.	-	-	-	-	-	-	-	3.2	-	-	-	=	700	8.1
Test Pit	TP09-02	0.5 - 0.6	20/03/2019	Normal	-	-	-	-	=	=.	-	-	-	-	-	-	-	10.0	-	-	-	=	150	8.0
Test Pit	TP10-01	0.0 - 0.1	21/03/2019	Normal	-	1	-	-	-	-	-	-	-	-	-	-	-	5.5		-	=	-	<50	7.7
Test Pit	TP10-03	1.1 - 1.2	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	15.4	-	-	-	-	70	8.0
Test Pit	TP11-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	=	- 13 of 1	5 -	-	-	-	-	-	-	2.9	-	-	-	=	<50	7.0

	Phe	nols		Halogenated Benzenes	Halogenated Phenols					Ir	norganic	:s					Polychlorinated Biphenyls	Anions	рН
2-mefhylphenol	3-&4-methylphenol	Total Phenols	Sum of Phenols	Hexachlorobenzene	Pentachlorophenol	Calcium/Magnesium Ratio	Exchangeable Sodium	Cation Exchange Capacity (CEC)	Exchangeable Sodium Percent	Exchangeable Magnesium	Exchangeable Calcium	Exchangeable Potassium	Moisture Content	Moisture Content (103°C)	pH (aqueous extract)	рн (Гаb)	PCBs (Sum of total)	Sulphate	рн (СаСі2)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	cmol/kg	cmol/kg	%	cmol/kg	cmol/kg	cmol/kg	%	%	pH_Units	pH_Units	mg/kg	mg/kg	pH U
0.5	1	0.5	0.5	0.05	2		0.2	0.2		0.2	0.2	0.2	0.1	1	0.1	0.01	0.1	30	0.1

Location	Field ID	Depth	Date	Sample Type																				
Test Pit	TP11-03	1.0 - 1.1	21/03/2019	Normal	-	-	-	-	=.	=	-	-	-	-	-	-	-	18.6	-	-	-	=	170	7.5
Test Pit	TP12-01	0.0 - 0.1	21/03/2019	Normal	<0.5	<1	<0.5	<0.5	<0.05	<2	1	-	-	-	-	-	-	<1.0	-	-	-	<0.1	-	-
Test Pit	TP12-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-	-	-	-	8.0
Test Pit	TP13-02	0.2 - 0.3	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.5	-	-	-	-	-	8.0
Test Pit	TP13-03	0.5 - 0.6	21/03/2019	Normal	-	-	-	-	-	=	-	-	-	-	-	-	-	3.3	-	-	-	-	-	8.0
Test Pit	TP13-05	0.2 - 0.3	21/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-	-	=	-	8.0
Test Pit	TP13-06	0.2 - 0.3	21/03/2019	Interlab_D	-	1	-	-	1	-	-	-	-	-	-	-	-	-	3.6	9.4	-	-	-	-
Test Pit	TP14-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	1	-	-	-	-	-	-	-	-	8.3	-	-	-	-	730	7.7
Test Pit	TP14-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	1	-	-	-	-	-	-	-	-	35.1	-	-	-	-	190	7.5
Test Pit	TP14-04	0.0 - 0.1	21/03/2019	Field_D	-	-	-	-	1	-	1	-	-	-	-	-	-	8.4	-	-	-	-	750	7.5
Test Pit	TP14-05	0.0 - 0.1	21/03/2019	Interlab_D	-	-	-	-	1	-	1	-	-	-	-	-	-	-	8.0	8.3	-	-	1,000	-
Test Pit	TP15-02	0.2 - 0.3	21/03/2019	Normal	<0.5	<1	<0.5	<0.5	<0.05	<2	-	-	-	-	-	-	-	27.2	-	-	-	<0.1	300	-
Test Pit	TP15-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	47.0	-	-	-	-	400	7.4
Test Pit	TP16-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	5.1	-	-	-	-	230	7.5
Test Pit	TP16-03	0.5 - 0.6	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	÷	30.8	-	-	-	-	270	7.3
Test Pit	TP17-02	0.2 - 0.3	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	÷	8.9	-	-	-	-	390	7.4
Test Pit	TP17-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	40.7	-	-	-	-	330	7.5
Test Pit	TP18-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	-	-	380	7.5
Test Pit	TP18-03	0.5 - 0.6	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	28.4	-	-	-	-	200	7.4
Test Pit	TP19-01	0.0 - 0.1	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	÷	3.5	-	-	-	-	60	7.7
Test Pit	TP19-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	÷	35.0	-	-	-	-	250	7.0
Test Pit	TP20-01	0.0 - 0.1	21/03/2019	Normal	-	-	÷	-	-	=	-	-	-	-	-	-	÷	3.6	-	-	-	-	140	7.9
Test Pit	TP20-03	1.9 - 2.0	21/03/2019	Normal	-	-	÷	-	-	=	-	-	-	-	-	-	÷	44.4	-	-	-	-	460	6.9
Test Pit	TP21-01	0.0 - 0.1	21/03/2019	Normal	-	-	÷	-	-	=	-	-	-	-	-	-	÷	3.0	-	-	-	-	<50	7.5
Test Pit	TP21-03	1.9 - 2.0	21/03/2019	Normal	-	-	-	-	=	-	-	-	-	-	-	-	-	12.3	-	-	-	=	120	8.1
Test Pit	TP22-01	0.0 - 0.1	22/03/2019	Normal	-	-	-	-	=	-	-	-	-	-	-	-	-	3.8	-	-	-	=	110	8.3
Test Pit	TP22-03	1.0 - 1.1	22/03/2019	Normal	-	-	÷	-	-	=	-	-	-	-	-	-	÷	19.8	-	-	-	-	270	8.3
Test Pit	TP23-01	0.0 - 0.1	22/03/2019	Normal	-	-	÷	-	-	=	-	-	-	-	-	-	÷	5.8	-	-	-	-	130	8.2
Test Pit	TP23-02	0.2 - 0.3	22/03/2019	Normal	-	-	÷	-	-	=	-	-	-	-	-	-	÷	17.3	-	-	-	-	650	8.0
Test Pit	TP23-04	0.0 - 0.1	22/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	-	=	-	8.3
Test Pit	TP23-05	0.0 - 0.1	22/03/2019	Interlab_D	-	-	-	-	=	E	-	-	-	-	-	-	-	-	6.4	9.8	-	=	-	-
Test Pit	TP24-01	0.0 - 0.1	22/03/2019	Normal	<0.5	<1	<0.5	<0.5	<0.05	<2	-	-	-	-	-	-	-	4.0	-	-	-	<0.1	420	-
Test Pit	TP24-03	0.8 - 0.9	22/03/2019	Normal	-	-	÷	-	-	=	-	-	-	-	-	-	÷	7.1	-	-	-	-	100	7.4
Test Pit	TP25-01	0.0 - 0.1	22/03/2019	Normal	-	-	÷	-	-	=	-	-	-	-	-	-	÷	4.6	-	-	-	-	~	8.1
Test Pit	TP25-02	0.3 - 0.4	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-		15.4	-	-	-	-	240	-
Test Pit	TP25-03	1.9 - 2.0	22/03/2019	Normal	-	-	-	-	=	-	-	-	-	-	-	-	-	10.4	-	-	-	=	120	8.0
Test Pit	TP26-01	0.0 - 0.1	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.2	-	-	-	-	190	8.0
Test Pit	TP26-03	1.9 - 2.0	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-		11.2	-	-	-	-	60	8.0
Surface	TP27-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	1.9	-	-	-	-	<50	7.6
Surface	TP28-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	<50	7.4
Surface	TP29-01	-	20/03/2019	Normal	-	-	-	-	=	- 14 of 1	5 -	-	-	-	-	-	-	2.0	-	-	-	=	170	7.7

	Phe	nols		Halogenated Benzenes	Halogenated Phenols					Ir	norganio	cs					Polychlorinated Biphenyls	Anions	рН
2-methylphenol	3-&4-methylphenol	Total Phenols	Sum of Phenols	Нехасһіого Бепzene	Pentachlorophenol	Calcium/Magnesium Ratio	Exchangeable Sodium	Cation Exchange Capacity (CEC)	Exchangeable Sodium Percent	Exchangeable Magnesium	Exchangeable Calcium	Exchangeable Potassium	Moisture Content	Moisture Content (103°C)	pH (aqueous extract)	рн (Lab)	PCBs (Sum of total)	Sulphate	рн (СаСі2)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	cmol/kg	cmol/kg	%	cmol/kg	cmol/kg	cmol/kg	%	%	pH_Units	pH_Units	mg/kg	mg/kg	pH Unit
0.5	1	0.5	0.5	0.05	2		0.2	0.2		0.2	0.2	0.2	0.1	1	0.1	0.01	0.1	30	0.1

	Field ID	Depth	Date	Sample Type																				
Surface	TP30-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	1.3	-	-	-	-	110	6.8
Stockpile	TP31-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.4	-	-	-	-	-	7.9
Surface	TP31-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.6	-	-	-	-	-	8.0
Stockpile	TP32-01	-	20/03/2019	Normal	-	-	,	-	-	-	-	-	-	,	-	-	-	4.0			-	-	-	7.9
Stockpile	TP33-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.0	-	-	-	-	-	7.5
Stockpile	TP34-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.6	-	-	-	-	-	7.8
Stockpile	TP35-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-	-	-	-	7.7
Stockpile	TP36-01	-	20/03/2019	Normal	-	-	,	-	-	-	-	-	-	,	-	-	-	2.1			-	-	-	7.8
Stockpile	TP37-01	-	20/03/2019	Normal	-	-	,	-	-	-	-	-	-	,	-	-	-	2.5			-	-	-	8.0
Stockpile	TP38-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.2	-	-	-	-	-	7.5
Stockpile	TP39-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.3		-	-	1	-	8.0
Stockpile	TP40-01	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.4		-	-	1	-	8.0
Surface	TP40-02	-	22/03/2019	Normal	-	-	,	-	-	-	-	-	-	,	-	-	-	3.4			-	-	-	7.9
Stockpile	TP40-03	-	22/03/2019	Normal	-	-	,	-	-	-	-	-	-	,	-	-	-	2.4			-	-	-	7.9
Stockpile	TP40-04	-	22/03/2019	Interlab_D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5	8.9	-	-	-	-
Stockpile	TP41-01	-	22/03/2019	Normal	<0.5	<1	<0.5	<0.5	<0.05	<2	-	-	-	-	-	-	-	2.3		-	-	<0.1	-	-
Surface	TP41-02	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.5		-	-	1	-	7.6
Stockpile	TP42-01	-	22/03/2019	Normal	-	-	,	-	-	-	-	-	-	,	-	-	-	2.6			-	-	-	7.8
Surface	TP42-02	-	22/03/2019	Normal	-	-	-	-	=	-	-	-	-		-	-	-	2.6	-		-	-	-	7.8
Stockpile	TP43-01	-	21/03/2019	Normal	<0.5	<1	<0.5	<0.5	< 0.05	<2	-	-	-	-	-	-	-	2.8		-	-	<0.1	-	-
Surface	TP43-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.1		-	-	1	-	8.0
Stockpile	TP44-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.2		-	-	1	-	7.9
Surface	TP44-02	-	21/03/2019	Normal	-	-	,	-	-	-	-	-	-	,	-	-	-	2.9			-	-	-	7.8
Stockpile	TP45-01	-	21/03/2019	Normal	-	-	,	-	-	-	-	-	-	,	-	-	-	2.4			-	-	-	8.0
Surface	TP45-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.6	-	-	-	-	-	7.8
Stockpile	TP46-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.7	-	-	-	-	-	7.6
Surface	TP46-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.4	-	-	-	-	-	7.5
Stockpile	TP47-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.7	-	-	-	-	-	7.9
Surface	TP47-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.5	-	-	-	-	-	7.9
Stockpile	TP48-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.3	-	-	-	-	-	8.3
Surface	TP48-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-	-	-	-	8.0
Stockpile	TP49-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.4	-	-	-	-	-	7.8
Surface	TP49-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.4	-	-	-	-	-	7.8
Stockpile	TP50-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.1	-	-	-	-	-	7.9
Surface	TP50-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.0	-	-	-	-	-	7.9
Stockpile	TP51-01	-	21/03/2019	Normal	<0.5	<1	<0.5	<0.5	<0.05	<2	-	-	-	-	-	-	-	3.1	-	-	-	<0.1	-	-
Surface	TP51-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.9	-	-	-	-	-	7.8
Stockpile	TP51-03	-	21/03/2019	Field_D	-	-	-	-	-	-	-	-	-	-	-	-	-	3.4	-	-	-	=	-	8.2
Stockpile	TP51-04	-	21/03/2019	Normal	-	-	1	-	-	-	-	-	-	-	-	-	-	3.0	-	1	-	-	-	8.1
Stockpile	TP52-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5	-	-	-	1	-	6.8
Surface	TP52-02	-	21/03/2019	Normal	-	-	-	-	-	- 15 of 1	5 -	-	-	-	-	-	-	3.2	-	-	-	ī	-	8.0

	Ph	enols		Halogenated Benzenes	Halogenated Phenols					ı	norganic	:s					Polychlorinated Biphenyls	Anions	pН
2-methylphenol	3-&4-mefhylphenol	Total Phenols	Sum of Phenols	Hexachlorobenzene	Pentachlorophenol	Calcium/Magnesium Ratio	Exchangeable Sodium	Cation Exchange Capacity (CEC)	Exchangeable Sodium Percent	Exchangeable Magnesium	Exchangeable Calcium	Exchangeable Potassium	Moisture Content	Moisture Content (103°C)	pH (aqueous extract)	рн (Lab)	PCBs (Sum of total)	Sulphate	рн (СаСІ2)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	cmol/kg	cmol/kg	%	cmol/kg	cmol/kg	cmol/kg	%	%	pH_Units	pH_Units	mg/kg	mg/kg	pH Ur
0.5	1	0.5	0.5	0.05	2		0.2	0.2		0.2	0.2	0.2	0.1	1	0.1	0.01	0.1	30	0.1

Location	Field ID	Depth	Date	Sample Type																				
Stockpile	TP53-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	1.6	-	-	-	=	-	7.1
Surface	TP53-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	1.3	-	-	-	=	-	7.0
Stockpile	TP54-01	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-	-	-		7.8
Surface	TP54-02	-	21/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.9	-	-	-	8	-	7.8
Surface	TP55-01	-	22/03/2019	Normal	<0.5	<1	<0.5	<0.5	<0.05	<2	-	-	-	-	-	-	-	2.8	-	-	-	<0.1	-	-
Surface	TP56-01	-	22/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.0	-	-	-	=	-	8.0
Stockpile	SP01-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.0	-	-	-	=	-	8.2
Stockpile	SP02-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-		7.7
Stockpile	SP03-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	3.1	-	-	-	8	-	8.0
Stockpile	SP04-01	-	20/03/2019	Normal	<0.5	<1	<0.5	<0.5	<0.05	<2	-	-	-	-	-	-	-	3.0	-	-	-	<0.1	100	-
Stockpile	SP05-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	8	-	8.0
Stockpile	SP06-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.4	-	-	-	=	-	7.9
Stockpile	SP07-01	-	20/03/2019	Normal	-	-	-	-	=	-	-	-	-	-	-	-	-	2.6	-	-	-	=	-	7.8
Stockpile	SP08-01	-	20/03/2019	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	2.2	-	-	-	8	-	7.7

		Location Code	Soil	Bore		Soil	Bore	
		Field ID	SB04-01	SB04-02		SB04-01	SB04-03	
		Depth	0.0 - 0.1	0.0 - 0.1		0.0 - 0.1	0.0 - 0.1	
		Date	19/03/2019	19/03/2019		19/03/2019	19/03/2019	
		Sample Type	Normal	Field D	RPD	Normal	Interlab D	RPD
	Unit	EQL						
Metals	-							
Arsenic	mg/kg	2	10	6	NA	10	11	10
Barium	mg/kg	10	-	-	-	-	-	-
Beryllium	mg/kg	1	-	-	-	-	-	-
Cadmium	mg/kg	0.4	<1	<1	NA	<1	<0.4	NA
Chromium (hexavalent)	mg/kg	0.5	-	-	-	-	-	-
Chromium (III+VI)	mg/kg	2	47	36	27	47	54	14
Cobalt	mg/kg	2	ı	-	-	-	-	1
Copper	mg/kg	5	8	6	NA	8	9.0	NA
Iron	mg/kg	50	ı	-	-	-	-	-
Lead	mg/kg	5	<5	<5	NA	<5	6.6	NA
Manganese	mg/kg	5	ı	-	-	-	-	-
Mercury	mg/kg	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
Nickel	mg/kg	2	4	4	NA	4	6.1	NA
Silver	mg/kg	2	-	-	-	-	-	-
Zinc	mg/kg	5	11	14	NA	11	19	53
PAH								
Naphthalene	mg/kg	0.5	<1	<1	NA	<1	<0.5	NA
BTEX								
Benzene	mg/kg	0.1	<0.2	<0.2	NA	<0.2	<0.1	NA
Toluene	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Ethylbenzene	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Xylene (o)	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Xylene (m & p)	mg/kg	0.2	<0.5	<0.5	NA	<0.5	<0.2	NA
Xylene Total	mg/kg	0.3	<0.5	<0.5	NA	<0.5	<0.3	NA
Total BTEX	mg/kg	0.2	<0.2	<0.2	NA	<0.2	-	-
Inorganics								
pH (aqueous extract)	pH_Units	0.1	-	-	-	-	8.8	-
Anions								
Sulphate	mg/kg	30	150	130	NA	150	230	42
SPOCAS								
pH (CaCl2)	pH Unit	0.1	7.7	7.8	1	7.7	- 1	-

Highlighted values indicate duplicate pairs above RPD guidelne of 30 or otherwise demonstrating low precision.

NA - RPD not calculated as one or more concentrations below 5x LOR. Duplicate pair demonstrates acceptable precision.

LP - RPD not calculated as one or more concentrations below 5x LOR. Duplicate pair demonstrates low precision.

	Locat	ion Code	Tes	t Pit		Tes	t Pit	
		Field ID	TP02-02	TP02-05		TP02-02	TP02-06	
		Depth	0.0 - 0.1	0.0 - 0.1		0.0 - 0.1	0.0 - 0.1	
		Date	20/03/2019	20/03/2019		20/03/2019	20/03/2019	
	San	ple Type	Normal	Field_D	RPD	Normal	Interlab_D	RPD
U	nit [QL				I		
Metals								
Arsenic mg	/kg	2	<5	<5	NA	<5	2.1	NA
	/kg	10	-	-	-	-	-	-
	/kg	1	-	-	-	-	-	-
Cadmium mg	/kg	0.4	<1	<1	NA	<1	<0.4	NA
	/kg	0.5	-	-	-	-	-	-
	/kg	2	12	6	LP	12	6.9	LP
Cobalt mg	/kg	2	-	-	-	-	-	-
Copper mg	/kg	5	<5	<5	NA	<5	<5	NA
	/kg	50	-	-	-	-	-	-
Lead mg	/kg	5	<5	<5	NA	<5	<5	NA
Manganese mg	/kg	5	-	-	-	-	-	-
Mercury mg	/kg	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	/kg	2	<2	<2	NA	<2	<5	NA
	/kg	2	-	-	-	-	-	-
Zinc mg	/kg	5	<5	<5	NA	<5	<5	NA
PAH								
Naphthalene mg	/kg	0.5	<1	<1	NA	<1	<0.5	NA
BTEX								
Benzene mg	/kg	0.1	<0.2	<0.2	NA	< 0.2	<0.1	NA
)	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
	/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
		0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
)	0.2	<0.5	<0.5	NA	<0.5	<0.2	NA
	,)	0.3	<0.5	<0.5	NA	<0.5	<0.3	NA
	/kg	0.2	<0.2	<0.2	NA	<0.2	-	-
Inorganics								
	Units	0.1	-	-	-	-	7.5	-
Anions								
	/kg	30	150	<50	LP	150	<30	LP
SPOCAS								
pH (CaCl2) pH		0.1	7.8	6.5	18	7.8	-	-

		Location Code	Tes	t Pit		Tes	t Pit	
		Field ID	TP13-02	TP13-05		TP13-02	TP13-06	
		Depth	0.2 - 0.3	0.2 - 0.3		0.2 - 0.3	0.2 - 0.3	
		Date	21/03/2019	21/03/2019		21/03/2019	21/03/2019	
		Sample Type	Normal	Field D	RPD	Normal	Interlab D	RPD
	Unit	EQL						
Metals								
Arsenic	mg/kg	2	<5	<5	NA	<5	2.5	NA
Barium	mg/kg	10	-	-	-	-	-	-
Beryllium	mg/kg	1	-	-	-	-	-	-
Cadmium	mg/kg	0.4	<1	<1	NA	<1	<0.4	NA
Chromium (hexavalent)	mg/kg	0.5	-	-	-	-	-	-
Chromium (III+VI)	mg/kg	2	6	8	NA	6	9.2	NA
Cobalt	mg/kg	2	-	-	-	-	-	-
Copper	mg/kg	5	<5	<5	NA	<5	<5	NA
Iron	mg/kg	50	-	-	ī	-	-	
Lead	mg/kg	5	<5	<5	NA	<5	<5	NA
Manganese	mg/kg	5	-	-	ī	-	-	
Mercury	mg/kg	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
Nickel	mg/kg	2	<2	<2	NA	<2	<5	NA
Silver	mg/kg	2	-	-	ī	-	-	
Zinc	mg/kg	5	<5	<5	NA	<5	<5	NA
PAH								
Naphthalene	mg/kg	0.5	<1	<1	NA	<1	<0.5	NA
BTEX								
Benzene	mg/kg	0.1	<0.2	<0.2	NA	<0.2	<0.1	NA
Toluene	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Ethylbenzene	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Xylene (o)	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Xylene (m & p)	mg/kg	0.2	<0.5	<0.5	NA	<0.5	<0.2	NA
Xylene Total	mg/kg	0.3	<0.5	<0.5	NA	<0.5	<0.3	NA
Total BTEX	mg/kg	0.2	<0.2	<0.2	NA	<0.2	-	-
Inorganics								
pH (aqueous extract)	pH_Units	0.1	-	-	-	-	9.4	-
Anions							\longmapsto	
Sulphate	mg/kg	30	-	-	-	-	-	-
SPOCAS							\longmapsto	
pH (CaCl2)	pH Unit	0.1	8.0	8.0	0	8.0	-	-

		Location Code	Tes	t Pit		Tes	t Pit	
		Field ID	TP14-01	TP14-04		TP14-01	TP14-05	
		Depth	0.0 - 0.1	0.0 - 0.1		0.0 - 0.1	0.0 - 0.1	
		Date	21/03/2019	21/03/2019		21/03/2019	21/03/2019	
		Sample Type	Normal	Field D	RPD	Normal	Interlab_D	RPD
	Unit	EQL						
Metals								
Arsenic	mg/kg	2	6	6	NA	6	6.6	NA
Barium	mg/kg	10	-	-	-	-	-	-
Beryllium	mg/kg	1	-	-	-	-	-	-
Cadmium	mg/kg	0.4	<1	<1	NA	<1	<0.4	NA
Chromium (hexavalent)	mg/kg	0.5	-	-	-	-	-	-
Chromium (III+VI)	mg/kg	2	46	45	2	46	53	14
Cobalt	mg/kg	2	-	-	-	-	-	-
Copper	mg/kg	5	7	7	NA	7	7.6	NA
Iron	mg/kg	50	1	-	-	-	-	-
Lead	mg/kg	5	7	6	NA	7	9.8	NA
Manganese	mg/kg	5	1	-	-	-	-	-
Mercury	mg/kg	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
Nickel	mg/kg	2	5	4	NA	5	6.9	NA
Silver	mg/kg	2	ı	-	-	-	-	-
Zinc	mg/kg	5	13	13	NA	13	19	NA
PAH								
Naphthalene	mg/kg	0.5	<1	<1	NA	<1	<0.5	NA
BTEX								
Benzene	mg/kg	0.1	<0.2	<0.2	NA	< 0.2	<0.1	NA
Toluene	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Ethylbenzene	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Xylene (o)	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Xylene (m & p)	mg/kg	0.2	<0.5	<0.5	NA	<0.5	<0.2	NA
Xylene Total	mg/kg	0.3	<0.5	<0.5	NA	<0.5	<0.3	NA
Total BTEX	mg/kg	0.2	<0.2	<0.2	NA	<0.2	-	-
Inorganics								
pH (aqueous extract)	pH_Units	0.1	1	-	-	-	8.3	-
Anions								
Sulphate	mg/kg	30	730	750	3	730	1,000	31
SPOCAS								
pH (CaCl2)	pH Unit	0.1	7.7	7.5	3	7.7	-	-

Field ID	RPD NA
Date 21/03/2019 21/03/2019 22/03/201	
Sample Type Normal Field_D RPD Normal Interlab_D Unit EQL Metals Image: Control of the properties of the	
Sample Type Normal Field_D RPD Normal Interlab_D Unit EQL Metals Image: Control of the properties of the	
Unit EQL	NA
Arsenic mg/kg 2 8 8 NA <5	NA
	NA
Rarium ma/kg 10 100	
	-
Beryllium mg/kg 1 <1	-
Cadmium mg/kg 0.4 <1	NA
Chromium (hexavalent) mg/kg 0.5 <0.5	-
Chromium (III+VI) mg/kg 2 24 24 0 15 19	24
Cobalt mg/kg 2 7 - - -	-
Copper mg/kg 5 9 10 NA 10 9.9	NA
Iron mg/kg 50 24,600	-
Lead mg/kg 5 8 10 NA <5	NA
Manganese mg/kg 5 232 - - - -	-
Mercury mg/kg 0.1 <0.1	NA
Nickel mg/kg 2 12 13 8 10 12	18
Silver mg/kg 2 <2 - - -	-
Zinc mg/kg 5 15 17 NA 12 21	NA
PAH	
Naphthalene mg/kg 0.5 <0.5	NA
BTEX USE STATE STA	
Benzene mg/kg 0.1 <0.2	NA
Toluene mg/kg 0.1 <0.5	NA
Ethylbenzene mg/kg 0.1 <0.5	NA
Xylene (o) mg/kg 0.1 <0.5	NA
Xylene (m & p) mg/kg 0.2 <0.5	NA
Xylene Total mg/kg 0.3 <0.5	NA
Total BTEX mg/kg 0.2 <0.2	-
Inorganics	
pH_(aqueous extract)	-
Anions	
Sulphate mg/kg 30 - - - - -	-
SPOCAS	
pH (CaCl2) pH Unit 0.1 - 8.2 - 8.0 -	-

		Location Code	Tes	t Pit		Tes	t Pit	
		Field ID	TP23-01	TP23-04		TP23-01	TP23-05	
		Depth	0.0 - 0.1	0.0 - 0.1		0.0 - 0.1	0.0 - 0.1	
		Date	22/03/2019	22/03/2019		22/03/2019	22/03/2019	
		Sample Type	Normal	Field D	RPD	Normal	Interlab D	RPD
	Unit	EQL						
Metals								
Arsenic	mg/kg	2	7	8	NA	7	10	NA
Barium	mg/kg	10	-	-	-	-	-	-
Beryllium	mg/kg	1	-	-	-	-	-	-
Cadmium	mg/kg	0.4	<1	<1	NA	<1	<0.4	NA
Chromium (hexavalent)	mg/kg	0.5	-	-	-	-	-	-
Chromium (III+VI)	mg/kg	2	22	25	13	22	39	56
Cobalt	mg/kg	2	-	-	-	-	-	-
Copper	mg/kg	5	10	12	NA	10	13	NA
Iron	mg/kg	50	1	-	-	-	-	-
Lead	mg/kg	5	10	10	NA	10	14	NA
Manganese	mg/kg	5	1	-	-	-	-	-
Mercury	mg/kg	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
Nickel	mg/kg	2	13	14	7	13	21	47
Silver	mg/kg	2	ı	-	-	-	-	-
Zinc	mg/kg	5	15	18	NA	15	33	LP
PAH								
Naphthalene	mg/kg	0.5	<1	<1	NA	<1	<0.5	NA
BTEX								
Benzene	mg/kg	0.1	<0.2	<0.2	NA	<0.2	<0.1	NA
Toluene	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Ethylbenzene	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Xylene (o)	mg/kg	0.1	<0.5	<0.5	NA	<0.5	<0.1	NA
Xylene (m & p)	mg/kg	0.2	<0.5	<0.5	NA	<0.5	<0.2	NA
Xylene Total	mg/kg	0.3	<0.5	<0.5	NA	<0.5	<0.3	NA
Total BTEX	mg/kg	0.2	<0.2	<0.2	NA	<0.2	-	-
Inorganics								
pH (aqueous extract)	pH_Units	0.1	-	-	-	-	9.8	-
Anions								
Sulphate	mg/kg	30	130	-	-	130	-	-
SPOCAS								
pH (CaCl2)	pH Unit	0.1	8.2	8.3	1	8.2	-	-

		Field ID	RINSE-01	RINSE-02	RINSE-03	RINSE-04	TB-01	TB-03
		Date	19/03/2019	20/03/2019	21/03/2019	22/03/2019	19/03/2019	22/03/201
		Sample Type	Rinsate	Rinsate	Rinsate	Rinsate	Trip_B	Trip_B
		Unit						
	Arsenic	mg/L	< 0.001	-	-	< 0.001	-	-
	Cadmium	mg/L	<0.0001	-	-	< 0.0001	-	-
	Chromium (III+VI)	mg/L	< 0.001	-	-	< 0.001	-	-
Metals	Copper	mg/L	< 0.001	-	-	< 0.001	-	-
Meidis	Lead	mg/L	< 0.001	-	-	< 0.001	-	-
	Mercury	mg/L	<0.0001	-	-	< 0.0001	-	-
	Nickel	mg/L	<0.001	-	-	<0.001	-	-
	Zinc	mg/L	< 0.005	-	-	< 0.005	-	-
PAH	Naphthalene	μg/L	-	<5	<5	<5	<5	<5
TRH	TRH C6-C10	μg/L	-	<20	<20	<20	<20	<20
	TRH C6-C10 less BTEX (F1)	µg/L	-	<20	<20	<20	<20	<20
	TRH >C10-C16	µg/L	-	-	-	<100	-	-
	TRH >C10-C16 less Napthalene (F2)	μg/L	-	-	-	<100	-	-
	TRH >C16-C34	μg/L	-	-	-	<100	-	-
	TRH >C34-C40	µg/L	-	-	-	<100	-	-
	TRH >C10-C40 (sum of fractions)	μg/L	-	_	-	<100	-	_
	Benzene	μg/L	-	<1	<1	<1	<1	<1
	Toluene	µg/L	-	<2	<2	<2	<2	<2
ВТЕХ	Ethylbenzene	μg/L	-	<2	<2	<2	<2	<2
	Xylene (o)	µg/L	-	<2	<2	<2	<2	<2
	Xylene (m & p)	μg/L	-	<2	<2	<2	<2	<2
	Xylene Total	μg/L	-	<2	<2	<2	<2	<2
	Total BTEX	µg/L	-	<1	<1	<1	<1	<1
Inorganics	pH (Lab)	pH Units	-	-	-	5.37	-	-

Appendix L Laboratory Certificates of Analysis

CERTIFICATE OF ANALYSIS

Work Order : **EM1904231**

Client : LBW CO PTY LTD

Contact : MARK PETERSON

Address : 184 MAGILL ROAD

NORWOOD SA, AUSTRALIA 5067

Telephone : ---

Project : 191076

Order number

C-O-C number : 191076_COC_20190319

Sampler : ----

Site : Springwood Development PSI

Quote number : AD/014/19

No. of samples received : 93 No. of samples analysed : 59 Page : 1 of 40

Laboratory : Environmental Division Melbourne

Contact : Kieren Burns

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61881625130

Date Samples Received : 22-Mar-2019 10:25

Date Analysis Commenced : 25-Mar-2019

Issue Date : 29-Mar-2019 14:41

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC
Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

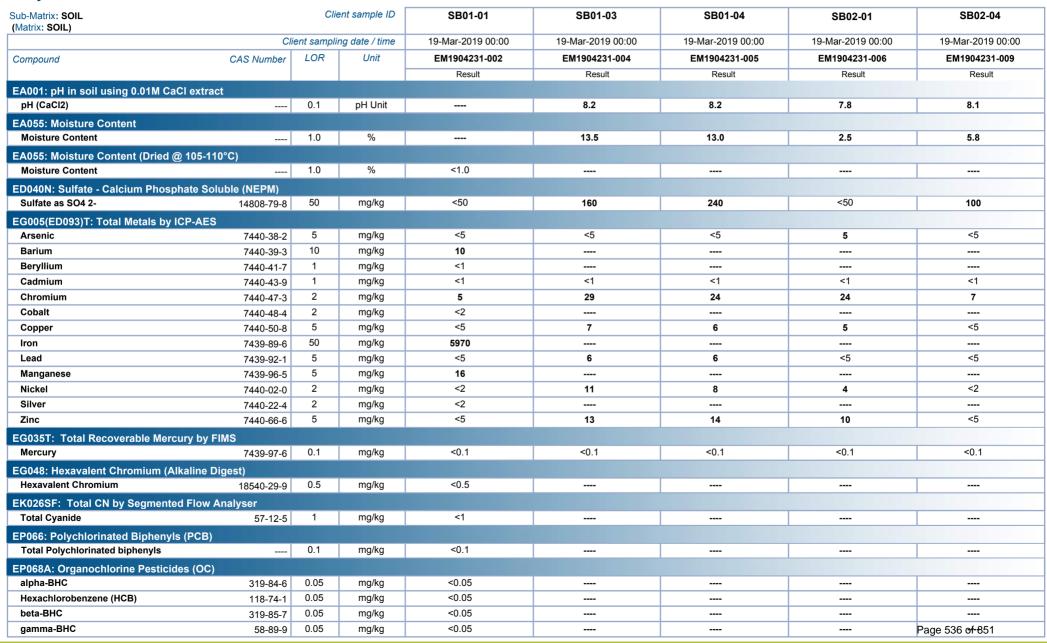
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero
- EP080: Particular sample EM-1904231-022 shows minor BTEX hits. Confirmed by re-analysis.

Page : 3 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Analytical Results

Page : 4 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Analytical Results

Sub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	SB01-01	SB01-03	SB01-04	SB02-01	SB02-04
	Client sampling date / time			19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-002	EM1904231-004	EM1904231-005	EM1904231-006	EM1904231-009
•			ŀ	Result	Result	Result	Result	Result
P068A: Organochlorine Pestici	des (OC) - Continued							
delta-BHC	319-86-8	0.05	mg/kg	<0.05				
Heptachlor	76-44-8	0.05	mg/kg	<0.05				
Aldrin	309-00-2	0.05	mg/kg	<0.05				
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05				
Total Chlordane (sum)		0.05	mg/kg	<0.05				
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05				
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05				
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05				
Dieldrin	60-57-1	0.05	mg/kg	<0.05				
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05				
Endrin	72-20-8	0.05	mg/kg	<0.05				
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05				
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05				
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05				
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05				
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05				
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2				
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05				
Methoxychlor	72-43-5	0.2	mg/kg	<0.2				
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05				
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05				
	0-2							
P075(SIM)A: Phenolic Compou	nds							
Phenol	108-95-2	0.5	mg/kg	<0.5				
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5				
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5				
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1				
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5				
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5				
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5				
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5				
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5				
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5				
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5				
Pentachlorophenol	87-86-5	2	mg/kg	<2				Page 537 of 851

Page : 5 of 40 : EM1904231 Work Order

Client : LBW CO PTY LTD

: 191076 Project

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB01-01	SB01-03	SB01-04	SB02-01	SB02-04
·	Cli	ient samplii	ng date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-002	EM1904231-004	EM1904231-005	EM1904231-006	EM1904231-009
			-	Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds - 0	Continued							
Sum of Phenois		0.5	mg/kg	<0.5				
EP075(SIM)B: Polynuclear Aromatic H	vdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5				
Acenaphthene	83-32-9	0.5	mg/kg	<0.5				
Fluorene	86-73-7	0.5	mg/kg	<0.5				
Phenanthrene	85-01-8	0.5	mg/kg	<0.5				
Anthracene	120-12-7	0.5	mg/kg	<0.5				
Fluoranthene	206-44-0	0.5	mg/kg	<0.5				
Pyrene	129-00-0	0.5	mg/kg	<0.5				
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5				
Chrysene	218-01-9	0.5	mg/kg	<0.5				
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5				
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5				
Sum of polycyclic aromatic hydrocarbon	s	0.5	mg/kg	<0.5				
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5				
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6				
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2				
P080/071: Total Petroleum Hydrocark	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fract <u>ior</u>	ıs					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100

Page : 6 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

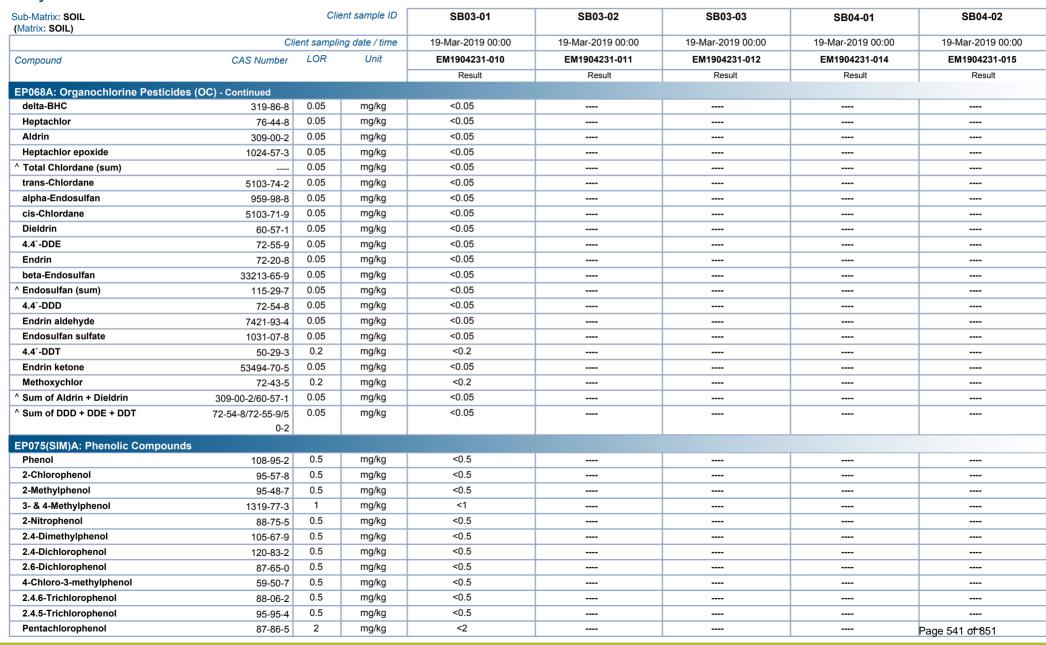
ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB01-01	SB01-03	SB01-04	SB02-01	SB02-04
	CI	ient sampli	ng date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-002	EM1904231-004	EM1904231-005	EM1904231-006	EM1904231-009
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	90.7				
EP068S: Organochlorine Pesticide Su	ırrogate							
Dibromo-DDE	21655-73-2	0.05	%	89.8				
EP068T: Organophosphorus Pesticide	e Surrogate							
DEF	78-48-8	0.05	%	88.1				
EP075(SIM)S: Phenolic Compound Su	ırrogates							
Phenol-d6	13127-88-3	0.5	%	101				
2-Chlorophenol-D4	93951-73-6	0.5	%	97.5				
2.4.6-Tribromophenol	118-79-6	0.5	%	89.6				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	103				
Anthracene-d10	1719-06-8	0.5	%	126				
4-Terphenyl-d14	1718-51-0	0.5	%	107				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	73.8	79.9	83.6	81.6	83.7
Toluene-D8	2037-26-5	0.2	%	80.8	82.9	84.7	81.8	80.0
4-Bromofluorobenzene	460-00-4	0.2	%	70.6	76.8	80.7	79.3	79.3

Page : 7 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076



Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB03-01	SB03-02	SB03-03	SB04-01	SB04-02
	Clie	ent samplii	ng date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-010	EM1904231-011	EM1904231-012	EM1904231-014	EM1904231-015
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M Ca0	CI extract							
pH (CaCl2)		0.1	pH Unit		8.0	7.4	7.7	7.8
EA055: Moisture Content								
Moisture Content		1.0	%		7.6	2.2	10.2	8.8
EA055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%	1.7				
ED040N: Sulfate - Calcium Phospl								
Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	<50	<50	150	130
EG005(ED093)T: Total Metals by I								100
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	10	6
Barium	7440-38-2	10	mg/kg	20				
Beryllium	7440-39-3	1	mg/kg	<1				
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-43-9	2	mg/kg	12	11	13	47	36
Cobalt	7440-47-3	2	mg/kg	<2				
Copper	7440-46-4	5	mg/kg	<5	<5	<5	8	6
Iron	7439-89-6	50	mg/kg	19000				
Lead	7439-89-6	5	mg/kg	<5	<5	<5	 <5	<5
Manganese	7439-92-1	5	mg/kg	13				
Nickel	7440-02-0	2	mg/kg	<2	4	<2	4	4
Silver	7440-02-0	2	mg/kg	<2				
Zinc	7440-22-4	5	mg/kg	<5	<5	<5	11	14
			mg/kg				11	1.4
EG035T: Total Recoverable Mercu		0.1		<0.1	<0.1	<0.1	<0.1	<0.1
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EG048: Hexavalent Chromium (All								
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5				
EK026SF: Total CN by Segmented								
Total Cyanide	57-12-5	1	mg/kg	<1				
EP066: Polychlorinated Biphenyls	(PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1				
EP068A: Organochlorine Pesticide	es (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05				
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05				
beta-BHC	319-85-7	0.05	mg/kg	<0.05				
gamma-BHC	58-89-9	0.05	mg/kg	<0.05				Page 540 of-851

Page : 8 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Page : 9 of 40 : EM1904231 Work Order

Client : LBW CO PTY LTD

: 191076 Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB03-01	SB03-02	SB03-03	SB04-01	SB04-02
,	Cli	ent samplii	ng date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-010	EM1904231-011	EM1904231-012	EM1904231-014	EM1904231-015
			-	Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds - 0	Continued							
Sum of Phenois		0.5	mg/kg	<0.5				
EP075(SIM)B: Polynuclear Aromatic H	vdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5				
Acenaphthene	83-32-9	0.5	mg/kg	<0.5				
Fluorene	86-73-7	0.5	mg/kg	<0.5				
Phenanthrene	85-01-8	0.5	mg/kg	<0.5				
Anthracene	120-12-7	0.5	mg/kg	<0.5				
Fluoranthene	206-44-0	0.5	mg/kg	<0.5				
Pyrene	129-00-0	0.5	mg/kg	<0.5				
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5				
Chrysene	218-01-9	0.5	mg/kg	<0.5				
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5				
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5				
Sum of polycyclic aromatic hydrocarbon	S	0.5	mg/kg	<0.5				
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5				
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6				
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2				
P080/071: Total Petroleum Hydrocark	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ıs					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100

Page : 10 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB03-01	SB03-02	SB03-03	SB04-01	SB04-02
	Cli	ient sampli	ng date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-010	EM1904231-011	EM1904231-012	EM1904231-014	EM1904231-015
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
` >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2) EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	91.9				
EP068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%	85.8				
EP068T: Organophosphorus Pesticide	Surrogate							
DEF	78-48-8	0.05	%	83.7				
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	0.5	%	98.7				
2-Chlorophenol-D4	93951-73-6	0.5	%	94.4				
2.4.6-Tribromophenol	118-79-6	0.5	%	86.4				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	103				
Anthracene-d10	1719-06-8	0.5	%	124				
4-Terphenyl-d14	1718-51-0	0.5	%	105				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	102	82.6	84.6	102	87.2
Toluene-D8	2037-26-5	0.2	%	106	88.4	87.1	109	93.9
4-Bromofluorobenzene	460-00-4	0.2	%	102	78.9	78.5	101	84.6

: 11 of 40 : EM1904231 Page Work Order

Client : LBW CO PTY LTD : 191076

Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB04-04	SB04-06	SB05-01	SB05-03	SB05-05
·	Cli	ent samplii	ng date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-016	EM1904231-018	EM1904231-022	EM1904231-024	EM1904231-026
•				Result	Result	Result	Result	Result
A001: pH in soil using 0.01M CaCl e	xtract							
pH (CaCl2)		0.1	pH Unit	7.0		7.9	8.0	7.7
A055: Moisture Content								
Moisture Content		1.0	%	27.2		5.2	5.2	4.5
A055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%		36.1			
D040N: Sulfate - Calcium Phosphate	Soluble (NEPM)							
Sulfate as SO4 2-	14808-79-8	50	mg/kg	300	280	60	50	<50
G005(ED093)T: Total Metals by ICP								
Arsenic	7440-38-2	5	mg/kg	7	5	<5	<5	<5
Barium	7440-39-3	10	mg/kg		30			
Beryllium	7440-41-7	1	mg/kg		<1			
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	38	40	16	10	10
Cobalt	7440-48-4	2	mg/kg		<2			
Copper	7440-50-8	5	mg/kg	6	6	<5	<5	<5
Iron	7439-89-6	50	mg/kg		52200			
Lead	7439-92-1	5	mg/kg	<5	5	<5	<5	<5
Manganese	7439-96-5	5	mg/kg		30			
Nickel	7440-02-0	2	mg/kg	4	4	4	<2	<2
Silver	7440-22-4	2	mg/kg		<2			
Zinc	7440-66-6	5	mg/kg	11	12	8	<5	<5
G035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
G048: Hexavalent Chromium (Alkali			, J					
Hexavalent Chromium	18540-29-9	0.5	mg/kg		<0.5			
K026SF: Total CN by Segmented FI			3 3					
Total Cyanide	57-12-5	1	mg/kg		<1			
		•	mg/kg					
P066: Polychlorinated Biphenyls (Potal Polychlorinated biphenyls	CB)	0.1	mg/kg		<0.1			
		0.1	Ilig/kg		~ 0.1			
P068A: Organochlorine Pesticides (0.05			40.05			
alpha-BHC	319-84-6	0.05	mg/kg		<0.05			
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05			
beta-BHC	319-85-7	0.05	mg/kg		<0.05			
gamma-BHC	58-89-9	0.05	mg/kg		<0.05			Page 544 o f- 851

: 12 of 40 : EM1904231 Page Work Order

: LBW CO PTY LTD : 191076 Client

Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB04-04	SB04-06	SB05-01	SB05-03	SB05-05
·	Cli	ent samplii	ng date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-016	EM1904231-018	EM1904231-022	EM1904231-024	EM1904231-026
•				Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	des (OC) - Continued							
delta-BHC	319-86-8	0.05	mg/kg		<0.05			
Heptachlor	76-44-8	0.05	mg/kg		<0.05			
Aldrin	309-00-2	0.05	mg/kg		<0.05			
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05			
` Total Chlordane (sum)		0.05	mg/kg		<0.05			
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05			
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05			
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05			
Dieldrin	60-57-1	0.05	mg/kg		<0.05			
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05			
Endrin	72-20-8	0.05	mg/kg		<0.05			
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05			
Endosulfan (sum)	115-29-7	0.05	mg/kg		<0.05			
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05			
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05			
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05			
4.4`-DDT	50-29-3	0.2	mg/kg		<0.2			
Endrin ketone	53494-70-5	0.05	mg/kg		<0.05			
Methoxychlor	72-43-5	0.2	mg/kg		<0.2			
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg		<0.05			
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg		<0.05			
	0-2							
EP075(SIM)A: Phenolic Compou	nds							
Phenol	108-95-2	0.5	mg/kg		<0.5			
2-Chlorophenol	95-57-8	0.5	mg/kg		<0.5			
2-Methylphenol	95-48-7	0.5	mg/kg		<0.5			
3- & 4-Methylphenol	1319-77-3	1	mg/kg		<1			
2-Nitrophenol	88-75-5	0.5	mg/kg		<0.5			
2.4-Dimethylphenol	105-67-9	0.5	mg/kg		<0.5			
2.4-Dichlorophenol	120-83-2	0.5	mg/kg		<0.5			
2.6-Dichlorophenol	87-65-0	0.5	mg/kg		<0.5			
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg		<0.5			
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg		<0.5			
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg		<0.5			
Pentachlorophenol	87-86-5	2	mg/kg		<2			Page 545 of 851

Page : 13 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB04-04	SB04-06	SB05-01	SB05-03	SB05-05
,	Cli	ient sampli	ng date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-016	EM1904231-018	EM1904231-022	EM1904231-024	EM1904231-026
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds	- Continued							
Sum of Phenois		0.5	mg/kg		<0.5			
EP075(SIM)B: Polynuclear Aromatic	Hvdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5			
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5			
Acenaphthene	83-32-9	0.5	mg/kg		<0.5			
Fluorene	86-73-7	0.5	mg/kg		<0.5			
Phenanthrene	85-01-8	0.5	mg/kg		<0.5			
Anthracene	120-12-7	0.5	mg/kg		<0.5			
Fluoranthene	206-44-0	0.5	mg/kg		<0.5			
Pyrene	129-00-0	0.5	mg/kg		<0.5			
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5			
Chrysene	218-01-9	0.5	mg/kg		<0.5			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg		<0.5			
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg		<0.5			
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5			
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5			
Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg		<0.5			
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg		<0.5			
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg		0.6			
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg		1.2			
P080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
:P080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100

Page : 14 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

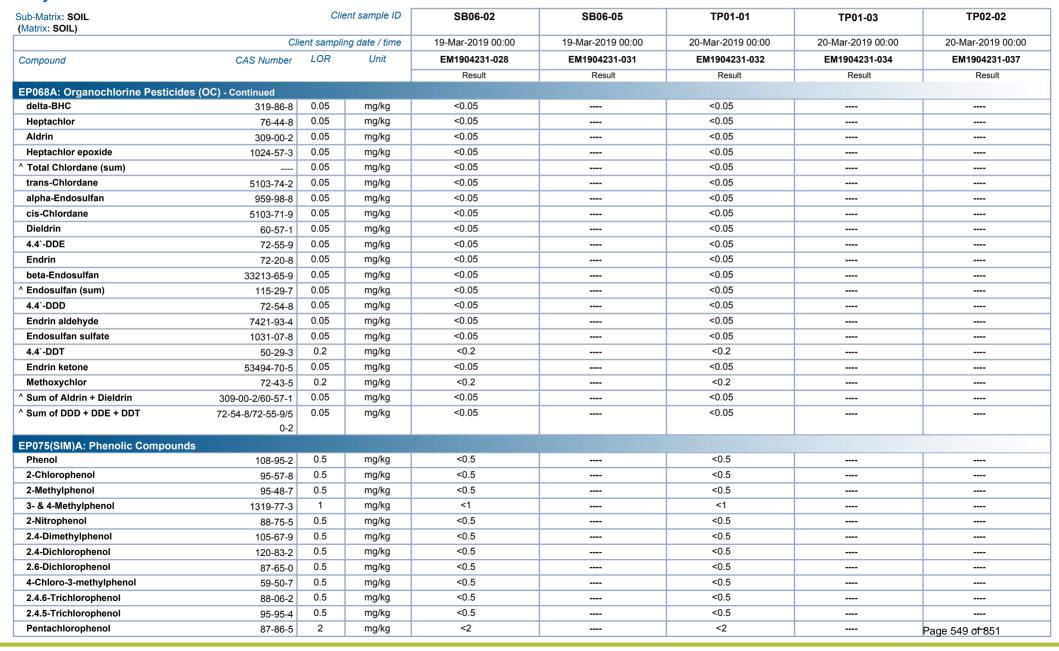
Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB04-04	SB04-06	SB05-01	SB05-03	SB05-05
, ,	Cli	ient sampli	ing date / time	19-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-016	EM1904231-018	EM1904231-022	EM1904231-024	EM1904231-026
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.7	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	0.7	<0.2	<0.2
Total Xylenes		0.5	mg/kg	<0.5	<0.5	0.7	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		88.4			
EP068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%		86.6			
EP068T: Organophosphorus Pesticide	e Surrogate							
DEF	78-48-8	0.05	%		81.3			
EP075(SIM)S: Phenolic Compound Su	ırrogates							
Phenol-d6	13127-88-3	0.5	%		97.8			
2-Chlorophenol-D4	93951-73-6	0.5	%		94.5			
2.4.6-Tribromophenol	118-79-6	0.5	%		84.6			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%		99.4			
Anthracene-d10	1719-06-8	0.5	%		124			
4-Terphenyl-d14	1718-51-0	0.5	%		104			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	68.4	68.9	86.5	78.9	87.6
Toluene-D8	2037-26-5	0.2	%	78.1	67.2	88.4	80.0	92.6
4-Bromofluorobenzene	460-00-4	0.2	%	67.4	68.3	114	76.0	83.4

Page : 15 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076



Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB06-02	SB06-05	TP01-01	TP01-03	TP02-02
·	Clie	ent samplir	ng date / time	19-Mar-2019 00:00	19-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00
compound	CAS Number	LOR	Unit	EM1904231-028	EM1904231-031	EM1904231-032	EM1904231-034	EM1904231-037
•				Result	Result	Result	Result	Result
A001: pH in soil using 0.01M CaCl	extract							
pH (CaCl2)		0.1	pH Unit		6.9		7.9	7.8
A055: Moisture Content								
Moisture Content		1.0	%		9.3		7.8	7.9
A055: Moisture Content (Dried @ 1	05-110°C)							
Moisture Content		1.0	%	5.0		1.7		
D040N: Sulfate - Calcium Phospha	te Soluble (NEPM)							
Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	50	<50	70	150
G005(ED093)T: Total Metals by ICP								
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Barium	7440-39-3	10	mg/kg	60		80		
Beryllium	7440-41-7	1	mg/kg	<1		<1		
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	11	8	58	7	12
Cobalt	7440-48-4	2	mg/kg	<2		11		
Copper	7440-50-8	5	mg/kg	<5	<5	21	<5	<5
ron	7439-89-6	50	mg/kg	12200		41300		
Lead	7439-92-1	5	mg/kg	<5	<5	9	<5	<5
Manganese	7439-96-5	5	mg/kg	39		99		
Nickel	7440-02-0	2	mg/kg	3	<2	17	<2	<2
Silver	7440-22-4	2	mg/kg	<2		<2		
Zinc	7440-66-6	5	mg/kg	<5	<5	41	<5	<5
G035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
G048: Hexavalent Chromium (Alka								
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5		<0.5		
K026SF: Total CN by Segmented F			3 3					
Total Cyanide	57-12-5	1	mg/kg	<1		<1		
		·	g.v.g					
P066: Polychlorinated Biphenyls (F Total Polychlorinated biphenyls		0.1	mg/kg	<0.1		<0.1		
		0.1	IIIg/kg	~ 0.1		30.1		
P068A: Organochlorine Pesticides		0.05	ma/ka	<0.05		<0.05	I	I
alpha-BHC	319-84-6	0.05	mg/kg	<0.05		<0.05 <0.05		
Hexachlorobenzene (HCB) beta-BHC	118-74-1		mg/kg	<0.05		<0.05		
	319-85-7	0.05	mg/kg					 D 540 - (054
gamma-BHC	58-89-9	0.05	mg/kg	<0.05		<0.05		Page 548 of-851

Page : 16 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Page : 17 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

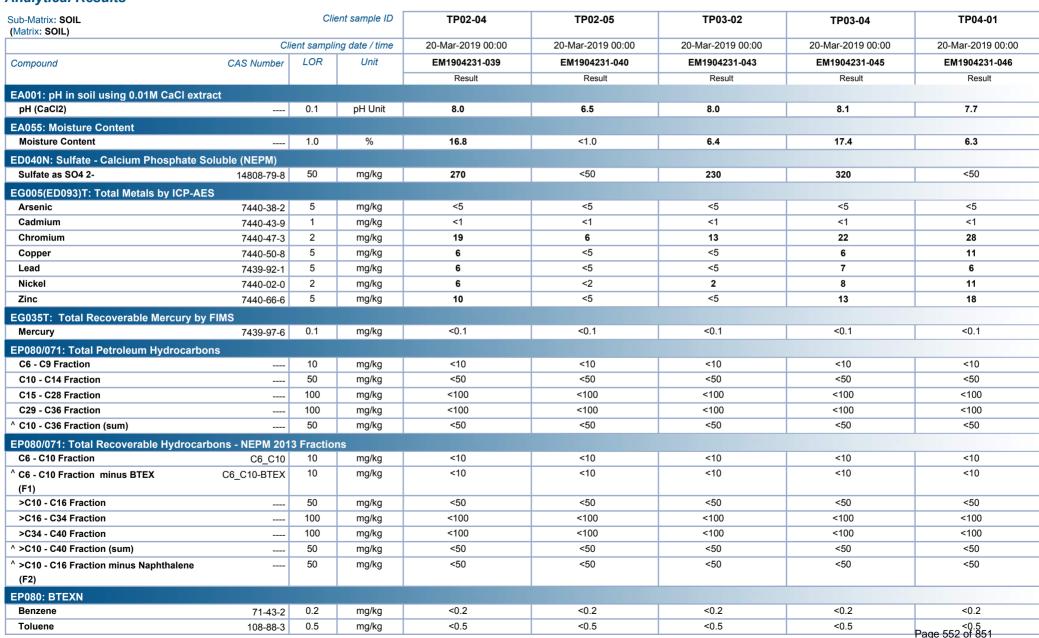
Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB06-02	SB06-05	TP01-01	TP01-03	TP02-02
,	Cli	ent samplii	ng date / time	19-Mar-2019 00:00	19-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00
Compound	CAS Number	LOR	Unit	EM1904231-028	EM1904231-031	EM1904231-032	EM1904231-034	EM1904231-037
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds -	Continued							
Sum of Phenols		0.5	mg/kg	<0.5		<0.5		
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5		<0.5		
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5		
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5		
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5		
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		<0.5		
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5		
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		<0.5		
Pyrene	129-00-0	0.5	mg/kg	<0.5		<0.5		
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5		
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5		<0.5		
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5		
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5		
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5		
Sum of polycyclic aromatic hydrocarbor	ns	0.5	mg/kg	<0.5		<0.5		
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5		
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		0.6		
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		1.2		
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fract <u>io</u>	ıs					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100

Page : 18 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076



Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB06-02	SB06-05	TP01-01	TP01-03	TP02-02
	Cli	ient sampli	ing date / time	19-Mar-2019 00:00	19-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904231-028	EM1904231-031	EM1904231-032	EM1904231-034	EM1904231-037
·				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	87.0		94.2		
EP068S: Organochlorine Pesticide S	urrogate							
Dibromo-DDE	21655-73-2	0.05	%	84.0		83.7		
EP068T: Organophosphorus Pesticio	le Surrogate							
DEF	78-48-8	0.05	%	86.0		85.2		
EP075(SIM)S: Phenolic Compound S								
Phenol-d6	13127-88-3	0.5	%	94.8		96.8		
2-Chlorophenol-D4	93951-73-6	0.5	%	90.9		93.7		
2.4.6-Tribromophenol	118-79-6	0.5	%	81.4		79.5		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	97.8		98.0		
Anthracene-d10	1719-06-8	0.5	%	121		123		
4-Terphenyl-d14	1718-51-0	0.5	%	103		103		
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	79.8	80.6	73.7	74.0	78.3
Toluene-D8	2037-26-5	0.2	%	88.1	86.4	79.5	81.4	84.3
4-Bromofluorobenzene	460-00-4	0.2	%	74.9	78.8	72.0	71.6	69.4

Page : 19 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Page : 20 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP02-04	TP02-05	TP03-02	TP03-04	TP04-01
	Cli	ent sampli	ng date / time	20-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-039	EM1904231-040	EM1904231-043	EM1904231-045	EM1904231-046
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	97.6	96.4	78.0	79.0	81.8
Toluene-D8	2037-26-5	0.2	%	84.6	86.7	72.5	70.4	73.2
4-Bromofluorobenzene	460-00-4	0.2	%	117	116	91.6	92.2	100

Page : 21 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

EA001: pH in soil using 0.01M CaCl extract

EG005(ED093)T: Total Metals by ICP-AES

EG035T: Total Recoverable Mercury by FIMS

EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions

EP080/071: Total Petroleum Hydrocarbons

ED040N: Sulfate - Calcium Phosphate Soluble (NEPM)

Client sample ID

Unit

pH Unit

%

mg/kg

Client sampling date / time

LOR

0.1

1.0

50

5

1

2

5

2

5

0.1

10

50

100

100

50

10

10

50

100

100

50

50

0.2

0.5

CAS Number

14808-79-8

7440-38-2

7440-43-9

7440-47-3

7440-50-8

7439-92-1

7440-02-0

7440-66-6

7439-97-6

C6 C10

71-43-2

108-88-3

C6 C10-BTEX

TP04-03

20-Mar-2019 00:00

EM1904231-048

Result

7.9

13.6

< 50

<5

<1

25

9

7

17

15

<0.1

<10

< 50

<100

<100

<50

<10

<10

< 50

<100

<100

<50

<50

<0.2

< 0.5

TP05-02

20-Mar-2019 00:00

EM1904231-051

Result

7.6

5.4

50

<5

<1

32

12

6

9

23

<0.1

<10

<50

<100

<100

<50

<10

<10

<50

<100

<100

<50

<50

<0.2

< 0.5

TP05-03

20-Mar-2019 00:00

EM1904231-052

Result

8.0

11.6

580

<5

<1

40

8

5

12

24

<0.1

<10

< 50

<100

<100

<50

<10

<10

< 50

<100

<100

<50

<50

< 0.2

< 0.5

TP06-01

20-Mar-2019 00:00

EM1904231-054

Result

8.0

4.8

70

<5

<1

45

24

8

24

35

<0.1

<10

< 50

<100

<100

<50

<10

<10

<50

<100

<100

<50

<50

<0.2

< 0.5

Project : 191076

EA055: Moisture Content
Moisture Content

Sulfate as SO4 2-

Analytical Results

Sub-Matrix: SOIL

(Matrix: SOIL)

Compound

pH (CaCl2)

Arsenic

Cadmium

Chromium

Copper

Lead

Nickel

Mercury

C6 - C9 Fraction

C10 - C14 Fraction

C15 - C28 Fraction

C29 - C36 Fraction

C6 - C10 Fraction

>C10 - C16 Fraction

>C16 - C34 Fraction

>C34 - C40 Fraction

^ >C10 - C40 Fraction (sum)

^ >C10 - C16 Fraction minus Naphthalene

(F1)

(F2)

Toluene

EP080: BTEXN Benzene

^ C10 - C36 Fraction (sum)

[^] C6 - C10 Fraction minus BTEX

Zinc

<10

<10

<50

<100

<100

<50

<50

Page 554 of 851

Page : 22 of 40 Work Order : EM1904231

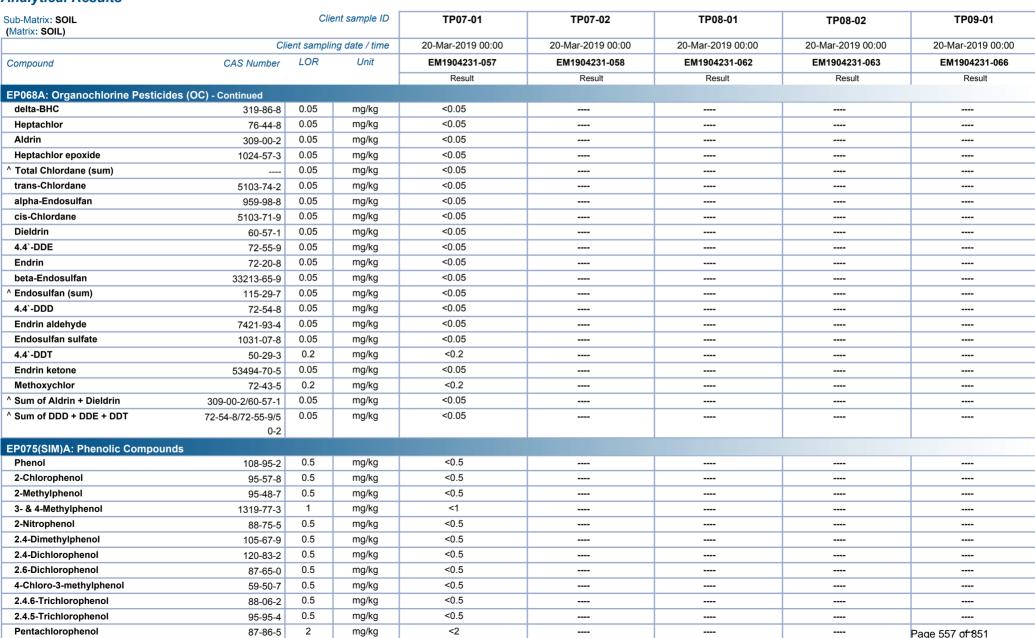
Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP04-03	TP05-02	TP05-03	TP06-01	TP06-02
	Cli	ent samplii	ng date / time	20-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-048	EM1904231-051	EM1904231-052	EM1904231-054	EM1904231-055
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	79.7	84.0	88.0	88.2	81.2
Toluene-D8	2037-26-5	0.2	%	68.6	76.1	75.6	79.7	74.1
4-Bromofluorobenzene	460-00-4	0.2	%	88.0	100	95.8	109	96.4

Page : 23 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD


Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP07-01	TP07-02	TP08-01	TP08-02	TP09-01
	Clie	ent sampli	ng date / time	20-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-057	EM1904231-058	EM1904231-062	EM1904231-063	EM1904231-066
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl	extract							
pH (CaCl2)		0.1	pH Unit		7.3	7.8	7.9	8.1
EA055: Moisture Content								
Moisture Content		1.0	%		10.2	3.3	6.0	3.2
EA055: Moisture Content (Dried @ 1	05-110°C)							
Moisture Content		1.0	%	7.9				
ED040N: Sulfate - Calcium Phosphat	te Soluble (NEPM)							
Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	<50	<50	<50	700
EG005(ED093)T: Total Metals by ICP								
Arsenic	7440-38-2	5	mg/kg	<5	<5	5	<5	<5
Barium	7440-39-3	10	mg/kg	70				
Beryllium	7440-41-7	1	mg/kg	1				
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	32	37	40	33	35
Cobalt	7440-48-4	2	mg/kg	7				
Copper	7440-50-8	5	mg/kg	19	19	33	17	16
Iron	7439-89-6	50	mg/kg	30600				
Lead	7439-92-1	5	mg/kg	8	9	14	10	8
Manganese	7439-96-5	5	mg/kg	212				
Nickel	7440-02-0	2	mg/kg	18	20	10	13	11
Silver	7440-22-4	2	mg/kg	<2				
Zinc	7440-66-6	5	mg/kg	24	26	30	36	36
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EG048: Hexavalent Chromium (Alkal	line Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5				
EK026SF: Total CN by Segmented F	low Analyser							
Total Cyanide	57-12-5	1	mg/kg	<1				
EP066: Polychlorinated Biphenyls (F								
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1				
EP068A: Organochlorine Pesticides	(OC)					-		
alpha-BHC	319-84-6	0.05	mg/kg	<0.05				
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05				
beta-BHC	319-85-7	0.05	mg/kg	<0.05				
gamma-BHC	58-89-9	0.05	mg/kg	<0.05				Page 556 of-851

Page : 24 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

: 25 of 40 : EM1904231 Page Work Order

Client : LBW CO PTY LTD

: 191076 Project

	Clie	ent sample ID	TP07-01	TP07-02	TP08-01	TP08-02	TP09-01
Cli	ient samplii	ng date / time	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00
CAS Number	LOR	Unit	EM1904231-057	EM1904231-058	EM1904231-062	EM1904231-063	EM1904231-066
		-	Result	Result	Result	Result	Result
Continued							
	0.5	mg/kg	<0.5				
vdrocarbons							
	0.5	mg/kg	<0.5				
	0.5		<0.5				
	0.5		<0.5				
			<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5		<0.5				
	0.5	mg/kg	<0.5				
	0.5	mg/kg	<0.5				
	0.5	mg/kg	<0.5				
	0.5	mg/kg	<0.5				
	0.5	mg/kg	0.6				
	0.5	mg/kg	1.2				
oons							
	10	mg/kg	<10	<10	<10	<10	<10
	50	mg/kg	<50	<50	<50	<50	<50
	100	mg/kg	<100	<100	<100	<100	<100
	100	mg/kg	<100	<100	<100	<100	<100
	50	mg/kg	<50	<50	<50	<50	<50
arbons - NEPM 201	3 Fraction	ıs					
C6 C10	10		<10	<10	<10	<10	<10
C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
	50	ma/ka	<50	<50	<50	<50	<50
							<100
	CAS Number Continued ydrocarbons 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 205-82-3 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2 s	Client samplin CAS Number LOR Continued 0.5 ydrocarbons 91-20-3 0.5 208-96-8 0.5 83-32-9 0.5 86-73-7 0.5 85-01-8 0.5 120-12-7 0.5 206-44-0 0.5 129-00-0 0.5 56-55-3 0.5 218-01-9 0.5 205-99-2 205-82-3 0.5 207-08-9 0.5 50-32-8 0.5 193-39-5 0.5 53-70-3 0.5 191-24-2 0.5 s 0.5 0.5	Client sampling date / time	Continued CAS Number LOR Unit EM1904231-057 Result	Client sampling date / time 20-Mar-2019 00:00 20-Mar-2019 00	Client sampling date / time 20-Mar-2019 00:00 20-Mar-2019 00	Client sampling date / time 20-Mar-2019 00:00 20-Mar-2019 0

Page : 26 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

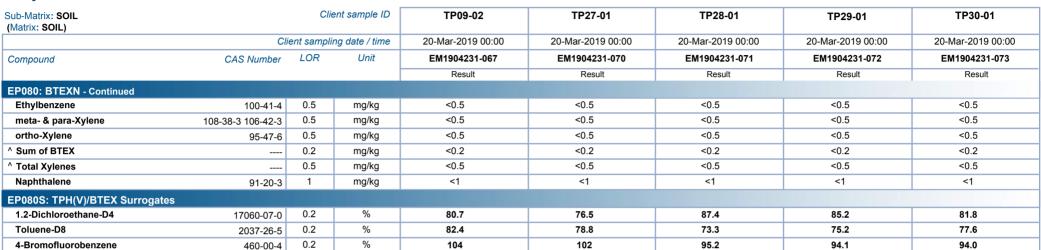
Project : 191076

ub-Matrix: SOIL Matrix: SOIL)		Cli	ent sample ID	TP07-01	TP07-02	TP08-01	TP08-02	TP09-01
,	Cli	ent sampli	ing date / time	20-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-057	EM1904231-058	EM1904231-062	EM1904231-063	EM1904231-066
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
` >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
`Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
` Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	91.1				
EP068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%	88.7				
EP068T: Organophosphorus Pesticide	Surrogate							
DEF	78-48-8	0.05	%	97.9				
EP075(SIM)S: Phenolic Compound Su								
Phenol-d6	13127-88-3	0.5	%	98.6				
2-Chlorophenol-D4	93951-73-6	0.5	%	95.4				
2.4.6-Tribromophenol	118-79-6	0.5	%	83.2				
EP075(SIM)T: PAH Surrogates	110100							
2-Fluorobiphenyl	321-60-8	0.5	%	97.1				
Anthracene-d10	1719-06-8	0.5	%	127				
4-Terphenyl-d14	1718-51-0	0.5	%	108				
EP080S: TPH(V)/BTEX Surrogates	77 10 01-0		.,					
1.2-Dichloroethane-D4	17060-07-0	0.2	%	85.4	89.1	81.1	81.5	92.4
Toluene-D8	2037-26-5	0.2	%	83.8	81.7	77.4	77.0	87.0
4-Bromofluorobenzene	460-00-4	0.2	%	108	110	98.0	100	104

Page : 27 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

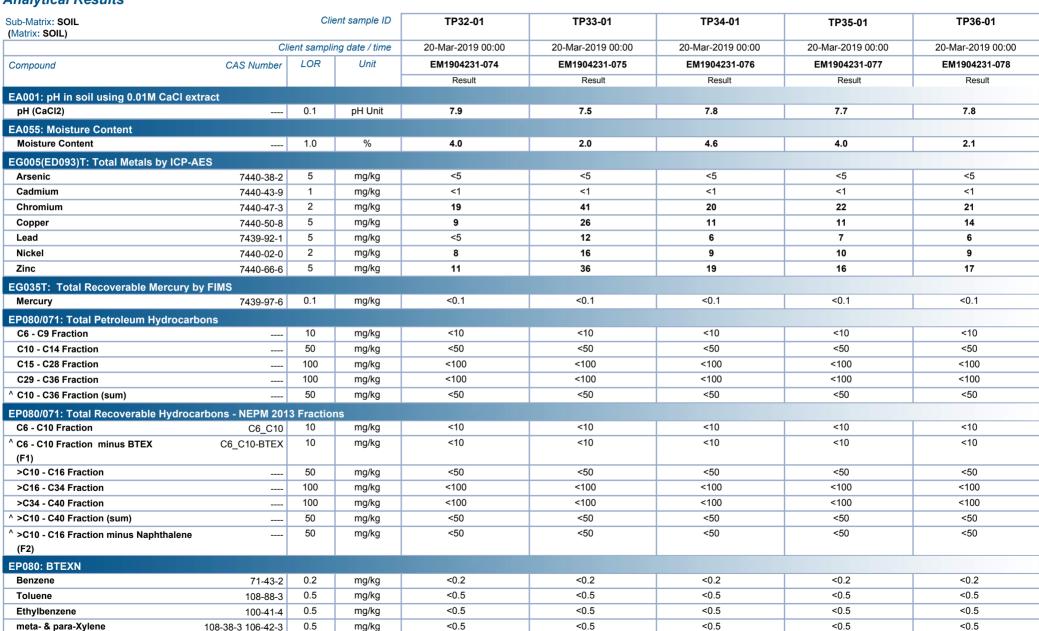


ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	TP09-02	TP27-01	TP28-01	TP29-01	TP30-01
·	Cli	ent sampli	ng date / time	20-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-067	EM1904231-070	EM1904231-071	EM1904231-072	EM1904231-073
•				Result	Result	Result	Result	Result
A001: pH in soil using 0.01M CaCl extra	act							
pH (CaCl2)		0.1	pH Unit	8.0	7.6	7.4	7.7	6.8
A055: Moisture Content								
Moisture Content		1.0	%	10.0	1.9	<1.0	2.0	1.3
D040N: Sulfate - Calcium Phosphate So	oluble (NEPM)							
Sulfate as SO4 2-	14808-79-8	50	mg/kg	150	<50	<50	170	110
G005(ED093)T: Total Metals by ICP-AE								
Arsenic	7440-38-2	5	mg/kg	<5	6	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	34	40	38	25	13
Copper	7440-50-8	5	mg/kg	19	11	14	<5	<5
Lead	7439-92-1	5	mg/kg	9	6	6	<5	<5
Nickel	7440-02-0	2	mg/kg	12	8	10	3	<2
Zinc	7440-66-6	5	mg/kg	31	22	28	9	<5
G035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
P080/071: Total Petroleum Hydrocarbo								
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydrocarl	oons - NFPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
P080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5 Page 560 of 851

Page : 28 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076



Page : 29 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Analytical Results

Page 562 of 851

Page : 30 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP32-01	TP33-01	TP34-01	TP35-01	TP36-01
	Cli	ent samplii	ng date / time	20-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-074	EM1904231-075	EM1904231-076	EM1904231-077	EM1904231-078
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	74.3	84.2	88.5	74.3	83.2
Toluene-D8	2037-26-5	0.2	%	81.9	83.8	92.4	77.3	85.8
4-Bromofluorobenzene	460-00-4	0.2	%	69.9	74.0	79.5	66.1	73.8

Page : 31 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

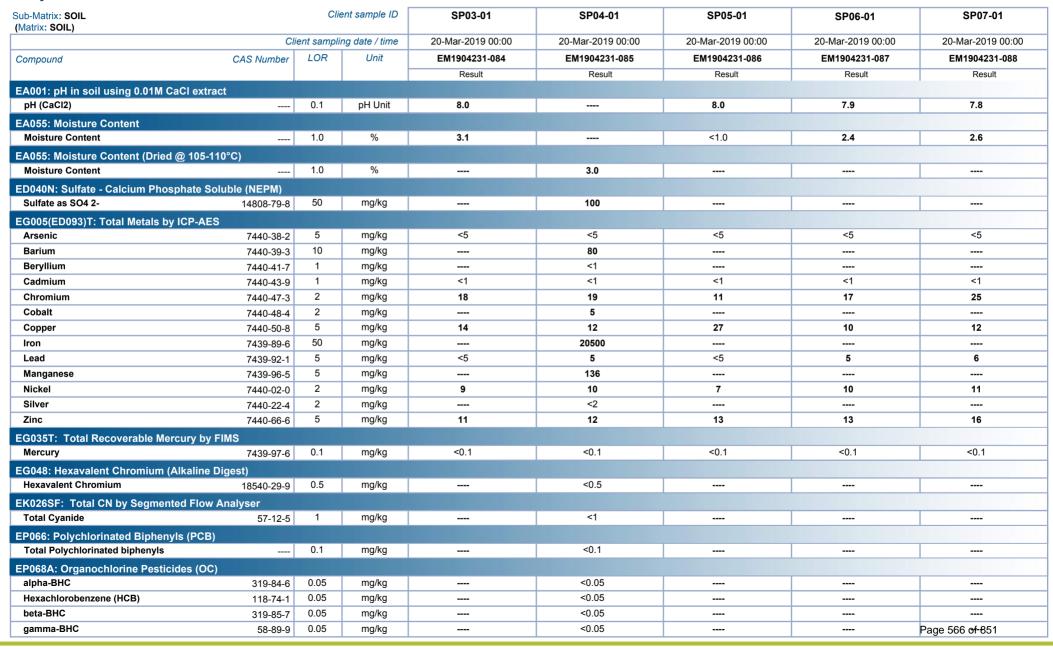
Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP37-01	TP38-01	TP39-01	SP01-01	SP02-01
	Clie	ent samplii	ng date / time	20-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-079	EM1904231-080	EM1904231-081	EM1904231-082	EM1904231-083
•				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl extr	act							
pH (CaCl2)		0.1	pH Unit	8.0	7.5	8.0	8.2	7.7
EA055: Moisture Content								
Moisture Content		1.0	%	2.5	2.2	2.3	3.0	<1.0
EG005(ED093)T: Total Metals by ICP-AE	s							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	6	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	17	26	17	29	8
Copper	7440-50-8	5	mg/kg	8	22	6	31	6
Lead	7439-92-1	5	mg/kg	<5	8	<5	<5	8
Nickel	7440-02-0	2	mg/kg	7	11	5	15	4
Zinc	7440-66-6	5	mg/kg	7	16	8	23	130
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
P080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydrocar	bons - NEPM 2013	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	_							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
` >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5 Page 564 of 851

Page : 32 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

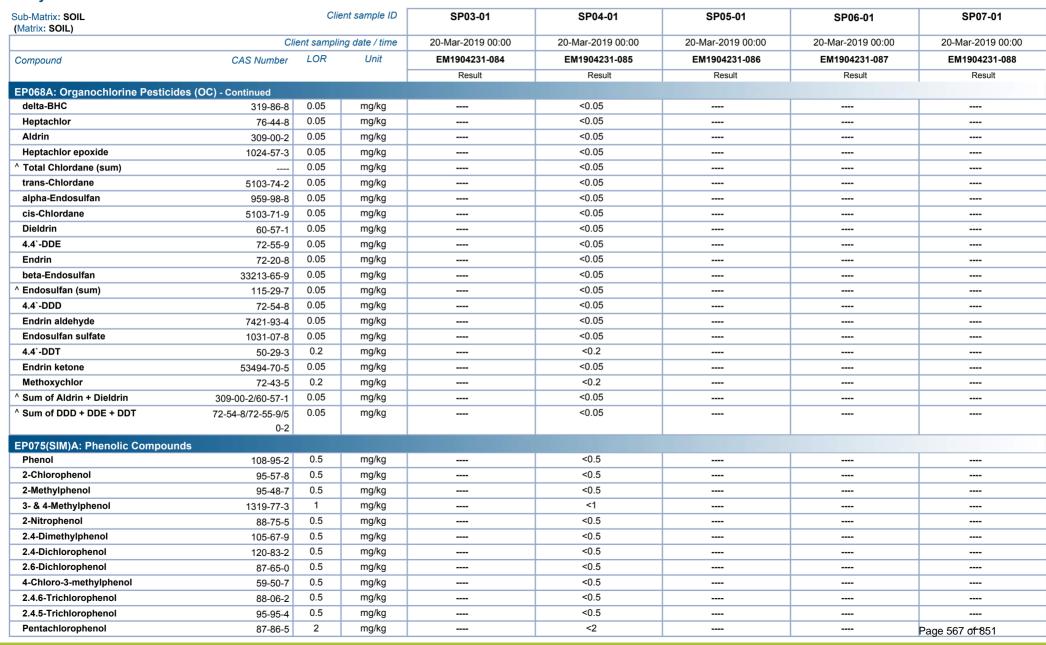

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP37-01	TP38-01	TP39-01	SP01-01	SP02-01
	Cli	ent sampli	ng date / time	20-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904231-079	EM1904231-080	EM1904231-081	EM1904231-082	EM1904231-083
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	71.0	83.5	82.9	81.8	86.5
Toluene-D8	2037-26-5	0.2	%	73.7	87.3	87.3	82.6	91.1
4-Bromofluorobenzene	460-00-4	0.2	%	65.7	76.8	76.4	73.5	77.2

Page : 33 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076



Page : 34 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Page : 35 of 40 : EM1904231 Work Order

Client : LBW CO PTY LTD

: 191076 Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SP03-01	SP04-01	SP05-01	SP06-01	SP07-01
,	Cli	ent sampli	ng date / time	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904231-084	EM1904231-085	EM1904231-086	EM1904231-087	EM1904231-088
·				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compound	s - Continued							
Sum of Phenols		0.5	mg/kg		<0.5			
EP075(SIM)B: Polynuclear Aromati	c Hvdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5			
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5			
Acenaphthene	83-32-9	0.5	mg/kg		<0.5			
Fluorene	86-73-7	0.5	mg/kg		<0.5			
Phenanthrene	85-01-8	0.5	mg/kg		<0.5			
Anthracene	120-12-7	0.5	mg/kg		<0.5			
Fluoranthene	206-44-0	0.5	mg/kg		<0.5			
Pyrene	129-00-0	0.5	mg/kg		<0.5			
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5			
Chrysene	218-01-9	0.5	mg/kg		<0.5			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg		<0.5			
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg		<0.5			
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5			
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5			
Sum of polycyclic aromatic hydrocarl	bons	0.5	mg/kg		<0.5			
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg		<0.5			
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg		0.6			
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg		1.2			
EP080/071: Total Petroleum Hydrod	carbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydr	rocarbons - NEPM 2012	3 Fractio	ns					
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	11_0.0 2.2X							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100

Page : 36 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	SP03-01	SP04-01	SP05-01	SP06-01	SP07-01
,	Cli	ient sampli	ng date / time	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:00	20-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904231-084	EM1904231-085	EM1904231-086	EM1904231-087	EM1904231-088
•				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		89.4			
EP068S: Organochlorine Pesticide Sເ	ırrogate							
Dibromo-DDE	21655-73-2	0.05	%		83.6			
EP068T: Organophosphorus Pesticid	e Surrogate							
DEF	78-48-8	0.05	%		86.1			
EP075(SIM)S: Phenolic Compound St								
Phenol-d6	13127-88-3	0.5	%		98.1			
2-Chlorophenol-D4	93951-73-6	0.5	%		94.4			
2.4.6-Tribromophenol	118-79-6	0.5	%		82.0			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%		102			
Anthracene-d10	1719-06-8	0.5	%		126			
4-Terphenyl-d14	1718-51-0	0.5	%		107			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	68.9	73.9	84.1	75.1	74.3
Toluene-D8	2037-26-5	0.2	%	75.2	76.7	88.4	84.3	83.0
4-Bromofluorobenzene	460-00-4	0.2	%	63.7	66.5	77.4	69.8	69.2

Page : 37 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)			ent sample ID	SP08-01	 	
	Cli	ent sampli	ng date / time	20-Mar-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1904231-089	 	
				Result	 	
EA001: pH in soil using 0.01M CaCl extra	act					
pH (CaCl2)		0.1	pH Unit	7.7	 	
EA055: Moisture Content						
Moisture Content		1.0	%	2.2	 	
EG005(ED093)T: Total Metals by ICP-AE	S					
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	25	 	
Copper	7440-50-8	5	mg/kg	16	 	
Lead	7439-92-1	5	mg/kg	6	 	
Nickel	7440-02-0	2	mg/kg	12	 	
Zinc	7440-66-6	5	mg/kg	18	 	
EG035T: Total Recoverable Mercury by	FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP080/071: Total Petroleum Hydrocarbo	ns					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydrocarl	ons - NEPM 201	3 Fraction	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)						
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
>C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN	74 40 5	0.2	ma ⁿ :-	40.2		I
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	 Page 570 of 851

Page : 38 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

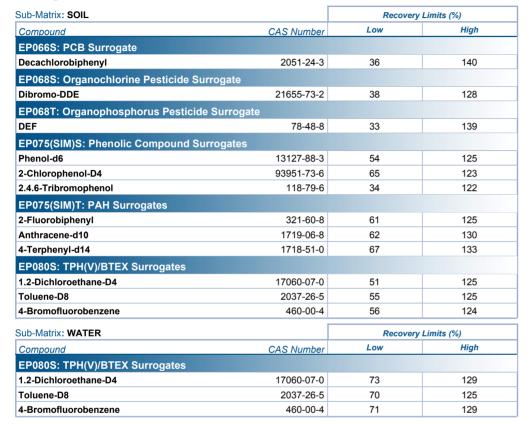
Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SP08-01	 	
	Cli	ent samplii	ng date / time	20-Mar-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1904231-089	 	
				Result	 	
EP080: BTEXN - Continued						
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	102	 	
Toluene-D8	2037-26-5	0.2	%	106	 	
4-Bromofluorobenzene	460-00-4	0.2	%	90.8	 	

Page : 39 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076


Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RINSE-01	TB-01	Rinse-02	
	Client sampling date / time			19-Mar-2019 00:00	19-Mar-2019 00:00	20-Mar-2019 00:00	
Compound	CAS Number	LOR	Unit	EM1904231-001	EM1904231-021	EM1904231-041	
				Result	Result	Result	
EG020T: Total Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001			
Chromium	7440-47-3	0.001	mg/L	<0.001			
Copper	7440-50-8	0.001	mg/L	<0.001			
Nickel	7440-02-0	0.001	mg/L	<0.001			
Lead	7439-92-1	0.001	mg/L	<0.001			
Zinc	7440-66-6	0.005	mg/L	<0.005			
EG035T: Total Recoverable Mercu	ry by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001			
EP080/071: Total Petroleum Hydro							
C6 - C9 Fraction		20	μg/L		<20	<20	
EP080/071: Total Recoverable Hyd	rocarbons - NEPM 201	3 Fraction	ns				
C6 - C10 Fraction	C6_C10	20	μg/L		<20	<20	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L		<20	<20	
(F1)	51_515 = 1 = 1						
EP080: BTEXN							
Benzene	71-43-2	1	μg/L		<1	<1	
Toluene	108-88-3	2	μg/L		<2	<2	
Ethylbenzene	100-41-4	2	μg/L		<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L		<2	<2	
ortho-Xylene	95-47-6	2	μg/L		<2	<2	
^ Total Xylenes		2	μg/L		<2	<2	
^ Sum of BTEX		1	μg/L		<1	<1	
Naphthalene	91-20-3	5	μg/L		<5	<5	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%		91.1	78.4	
Toluene-D8	2037-26-5	2	%		93.5	89.9	
4-Bromofluorobenzene	460-00-4	2	%		90.3	87.7	

Page : 40 of 40 Work Order : EM1904231

Client : LBW CO PTY LTD

Project : 191076

Surrogate Control Limits

CERTIFICATE OF ANALYSIS

Work Order : EM1904350

Client : LBW CO PTY LTD

Contact : MARK PETERSON

Address : 184 MAGILL ROAD

NORWOOD SA, AUSTRALIA 5067

Telephone

Project : 191076

Order number

C-O-C number : 191076_COC_20190321

Sampler

: Springwood Development PSI Site

: AD/014/19 Quote number

No. of samples received : 103 No. of samples analysed : 79

Page : 1 of 48

> Laboratory : Environmental Division Melbourne

Contact : Kieren Burns

Address : 4 Westall Rd Springvale VIC Australia 3171

: 26-Mar-2019 10:20

Telephone : +61881625130 Date Samples Received

Date Analysis Commenced : 26-Mar-2019

Accreditation Category

Issue Date : 04-Apr-2019 10:52

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

• •		3. 3.		
Arenie Vijayaratnam	Non-metals prep supervisor	Melbourne Inorganics, Springvale, VIC		
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW		
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC		
Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics, Springvale, VIC		
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC		

Position

Page : 2 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benza(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(q,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).

Page : 3 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	TP10-01	TP10-03	TP11-01	TP11-03	TP31-01
·	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-002	EM1904350-004	EM1904350-006	EM1904350-008	EM1904350-010
•				Result	Result	Result	Result	Result
A001: pH in soil using 0.01M CaCl extra	act							
pH (CaCl2)		0.1	pH Unit	7.7	8.0	7.0	7.5	7.9
A055: Moisture Content								
Moisture Content		1.0	%	5.5	15.4	2.9	18.6	3.4
D040N: Sulfate - Calcium Phosphate So	oluble (NEPM)							
Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	70	<50	170	
G005(ED093)T: Total Metals by ICP-AE								
Arsenic	7440-38-2	5	mg/kg	5	<5	6	6	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	36	23	31	22	19
Copper	7440-50-8	5	mg/kg	8	12	6	<u></u> <5	24
Lead	7439-92-1	5	mg/kg	6	6	<5	<5	5
Nickel	7440-02-0	2	mg/kg	7	14	3	3	10
Zinc	7440-66-6	5	mg/kg	22	17	10	10	11
G035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
P080/071: Total Petroleum Hydrocarbo								
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydrocart	ons - NFPM 201	3 Fractio	าร					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
P080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5 Page 576 of 851

Page : 4 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP10-01	TP10-03	TP11-01	TP11-03	TP31-01
	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-002	EM1904350-004	EM1904350-006	EM1904350-008	EM1904350-010
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	85.3	80.2	84.5	81.0	81.7
Toluene-D8	2037-26-5	0.2	%	84.3	81.7	87.8	76.7	85.6
4-Bromofluorobenzene	460-00-4	0.2	%	81.9	83.5	84.4	77.3	80.5

Page : 5 of 48 : EM1904350 Work Order

: LBW CO PTY LTD Client

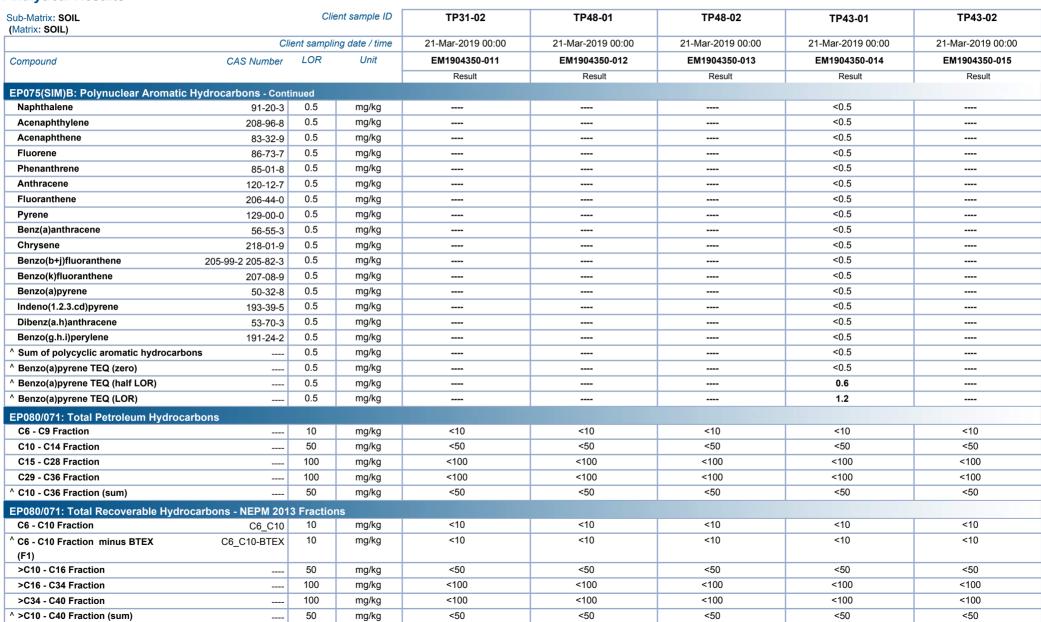
Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP31-02	TP48-01	TP48-02	TP43-01	TP43-02
	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-011	EM1904350-012	EM1904350-013	EM1904350-014	EM1904350-015
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaC	CI extract							
pH (CaCl2)		0.1	pH Unit	8.0	8.3	8.0		8.0
EA055: Moisture Content								
Moisture Content		1.0	%	4.6	2.3	4.0		4.1
EA055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%				2.8	
EG005(ED093)T: Total Metals by IC								
Barium	7440-39-3	10	mg/kg				190	
Beryllium	7440-41-7	1	mg/kg				<1	
Cobalt	7440-48-4	2	mg/kg				15	
Iron	7439-89-6	50	mg/kg				36900	
Manganese	7439-96-5	5	mg/kg				141	
Silver	7440-22-4	2	mg/kg				<2	
Arsenic	7440-38-2	5	mg/kg	<5	5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	20	25	26	54	57
Copper	7440-50-8	5	mg/kg	18	24	14	22	23
Lead	7439-92-1	5	mg/kg	6	<5	7	6	6
Nickel	7440-02-0	2	mg/kg	9	7	12	18	19
Zinc	7440-66-6	5	mg/kg	13	15	16	37	40
EG035T: Total Recoverable Mercu								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EG048: Hexavalent Chromium (Alk Hexavalent Chromium	18540-29-9	0.5	mg/kg				<0.5	
		0.5	mg/kg				70.0	
EK026SF: Total CN by Segmented		1	ma/ka			I	<1	I
Total Cyanide	57-12-5	1	mg/kg				<1	
EP066: Polychlorinated Biphenyls								
Total Polychlorinated biphenyls		0.1	mg/kg				<0.1	
EP068A: Organochlorine Pesticide								
alpha-BHC	319-84-6	0.05	mg/kg				<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg				<0.05	
beta-BHC	319-85-7	0.05	mg/kg				<0.05	
gamma-BHC	58-89-9	0.05	mg/kg				<0.05	
delta-BHC	319-86-8	0.05	mg/kg				<0.05	
Heptachlor	76-44-8	0.05	mg/kg				<0.05	Page 578 of 851

Page : 6 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076


Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	TP31-02	TP48-01	TP48-02	TP43-01	TP43-02
WIGHT COIL)	Cli	ent sampli	ing date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-011	EM1904350-012	EM1904350-013	EM1904350-014	EM1904350-015
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	les (OC) - Continued							
Aldrin	309-00-2	0.05	mg/kg				<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg				<0.05	
Total Chlordane (sum)		0.05	mg/kg				<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg				<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg				<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg				<0.05	
Dieldrin	60-57-1	0.05	mg/kg				<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg				<0.05	
Endrin	72-20-8	0.05	mg/kg				<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg				<0.05	
`Endosulfan (sum)	115-29-7	0.05	mg/kg				<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg				<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg				<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg				<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg				<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg				<0.05	
Methoxychlor	72-43-5	0.2	mg/kg				<0.2	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg				<0.05	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg				<0.05	
	0-2							
EP075(SIM)A: Phenolic Compour	nds							
Phenol	108-95-2	0.5	mg/kg				<0.5	
2-Chlorophenol	95-57-8	0.5	mg/kg				<0.5	
2-Methylphenol	95-48-7	0.5	mg/kg				<0.5	
3- & 4-Methylphenol	1319-77-3	1	mg/kg				<1	
2-Nitrophenol	88-75-5	0.5	mg/kg				<0.5	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg				<0.5	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg				<0.5	
2.6-Dichlorophenol	87-65-0	0.5	mg/kg				<0.5	
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg				<0.5	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg				<0.5	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg				<0.5	
Pentachlorophenol	87-86-5	2	mg/kg				<2	
Sum of Phenols		0.5	mg/kg				<0.5	

Page : 7 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

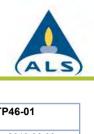
Analytical Results

Page 580 of 851

Page : 8 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076


ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP31-02	TP48-01	TP48-02	TP43-01	TP43-02
·	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-011	EM1904350-012	EM1904350-013	EM1904350-014	EM1904350-015
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%				98.8	
EP068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%				93.3	
EP068T: Organophosphorus Pesticide	Surrogate							
DEF	78-48-8	0.05	%				96.2	
EP075(SIM)S: Phenolic Compound Su								
Phenol-d6	13127-88-3	0.5	%				102	
2-Chlorophenol-D4	93951-73-6	0.5	%				101	
2.4.6-Tribromophenol	118-79-6	0.5	%				90.5	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%				106	
Anthracene-d10	1719-06-8	0.5	%				115	
4-Terphenyl-d14	1718-51-0	0.5	%				108	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	80.6	87.0	81.6	86.2	86.7
Toluene-D8	2037-26-5	0.2	%	86.3	83.0	80.9	82.3	85.8
4-Bromofluorobenzene	460-00-4	0.2	%	82.7	81.0	80.5	82.6	82.1

Page : 9 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	TP49-01	TP49-02	TP44-01	TP44-02	TP46-01
	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-016	EM1904350-017	EM1904350-018	EM1904350-019	EM1904350-020
•				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl ext	ract							
pH (CaCl2)		0.1	pH Unit	7.8	7.8	7.9	7.8	7.6
EA055: Moisture Content								
Moisture Content		1.0	%	3.4	3.4	3.2	2.9	2.7
EG005(ED093)T: Total Metals by ICP-A	ES							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	28	32	13	15	14
Copper	7440-50-8	5	mg/kg	16	15	5	7	5
Lead	7439-92-1	5	mg/kg	8	8	<5	9	<5
Nickel	7440-02-0	2	mg/kg	16	14	6	6	6
Zinc	7440-66-6	5	mg/kg	19	22	6	13	10
EG035T: Total Recoverable Mercury by	v FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5 Page 582 of 851

Page : 10 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP49-01	TP49-02	TP44-01	TP44-02	TP46-01
	Cli	ent samplii	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-016	EM1904350-017	EM1904350-018	EM1904350-019	EM1904350-020
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	86.6	88.5	101	98.9	96.5
Toluene-D8	2037-26-5	0.2	%	82.8	77.2	88.9	87.0	83.4
4-Bromofluorobenzene	460-00-4	0.2	%	84.6	81.4	87.9	82.1	82.0

Page : 11 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP46-02	TP45-01	TP45-02	TP47-01	TP47-02
·	Cli	ent sampli	ng date / time	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904350-021	EM1904350-022	EM1904350-023	EM1904350-024	EM1904350-025
•				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl extr	act							
pH (CaCl2)		0.1	pH Unit	7.5	8.0	7.8	7.9	7.9
EA055: Moisture Content								
Moisture Content		1.0	%	3.4	2.4	2.6	4.7	3.5
EG005(ED093)T: Total Metals by ICP-AE	S							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	21	56	56	51	52
Copper	7440-50-8	5	mg/kg	7	30	28	18	20
Lead	7439-92-1	5	mg/kg	6	10	11	7	8
Nickel	7440-02-0	2	mg/kg	8	22	21	16	17
Zinc	7440-66-6	5	mg/kg	12	46	42	33	36
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP080/071: Total Petroleum Hydrocarbo	ns							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	-							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5 Page 584 of 851

Page : 12 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP46-02	TP45-01	TP45-02	TP47-01	TP47-02
	Cli	ent samplii	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-021	EM1904350-022	EM1904350-023	EM1904350-024	EM1904350-025
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	96.1	105	72.1	71.5	71.7
Toluene-D8	2037-26-5	0.2	%	79.3	79.9	92.4	92.0	94.6
4-Bromofluorobenzene	460-00-4	0.2	%	80.5	78.7	84.8	86.0	85.4

: 13 of 48 : EM1904350 Page Work Order

: LBW CO PTY LTD : 191076 Client

Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP12-01	TP12-03	TP13-02	TP13-03	TP13-05
,	CI	ient sampli	ng date / time	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904350-026	EM1904350-028	EM1904350-030	EM1904350-031	EM1904350-033
•				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M Ca	CI extract							
pH (CaCl2)		0.1	pH Unit		8.0	8.0	8.0	8.0
EA055: Moisture Content								
Moisture Content		1.0	%		4.0	4.5	3.3	4.0
EA055: Moisture Content (Dried @	D 105-110°C)							
Moisture Content		1.0	%	<1.0				
EG005(ED093)T: Total Metals by I								
Barium	7440-39-3	10	mg/kg	<10				
Beryllium	7440-41-7	1	mg/kg	<1				
Cobalt	7440-48-4	2	mg/kg	<2				
Iron	7439-89-6	50	mg/kg	7240				
Manganese	7439-96-5	5	mg/kg	10				
Silver	7440-22-4	2	mg/kg	<2				
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	4	15	6	4	8
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	3	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	<5	8	<5	7	<5
EG035T: Total Recoverable Merc	ury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EG048: Hexavalent Chromium (Al	kaline Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5				
EK026SF: Total CN by Segmente								
Total Cyanide	57-12-5	1	mg/kg	<1				
EP066: Polychlorinated Biphenyls								
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1				
EP068A: Organochlorine Pesticid								
alpha-BHC	319-84-6	0.05	mg/kg	<0.05				
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05				
beta-BHC	319-85-7	0.05	mg/kg	<0.05				
gamma-BHC	58-89-9	0.05	mg/kg	<0.05				
delta-BHC	319-86-8	0.05	mg/kg	<0.05				
Heptachlor	76-44-8	0.05	mg/kg	<0.05				Page 586 of 851

Page : 14 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

: 15 of 48 : EM1904350 Page Work Order

Client : LBW CO PTY LTD

: 191076 Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP12-01	TP12-03	TP13-02	TP13-03	TP13-05
,	Cli	ient samplii	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-026	EM1904350-028	EM1904350-030	EM1904350-031	EM1904350-033
	37.13.11.13.11		-	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromati	c Hydrocarbons - Cont	inued						
Naphthalene	91-20-3	0.5	mg/kg	<0.5				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5				
Acenaphthene	83-32-9	0.5	mg/kg	<0.5				
Fluorene	86-73-7	0.5	mg/kg	<0.5				
Phenanthrene	85-01-8	0.5	mg/kg	<0.5				
Anthracene	120-12-7	0.5	mg/kg	<0.5				
Fluoranthene	206-44-0	0.5	mg/kg	<0.5				
Pyrene	129-00-0	0.5	mg/kg	<0.5				
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5				
Chrysene	218-01-9	0.5	mg/kg	<0.5				
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5				
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5				
^ Sum of polycyclic aromatic hydrocarl		0.5	mg/kg	<0.5				
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5				
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6				
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2				
		0.0	mg/kg	112				
EP080/071: Total Petroleum Hydrod C6 - C9 Fraction		10	ma/ka	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
		50		<50	<50	<50	<50	<50
C10 - C36 Fraction (sum)			mg/kg	\ 00	750	\ 00		\ 00
EP080/071: Total Recoverable Hydr				<10	-10	-10	-10	-10
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)		F0	ma/!	< <u>-</u>	4E0	ZE0	ZEC	-50
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50 Page 588 of 851

Page : 16 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	TP12-01	TP12-03	TP13-02	TP13-03	TP13-05
	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-026	EM1904350-028	EM1904350-030	EM1904350-031	EM1904350-033
				Result	Result	Result	Result	Result
P080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
P080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
P066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	89.5				
EP068S: Organochlorine Pesticide Su								
Dibromo-DDE	21655-73-2	0.05	%	99.8				
P068T: Organophosphorus Pesticide								
DEF	78-48-8	0.05	%	105				
		0.00	70	103				
P075(SIM)S: Phenolic Compound Su		0.5	%	444		I		
Phenol-d6	13127-88-3	0.5	%	111				
2-Chlorophenol-D4	93951-73-6			109				
2.4.6-Tribromophenol	118-79-6	0.5	%	101				
P075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	115				
Anthracene-d10	1719-06-8	0.5	%	128				
4-Terphenyl-d14	1718-51-0	0.5	%	120				
P080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	74.2	71.1	77.3	77.6	67.5
Toluene-D8	2037-26-5	0.2	%	82.9	89.2	95.6	96.2	82.5
4-Bromofluorobenzene	460-00-4	0.2	%	79.6	84.1	86.0	85.4	75.8

Page : 17 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP52-01	TP52-02	TP54-01	TP54-02	TP53-01
·	Cli	ent sampli	ng date / time	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904350-034	EM1904350-035	EM1904350-036	EM1904350-037	EM1904350-038
•				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl extr	act							
pH (CaCl2)		0.1	pH Unit	6.8	8.0	7.8	7.8	7.1
EA055: Moisture Content								
Moisture Content		1.0	%	2.5	3.2	4.0	2.9	1.6
EG005(ED093)T: Total Metals by ICP-AE	s							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	17	16	29	23	14
Copper	7440-50-8	5	mg/kg	10	14	15	12	8
Lead	7439-92-1	5	mg/kg	14	5	9	7	10
Nickel	7440-02-0	2	mg/kg	8	10	14	12	6
Zinc	7440-66-6	5	mg/kg	20	12	19	17	14
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1) >C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)		- -	33					
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
-	-				'		-	Page 590 of 851

Page : 18 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			TP52-01	TP52-02	TP54-01	TP54-02	TP53-01
	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-034	EM1904350-035	EM1904350-036	EM1904350-037	EM1904350-038
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	71.7	76.0	73.2	69.4	80.4
Toluene-D8	2037-26-5	0.2	%	88.6	94.3	91.1	86.9	101
4-Bromofluorobenzene	460-00-4	0.2	%	82.9	85.9	81.6	80.3	91.6

Page : 19 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP53-02	TP51-01	TP51-02	TP51-03	TP51-04
,	CI	ient sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-039	EM1904350-040	EM1904350-041	EM1904350-042	EM1904350-043
•				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaC	l extract							
pH (CaCl2)		0.1	pH Unit	7.0		7.8	8.2	8.1
EA055: Moisture Content								
Moisture Content		1.0	%	1.3		2.9	3.4	3.0
A055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%		3.1			
G005(ED093)T: Total Metals by IC	P-AES							
Barium	7440-39-3	10	mg/kg		100			
Beryllium	7440-41-7	1	mg/kg		<1			
Cobalt	7440-48-4	2	mg/kg		7			
Iron	7439-89-6	50	mg/kg		24600			
Manganese	7439-96-5	5	mg/kg		232			
Silver	7440-22-4	2	mg/kg		<2			
Arsenic	7440-38-2	5	mg/kg	<5	8	<5	8	8
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	12	24	31	24	21
Copper	7440-50-8	5	mg/kg	7	9	16	10	8
Lead	7439-92-1	5	mg/kg	9	8	10	10	8
Nickel	7440-02-0	2	mg/kg	5	12	18	13	12
Zinc	7440-66-6	5	mg/kg	14	15	21	17	15
G035T: Total Recoverable Mercu	ry by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
G048: Hexavalent Chromium (Alk	aline Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg		<0.5			
EK026SF: Total CN by Segmented	Flow Analyser							
Total Cyanide	57-12-5	1	mg/kg		<1			
EP066: Polychlorinated Biphenyls								
Total Polychlorinated biphenyls		0.1	mg/kg		<0.1			
EP068A: Organochlorine Pesticide			3 3					
alpha-BHC	319-84-6	0.05	mg/kg		<0.05			
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05			
beta-BHC	319-85-7	0.05	mg/kg		<0.05			
gamma-BHC	58-89-9	0.05	mg/kg		<0.05			
delta-BHC	319-86-8	0.05	mg/kg		<0.05			
Heptachlor	76-44-8	0.05	mg/kg		<0.05			Page 592 of 851

Page : 20 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP53-02	TP51-01	TP51-02	TP51-03	TP51-04
mount ooil	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-039	EM1904350-040	EM1904350-041	EM1904350-042	EM1904350-043
Compound	or to realized		1	Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticid	es (OC) - Continued							
Aldrin	309-00-2	0.05	mg/kg		<0.05			
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05			
^ Total Chlordane (sum)		0.05	mg/kg		<0.05			
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05			
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05			
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05			
Dieldrin	60-57-1	0.05	mg/kg		<0.05			
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05			
Endrin	72-20-8	0.05	mg/kg		<0.05			
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05			
^ Endosulfan (sum)	115-29-7	0.05	mg/kg		<0.05			
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05			
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05			
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05			
4.4`-DDT	50-29-3	0.2	mg/kg		<0.2			
Endrin ketone	53494-70-5	0.05	mg/kg		<0.05			
Methoxychlor	72-43-5	0.2	mg/kg		<0.2			
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg		<0.05			
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg		<0.05			
Cam 61 222 × 222 × 221	0-2	0.00	mg/kg		-0.00			
EP075(SIM)A: Phenolic Compoun								
Phenol	108-95-2	0.5	mg/kg		<0.5			
2-Chlorophenol	95-57-8	0.5	mg/kg		<0.5			
2-Methylphenol	95-48-7	0.5	mg/kg		<0.5			
3- & 4-Methylphenol	1319-77-3	1	mg/kg		<1			
2-Nitrophenol	88-75-5	0.5	mg/kg		<0.5			
2.4-Dimethylphenol	105-67-9	0.5	mg/kg		<0.5			
2.4-Dichlorophenol	120-83-2	0.5	mg/kg		<0.5			
2.6-Dichlorophenol	87-65-0	0.5	mg/kg		<0.5			
4-Chloro-3-methylphenol		0.5	mg/kg		<0.5			
2.4.6-Trichlorophenol	59-50-7	0.5			<0.5			
·	88-06-2		mg/kg		<0.5			
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg		<0.5			
Pentachlorophenol	87-86-5	2	mg/kg					
^ Sum of Phenols		0.5	mg/kg		<0.5			 Page 593 of 851

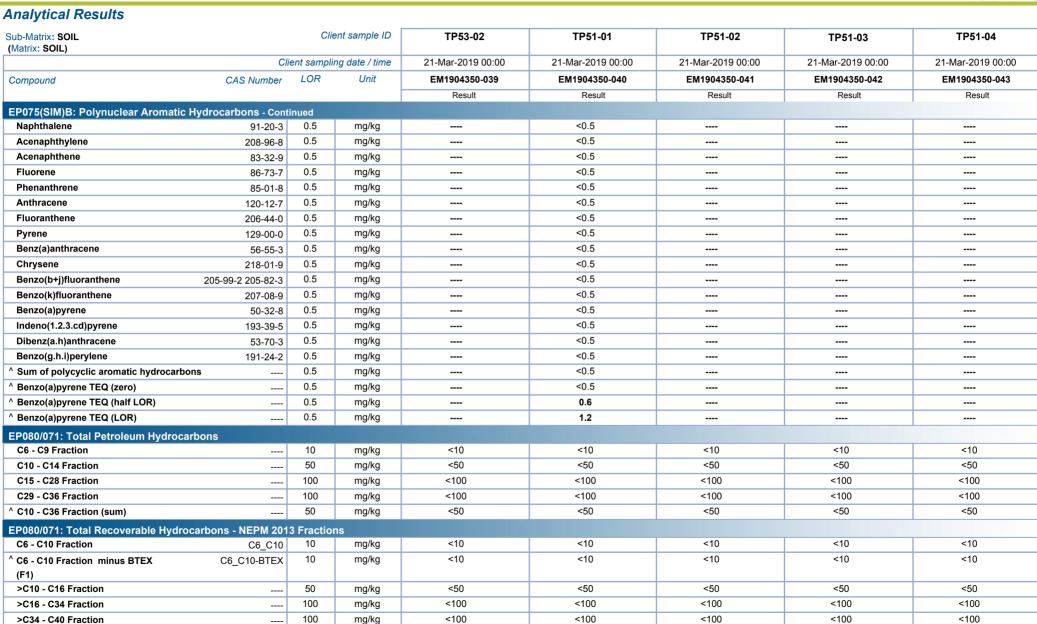
Page : 21 of 48 Work Order EM1904350

Client : LBW CO PTY LTD

· 191076 Project

^ >C10 - C40 Fraction (sum)

50



mg/kg

<50

<50

<50

<50

<50

Page : 22 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP53-02	TP51-01	TP51-02	TP51-03	TP51-04
·	Cli	ient sampli	ng date / time	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904350-039	EM1904350-040	EM1904350-041	EM1904350-042	EM1904350-043
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		90.9			
EP068S: Organochlorine Pesticide Su	ırroqate							
Dibromo-DDE	21655-73-2	0.05	%		93.8			
EP068T: Organophosphorus Pesticid								
DEF	78-48-8	0.05	%		97.3			
EP075(SIM)S: Phenolic Compound Su								
Phenol-d6	13127-88-3	0.5	%		99.4			
2-Chlorophenol-D4	93951-73-6	0.5	%		97.9			
2.4.6-Tribromophenol	118-79-6	0.5	%		84.6			
	110-73-0	0.0	70		54.0			
EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl	204 00 0	0.5	%		102			
Anthracene-d10	321-60-8	0.5	%		112			
4-Terphenyl-d14	1719-06-8	0.5	%		105			
	1718-51-0	0.5	/0		100			
EP080S: TPH(V)/BTEX Surrogates	47000 57 5	0.2	0/	20.4	70.0	00.0	70.0	00.7
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.4	79.2	93.0	79.8	83.7
Toluene-D8	2037-26-5	0.2	%	84.5	84.6	90.4	84.9	87.1
4-Bromofluorobenzene	460-00-4	0.2	%	82.0	83.0	86.0	79.6	88.0

Page : 23 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

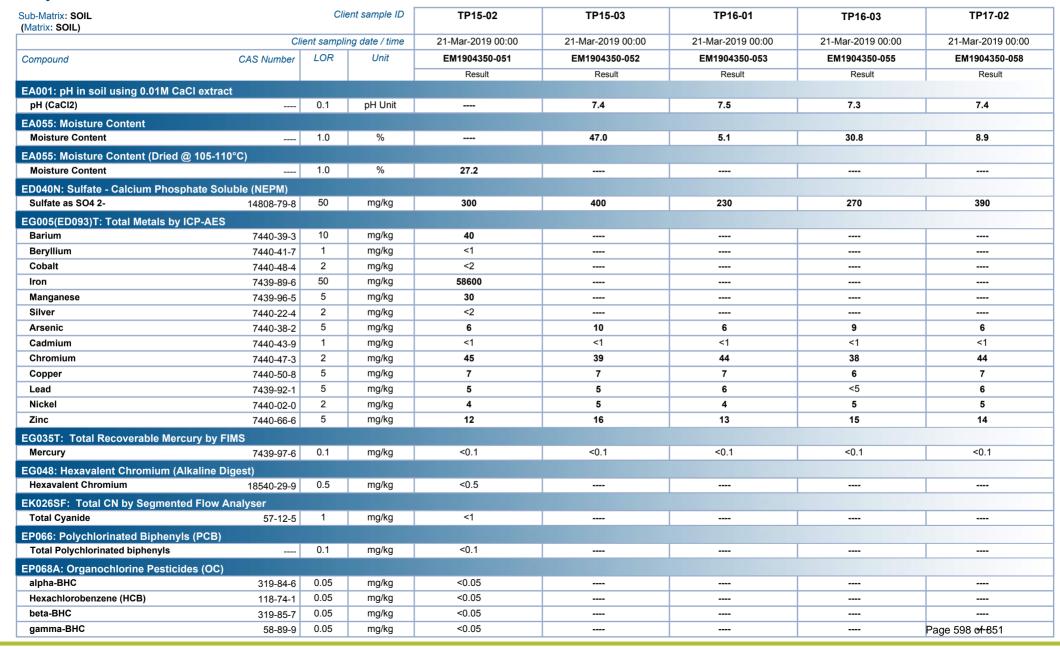
Project : 191076

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	TP50-01	TP50-02	TP14-01	TP14-03	TP14-04
,	Clie	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-044	EM1904350-045	EM1904350-046	EM1904350-048	EM1904350-049
				Result	Result	Result	Result	Result
A001: pH in soil using 0.01M CaCl extra	act							
pH (CaCl2)		0.1	pH Unit	7.9	7.9	7.7	7.5	7.5
A055: Moisture Content								
Moisture Content		1.0	%	3.1	3.0	8.3	35.1	8.4
D040N: Sulfate - Calcium Phosphate So	oluble (NEPM)							
Sulfate as SO4 2-	14808-79-8	50	mg/kg			730	190	750
G005(ED093)T: Total Metals by ICP-AE								
Arsenic	7440-38-2	5	mg/kg	<5	<5	6	8	6
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	20	21	46	36	45
Copper	7440-50-8	5	mg/kg	14	12	7	6	7
Lead	7439-92-1	5	mg/kg	8	8	7	<5	6
Nickel	7440-02-0	2	mg/kg	10	11	5	3	4
Zinc	7440-66-6	5	mg/kg	16	15	13	10	13
G035T: Total Recoverable Mercury by								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
P080/071: Total Petroleum Hydrocarbo			0 0					
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydrocart	oons NEDM 2011							
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	00_010-B1EX							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
P080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5 Page 596 of 851

Page : 24 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076



Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP50-01	TP50-02	TP14-01	TP14-03	TP14-04
	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-044	EM1904350-045	EM1904350-046	EM1904350-048	EM1904350-049
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	79.6	90.2	84.7	65.3	85.2
Toluene-D8	2037-26-5	0.2	%	86.2	90.5	89.2	67.0	87.4
4-Bromofluorobenzene	460-00-4	0.2	%	78.9	85.1	80.2	68.4	87.0

Page : 25 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Page : 26 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	TP15-02	TP15-03	TP16-01	TP16-03	TP17-02
,	Cli	ient samplir	ng date / time	21-Mar-2019 00:00				
compound	CAS Number	LOR	Unit	EM1904350-051	EM1904350-052	EM1904350-053	EM1904350-055	EM1904350-058
				Result	Result	Result	Result	Result
P068A: Organochlorine Pestici	des (OC) - Continued							
delta-BHC	319-86-8	0.05	mg/kg	<0.05				
Heptachlor	76-44-8	0.05	mg/kg	<0.05				
Aldrin	309-00-2	0.05	mg/kg	<0.05				
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05				
Total Chlordane (sum)		0.05	mg/kg	<0.05				
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05				
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05				
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05				
Dieldrin	60-57-1	0.05	mg/kg	<0.05				
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05				
Endrin	72-20-8	0.05	mg/kg	<0.05				
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05				
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05				
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05				
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05				
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05				
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2				
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05				
Methoxychlor	72-43-5	0.2	mg/kg	<0.2				
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05				
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05				
	0-2							
P075(SIM)A: Phenolic Compou	nds							
Phenol	108-95-2	0.5	mg/kg	<0.5				
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5				
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5				
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1				
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5				
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5				
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5				
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5				
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5				
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5				
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5				
Pentachlorophenol	87-86-5	2	mg/kg	<2				Page 599 of 851

Page : 27 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP15-02	TP15-03	TP16-01	TP16-03	TP17-02
	Cli	ent samplii	ng date / time	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904350-051	EM1904350-052	EM1904350-053	EM1904350-055	EM1904350-058
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds -	Continued							
Sum of Phenols		0.5	mg/kg	<0.5				
EP075(SIM)B: Polynuclear Aromatic F	lydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5				
Acenaphthene	83-32-9	0.5	mg/kg	<0.5				
Fluorene	86-73-7	0.5	mg/kg	<0.5				
Phenanthrene	85-01-8	0.5	mg/kg	<0.5				
Anthracene	120-12-7	0.5	mg/kg	<0.5				
Fluoranthene	206-44-0	0.5	mg/kg	<0.5				
Pyrene	129-00-0	0.5	mg/kg	<0.5				
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5				
Chrysene	218-01-9	0.5	mg/kg	<0.5				
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5				
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5				
Sum of polycyclic aromatic hydrocarbor	ıs	0.5	mg/kg	<0.5				
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5				
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6				
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2				
P080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	-							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100

Page : 28 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	TP15-02	TP15-03	TP16-01	TP16-03	TP17-02
·	Cli	ient sampli	ing date / time	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904350-051	EM1904350-052	EM1904350-053	EM1904350-055	EM1904350-058
•				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	91.2				
EP068S: Organochlorine Pesticide S	urrogate							
Dibromo-DDE	21655-73-2	0.05	%	94.3				
EP068T: Organophosphorus Pesticio	le Surrogate							
DEF	78-48-8	0.05	%	97.9				
EP075(SIM)S: Phenolic Compound S								
Phenol-d6	13127-88-3	0.5	%	114				
2-Chlorophenol-D4	93951-73-6	0.5	%	112				
2.4.6-Tribromophenol	118-79-6	0.5	%	96.7				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	116				
Anthracene-d10	1719-06-8	0.5	%	127				
4-Terphenyl-d14	1718-51-0	0.5	%	120				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	82.9	86.4	96.7	83.3	82.7
Toluene-D8	2037-26-5	0.2	%	76.5	76.0	85.8	80.4	82.2
4-Bromofluorobenzene	460-00-4	0.2	%	77.1	71.8	81.1	83.6	81.6

Page : 29 of 48 Work Order EM1904350

Client : LBW CO PTY LTD

· 191076 Project

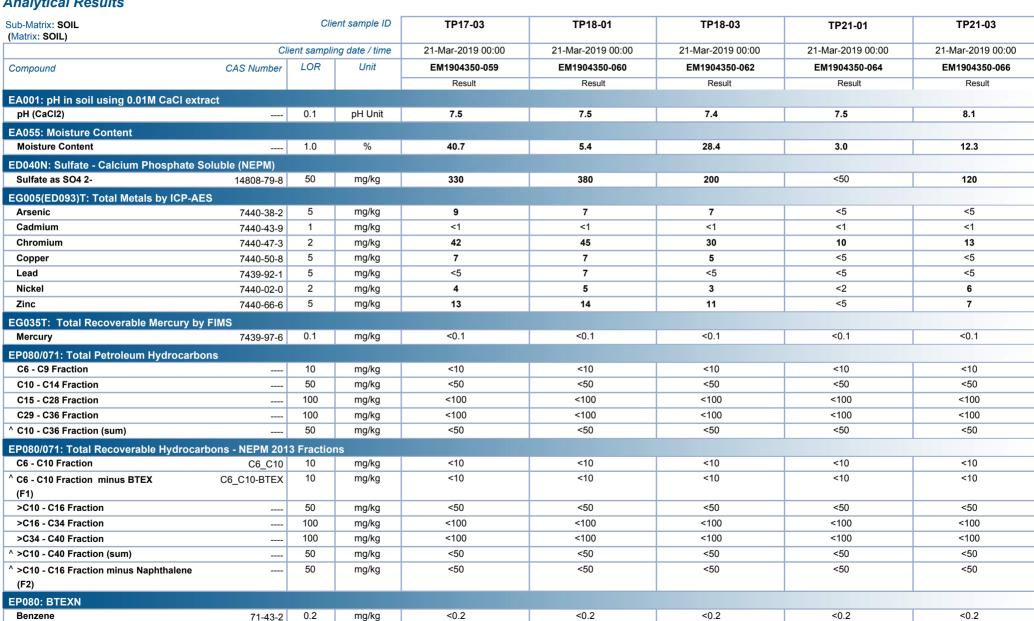
Analytical Results

Toluene

108-88-3

0.5

mg/kg


< 0.5

< 0.5

< 0.5

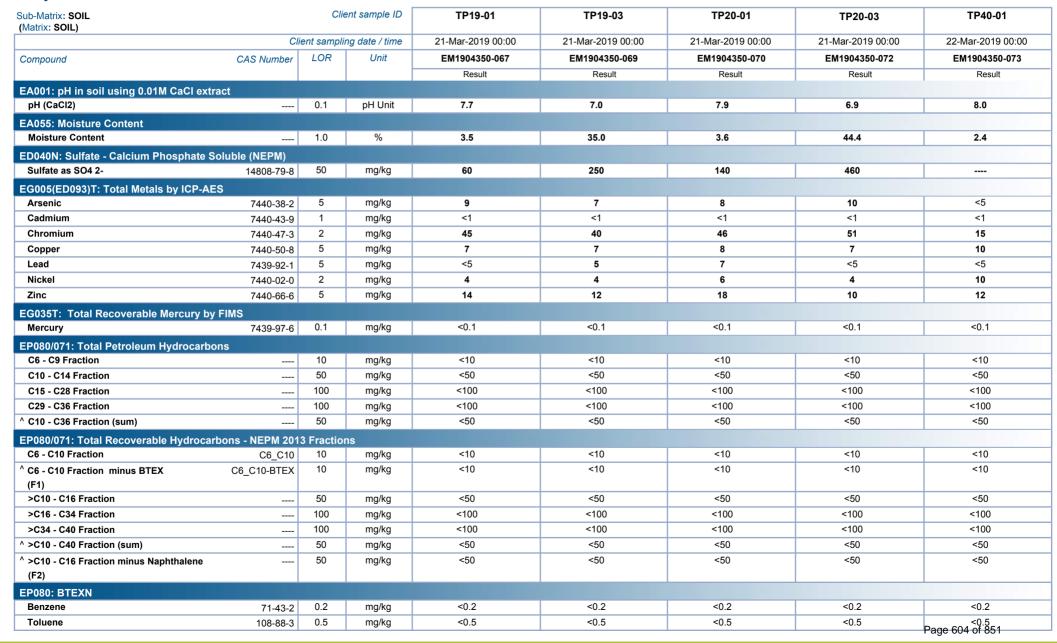
< 0.5

<0.5 Page 602 of 851

Page : 30 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076



Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP17-03	TP18-01	TP18-03	TP21-01	TP21-03
	Cli	ent sampli	ng date / time	21-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-059	EM1904350-060	EM1904350-062	EM1904350-064	EM1904350-066
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	75.9	93.1	91.4	93.7	95.2
Toluene-D8	2037-26-5	0.2	%	75.5	87.1	89.9	87.1	80.6
4-Bromofluorobenzene	460-00-4	0.2	%	77.8	84.5	80.6	84.2	76.1

Page : 31 of 48 Work Order : EM1904350

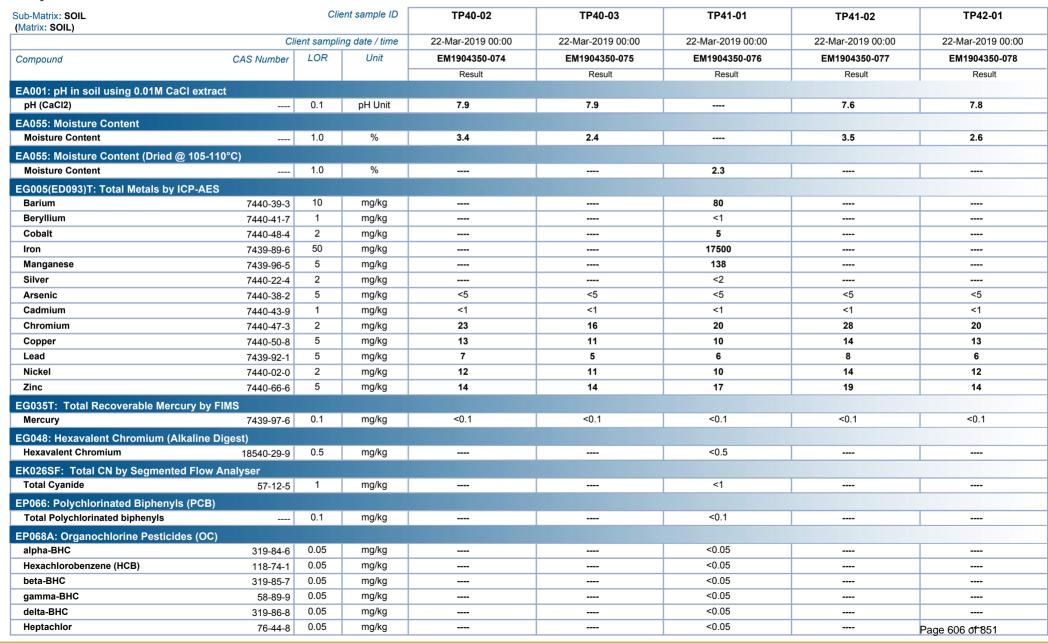
Client : LBW CO PTY LTD

Project : 191076

Page : 32 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076


ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP19-01	TP19-03	TP20-01	TP20-03	TP40-01
(Maasa CC12)	Cli	ent sampli	ng date / time	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	21-Mar-2019 00:00	22-Mar-2019 00:00
Compound	CAS Number	LOR Unit	EM1904350-067	EM1904350-069	EM1904350-070	EM1904350-072	EM1904350-073	
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	86.6	89.4	88.3	83.5	82.3
Toluene-D8	2037-26-5	0.2	%	87.2	91.7	87.1	84.8	85.2
4-Bromofluorobenzene	460-00-4	0.2	%	89.2	92.1	95.7	87.1	85.0

Page : 33 of 48 Work Order : EM1904350

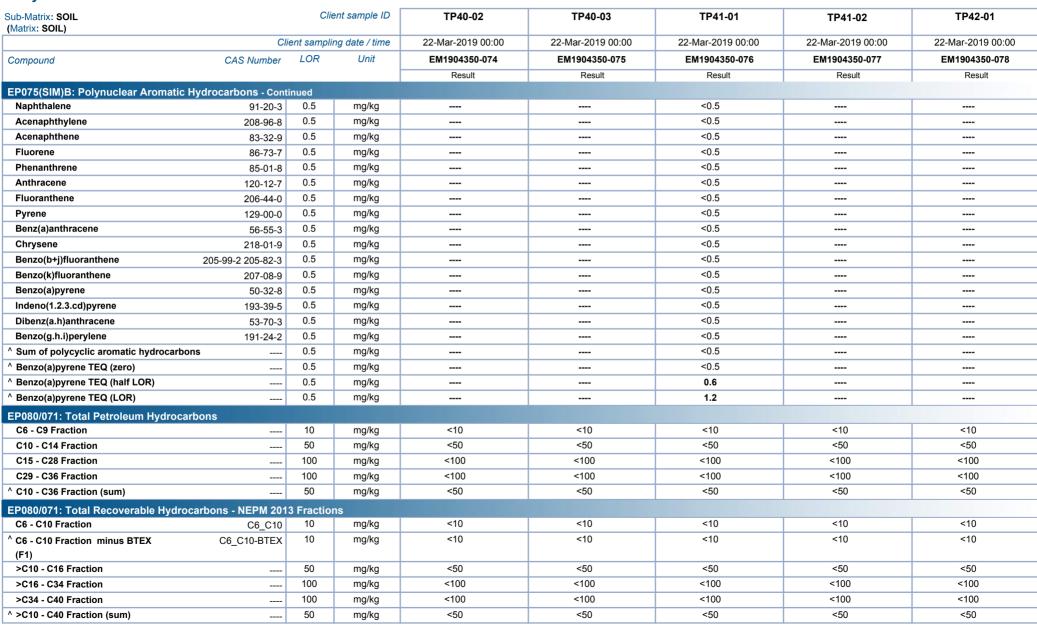
Client : LBW CO PTY LTD

Project : 191076

Page : 34 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076


Matrix: SOIL)	Clic							
	Cile	ent sampli	ng date / time	22-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-074	EM1904350-075	EM1904350-076	EM1904350-077	EM1904350-078
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticides	(OC) - Continued							
Aldrin	309-00-2	0.05	mg/kg			<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg			<0.05		
` Total Chlordane (sum)		0.05	mg/kg			<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg			<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg			<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg			<0.05		
Dieldrin	60-57-1	0.05	mg/kg			<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg			<0.05		
Endrin	72-20-8	0.05	mg/kg			<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg			<0.05		
` Endosulfan (sum)	115-29-7	0.05	mg/kg			<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg			<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg			<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg			<0.05		
4.4`-DDT	50-29-3	0.2	mg/kg	****		<0.2		
Endrin ketone	53494-70-5	0.05	mg/kg			<0.05		
Methoxychlor	72-43-5	0.2	mg/kg			<0.2		
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	****		<0.05		
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg			<0.05		
	0-2							
EP075(SIM)A: Phenolic Compounds								
Phenol	108-95-2	0.5	mg/kg			<0.5		
2-Chlorophenol	95-57-8	0.5	mg/kg			<0.5		
2-Methylphenol	95-48-7	0.5	mg/kg			<0.5		
3- & 4-Methylphenol	1319-77-3	1	mg/kg			<1		
2-Nitrophenol	88-75-5	0.5	mg/kg			<0.5		
2.4-Dimethylphenol	105-67-9	0.5	mg/kg			<0.5		
2.4-Dichlorophenol	120-83-2	0.5	mg/kg			<0.5		
2.6-Dichlorophenol	87-65-0	0.5	mg/kg			<0.5		
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg			<0.5		
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg			<0.5		
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg			<0.5		
Pentachlorophenol	87-86-5	2	mg/kg			<2		
Sum of Phenois		0.5	mg/kg			<0.5		

Page : 35 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project · 191076

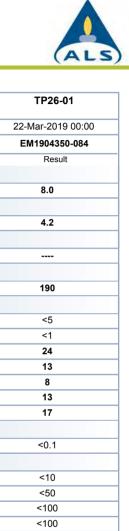
Analytical Results

Page 608 of 851

Page : 36 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076


ALS

Gub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP40-02	TP40-03	TP41-01	TP41-02	TP42-01
,	Client sampling date / time			22-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-074	EM1904350-075	EM1904350-076	EM1904350-077	EM1904350-078
•				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
P080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
P066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%			88.3		
:P068S: Organochlorine Pesticide Su	irrogate							
Dibromo-DDE	21655-73-2	0.05	%			97.3		
P068T: Organophosphorus Pesticide	e Surrogate							
DEF	78-48-8	0.05	%			98.0		
P075(SIM)S: Phenolic Compound Su								
Phenol-d6	13127-88-3	0.5	%			105		
2-Chlorophenol-D4	93951-73-6	0.5	%			104		
2.4.6-Tribromophenol	118-79-6	0.5	%			90.8		
P075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%			109		
Anthracene-d10	1719-06-8	0.5	%			120		
4-Terphenyl-d14	1718-51-0	0.5	%			114		
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	94.8	90.9	85.5	82.6	86.7
Toluene-D8	2037-26-5	0.2	%	95.6	85.2	84.6	90.8	88.6
4-Bromofluorobenzene	460-00-4	0.2	%	94.4	88.9	86.1	85.4	87.6

: 37 of 48 : EM1904350 Page Work Order

Client : LBW CO PTY LTD

: 191076 Project

ub-Matrix: SOIL Matrix: SOIL)	Client sample ID Client sampling date / time			TP42-02	TP25-01	TP25-02	TP25-03	TP26-01
<u> </u>				22-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-079	EM1904350-080	EM1904350-082	EM1904350-083	EM1904350-084
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl ext	tract							
pH (CaCl2)		0.1	pH Unit	7.8	8.1		8.0	8.0
EA055: Moisture Content								
Moisture Content		1.0	%	2.6	4.6		10.4	4.2
EA055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%			15.4		
ED040N: Sulfate - Calcium Phosphate								
Sulfate as SO4 2-	14808-79-8	50	mg/kg			240	120	190
							.=-	100
EG005(ED093)T: Total Metals by ICP-A Arsenic	7440-38-2	5	mg/kg	< 5	<5		<5	<5
Cadmium	7440-38-2	1	mg/kg	<1	<1		<1	<1
Chromium	7440-43-9	2	mg/kg	18	24		23	24
Copper	7440-47-3	5	mg/kg	12	12		12	13
Lead	7439-92-1	5	mg/kg	7	8		8	8
Nickel		2	mg/kg	11	12		15	13
Zinc	7440-02-0 7440-66-6	5	mg/kg	16	18		17	17
		3	mg/kg	10	10		- 17	.,,
EG035T: Total Recoverable Mercury b		0.4		<0.1	<0.1		<0.1	<0.1
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1		<0.1	<0.1
EP080/071: Total Petroleum Hydrocarb	ons					1		
C6 - C9 Fraction		10	mg/kg	<10	<10		<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50		<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100		<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100		<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50		<50	<50
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fraction	าร					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10		<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10		<10	<10
(F1)					_			
>C10 - C16 Fraction		50	mg/kg	<50	<50		<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100		<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100		<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50		<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50		<50	<50
(F2)								

Page : 38 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

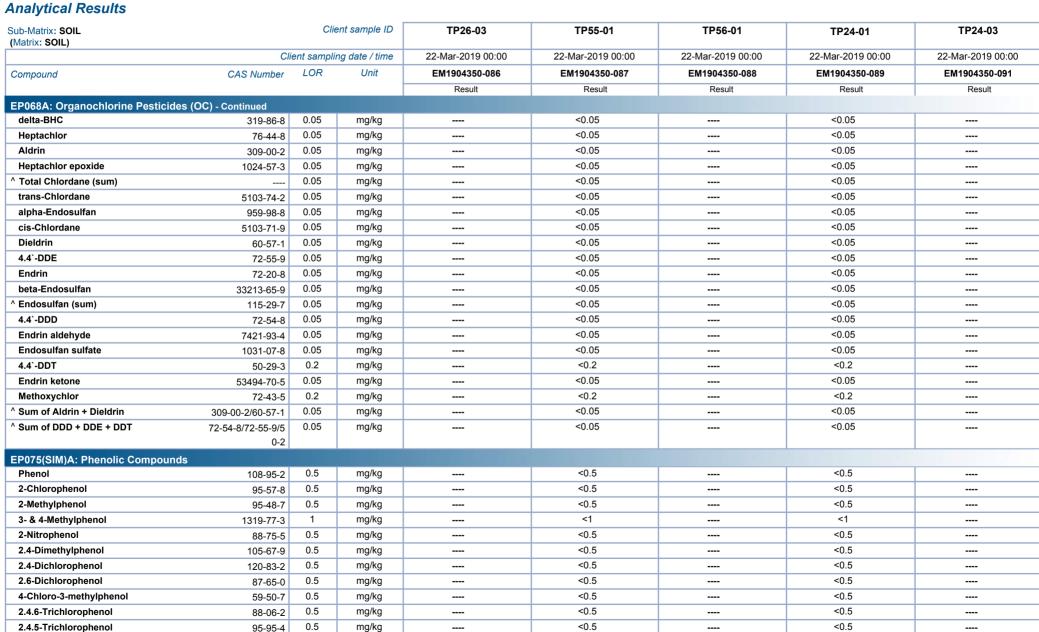


Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP42-02	TP25-01	TP25-02	TP25-03	TP26-01
	Cli	ent samplii	ng date / time	22-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-079	EM1904350-080	EM1904350-082	EM1904350-083	EM1904350-084
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2		<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2		<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1		<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	96.7	82.4		83.7	85.0
Toluene-D8	2037-26-5	0.2	%	95.6	88.2		87.3	84.4
4-Bromofluorobenzene	460-00-4	0.2	%	97.7	85.1		88.3	86.5

Page : 39 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076



Page : 40 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Pentachlorophenol

<2

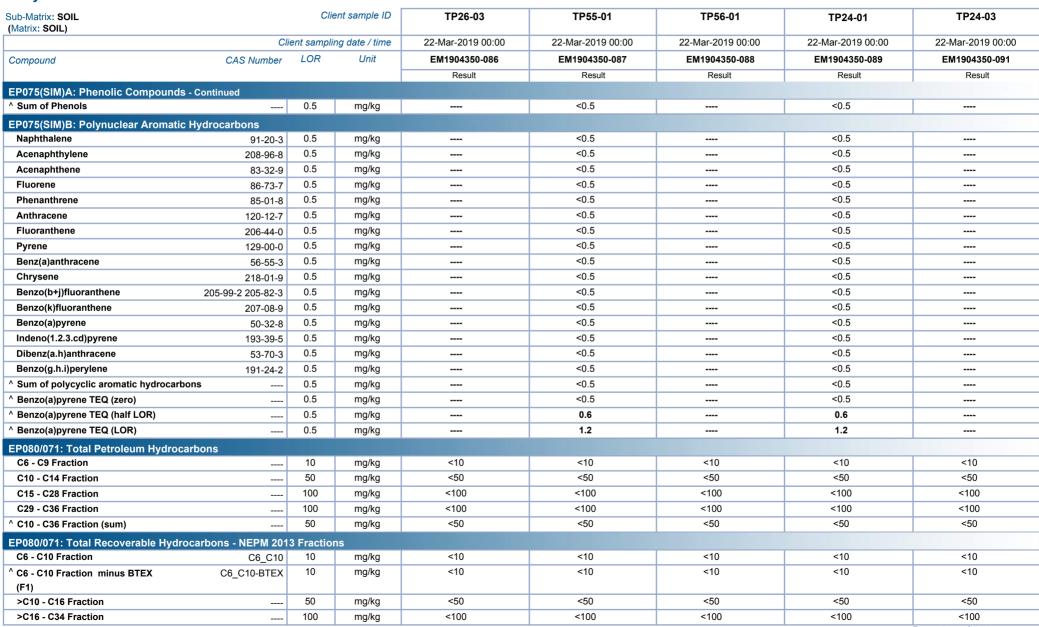
<2

Page 613 of 851

2

mg/kg

87-86-5



Page : 41 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Analytical Results

Page 614 of 851

Page : 42 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP26-03	TP55-01	TP56-01	TP24-01	TP24-03
	Cli	ient sampli	ng date / time	22-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1904350-086	EM1904350-087	EM1904350-088	EM1904350-089	EM1904350-091
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		93.5		92.0	
EP068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%		93.9		97.4	
EP068T: Organophosphorus Pesticide	e Surrogate							
DEF	78-48-8	0.05	%		95.2		99.9	
EP075(SIM)S: Phenolic Compound Su	ırrogates							
Phenol-d6	13127-88-3	0.5	%		96.4		97.9	
2-Chlorophenol-D4	93951-73-6	0.5	%		96.3		97.3	
2.4.6-Tribromophenol	118-79-6	0.5	%		81.1		78.0	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%		102		99.9	
Anthracene-d10	1719-06-8	0.5	%		112		113	
4-Terphenyl-d14	1718-51-0	0.5	%		105		103	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.0	86.3	88.0	82.8	83.0
Toluene-D8	2037-26-5	0.2	%	83.7	86.8	85.6	78.4	81.1
4-Bromofluorobenzene	460-00-4	0.2	%	86.2	87.8	87.6	81.4	82.6

Page : 43 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	TP22-01	TP22-03	TP23-01	TP23-02	TP23-04
,	Cli	ent sampli	ng date / time	22-Mar-2019 00:00	22-Mar-2019 00:00	22-Mar-2019 00:00	22-Mar-2019 00:00	22-Mar-2019 00:0
Compound	CAS Number	LOR	Unit	EM1904350-093	EM1904350-095	EM1904350-097	EM1904350-098	EM1904350-100
,				Result	Result	Result	Result	Result
A001: pH in soil using 0.01M CaCl extra	nct							
pH (CaCl2)		0.1	pH Unit	8.3	8.3	8.2	8.0	8.3
A055: Moisture Content								
Moisture Content		1.0	%	3.8	19.8	5.8	17.3	5.4
:D040N: Sulfate - Calcium Phosphate Sc	oluble (NEPM)							
Sulfate as SO4 2-	14808-79-8	50	mg/kg	110	270	130	650	
G005(ED093)T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	7	12	7	<5	8
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	24	26	22	28	25
Copper	7440-50-8	5	mg/kg	11	12	10	10	12
Lead	7439-92-1	5	mg/kg	9	13	10	12	10
Nickel	7440-02-0	2	mg/kg	15	26	13	11	14
Zinc	7440-66-6	5	mg/kg	18	19	15	18	18
G035T: Total Recoverable Mercury by								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
P080/071: Total Petroleum Hydrocarboi			3 3					
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydrocarb								
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
(F1)	00_010-B1EX		9/119	-10		10		
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
P080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5		<0.5 Page 616 of 851

Page : 44 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP22-01	TP22-03	TP23-01	TP23-02	TP23-04
	Cli	ent sampli	ng date / time	22-Mar-2019 00:00				
Compound	CAS Number LOR		Unit	EM1904350-093	EM1904350-095	EM1904350-097	EM1904350-098	EM1904350-100
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.9	84.1	89.1	93.5	88.7
Toluene-D8	2037-26-5	0.2	%	88.8	73.4	79.8	81.9	74.8
4-Bromofluorobenzene	460-00-4	0.2	%	90.3	78.5	83.6	85.6	79.5

Page : 45 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	Composite 01	 	
	Cli	ent sampli	ing date / time	22-Mar-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1904350-103	 	
				Result	 	
EA001: pH in soil using 0.01M CaCl ex	tract					
pH (CaCl2)		0.1	pH Unit	7.7	 	
EA055: Moisture Content (Dried @ 10	5-110°C)					
Moisture Content		1.0	%	19.3	 	
EA150: Soil Classification based on P	article Size					
Clay (<2 µm)		1	%	68	 	
EA152: Soil Particle Density						
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.60	 	
ED006: Exchangeable Cations on Alka	aline Soils					
Ø Exchangeable Calcium		0.2	meq/100g	4.5	 	
Ø Exchangeable Magnesium		0.2	meq/100g	5.7	 	
ø Exchangeable Potassium		0.2	meq/100g	0.9	 	
ø Exchangeable Sodium		0.2	meq/100g	5.7	 	
Ø Cation Exchange Capacity		0.2	meq/100g	16.8	 	
ø Exchangeable Calcium Percent		0.2	%	27.0	 	
ø Exchangeable Magnesium Percent		0.2	%	33.7	 	
ø Exchangeable Potassium Percent		0.2	%	5.1	 	
ø Exchangeable Sodium Percent		0.2	%	34.1	 	
ø Calcium/Magnesium Ratio		0.2	-	0.8	 	
ø Magnesium/Potassium Ratio		0.2	-	6.6	 	
EG005(ED093)T: Total Metals by ICP- <i>I</i>	AES					
Iron	7439-89-6	0.005	%	4.86	 	
EP004: Organic Matter						
Organic Matter		0.5	%	<0.5	 	
Total Organic Carbon		0.5	%	<0.5	 	

Page : 46 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

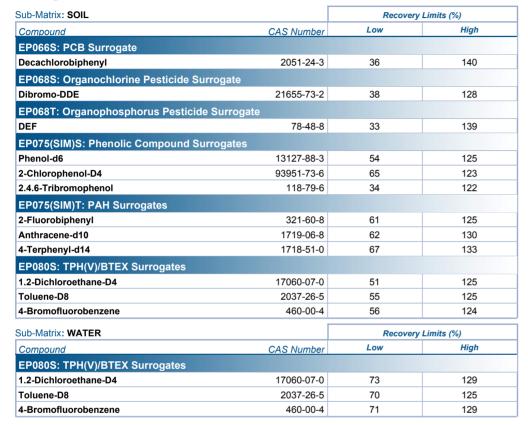
Project : 191076

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RINSE-03	RINSE-04	TB-03	
	Cl	ent sampli	ng date / time	21-Mar-2019 00:00	22-Mar-2019 00:00	22-Mar-2019 00:00	
Compound	CAS Number	LOR	Unit	EM1904350-001	EM1904350-081	EM1904350-101	
				Result	Result	Result	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit		5.37		
EG020T: Total Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L		<0.001		
Cadmium	7440-43-9	0.0001	mg/L		<0.0001		
Chromium	7440-47-3	0.001	mg/L		<0.001		
Copper	7440-50-8	0.001	mg/L		<0.001		
Nickel	7440-02-0	0.001	mg/L		<0.001		
Lead	7439-92-1	0.001	mg/L		<0.001		
Zinc	7440-66-6	0.005	mg/L		<0.005		
EG035T: Total Recoverable Mercury							
Mercury	7439-97-6	0.0001	mg/L		<0.0001		
EP080/071: Total Petroleum Hydroca							
C6 - C9 Fraction		20	μg/L	<20	<20	<20	
C10 - C14 Fraction		50	μg/L		<50		
C15 - C28 Fraction		100	μg/L		<100		
C29 - C36 Fraction		50	μg/L		<50		
C10 - C36 Fraction (sum)		50	μg/L		<50		
EP080/071: Total Recoverable Hydro	carbons - NFPM 201	3 Fractio					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20	
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	<20	<20	
(F1)	00_010 B1EX		1.0				
>C10 - C16 Fraction		100	μg/L		<100		
>C16 - C34 Fraction		100	μg/L		<100		
>C34 - C40 Fraction		100	μg/L		<100		
>C10 - C40 Fraction (sum)		100	μg/L		<100		
>C10 - C16 Fraction minus Naphthalene	,	100	μg/L		<100		
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	μg/L	<1	<1	<1	
Toluene	108-88-3	2	μg/L	<2	<2	<2	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2	
Total Xylenes		2	μg/L	<2	<2	<2	

Page : 47 of 48
Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076


Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RINSE-03	RINSE-04	TB-03	
	Cli	ient sampli	ng date / time	21-Mar-2019 00:00	22-Mar-2019 00:00	22-Mar-2019 00:00	
Compound	CAS Number	LOR	Unit	EM1904350-001	EM1904350-081	EM1904350-101	
				Result	Result	Result	
EP080: BTEXN - Continued							
^ Sum of BTEX		1	μg/L	<1	<1	<1	
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	94.5	88.0	95.9	
Toluene-D8	2037-26-5	2	%	93.7	88.2	92.9	
4-Bromofluorobenzene	460-00-4	2	%	96.4	90.4	96.8	

Page : 48 of 48 Work Order : EM1904350

Client : LBW CO PTY LTD

Project : 191076

Surrogate Control Limits

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Mark Peterson

Report 647273-S

Project name SPRINGWOOD DEVELOPMENT PSI

Project ID 191076 Received Date Mar 25, 2019

Client Sample ID			SB04-03	TP02-06
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M19-Ma35294	M19-Ma35296
Date Sampled			Mar 19, 2019	Mar 20, 2019
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	'		
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
ВТЕХ				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	98	102
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	8.8	7.5
Sulphate (as SO4)	30	mg/kg	230	< 30
% Moisture	1	%	12	< 1
Heavy Metals				
Arsenic	2	mg/kg	11	2.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	54	6.9
Copper	5	mg/kg	9.0	< 5
Lead	5	mg/kg	6.6	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	6.1	< 5
Zinc	5	mg/kg	19	< 5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Melbourne	Extracted Mar 26, 2019	Holding Time 14 Day
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 26, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	Mar 26, 2019	14 Day
BTEX - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices	Melbourne	Mar 26, 2019	14 Day
pH (1:5 Aqueous extract at 25°C as rec.) - Method: LTM-GEN-7090 pH in soil by ISE	Melbourne	Mar 26, 2019	7 Day
Sulphate (as SO4) - Method: LTM-INO-4110 Sulfate by Discrete Analyser	Melbourne	Mar 26, 2019	28 Day
Metals M8 - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Melbourne	Mar 26, 2019	28 Days
% Moisture	Melbourne	Mar 26, 2019	14 Day

- Method: LTM-GEN-7080 Moisture

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Mar 25, 2019 2:00 PM

Company Name: LBW co Pty Ltd Order No.: Received:

 Address:
 184 Magill Road
 Report #:
 647273
 Due:
 Apr 1, 2019

 Norwood
 Phone:
 08 8331 2417
 Priority:
 5 Day

SA 5069 Fax: 08 8331 2415 Contact Name: Mark Peterson

Project Name: SPRINGWOOD DEVELOPMENT PSI

Project ID: 191076

Eurofins | mgt Analytical Services Manager : Savini Suduweli

		Sai	mple Detail			pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Χ	Χ	Χ	Χ	Χ	Х
Sydr	ey Laboratory	- NATA Site # 1	8217								
Brisk	oane Laboratory	/ - NATA Site #	20794								
Perth	n Laboratory - N	IATA Site # 237	36								
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	SB04-03	Mar 19, 2019		Soil	M19-Ma35294	Х	Х	Х	Х	Х	Х
2	TP02-06 Mar 20, 2019 Soil M19-Ma35296							Χ	Х	Х	Х
Test	est Counts							2	2	2	2

Eurofins | mgt 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Reage 1624 ept 625273-S

Page 3 of 8

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank		1 0.0	0.0	1 466	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	Hig/kg	<u> </u>	100	1 433	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
		< 0.1	0.1	Pass	
Mercury Nickel	mg/kg	< 5	5	Pass	
	mg/kg	1	5		
Zinc	mg/kg	< 5] 5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	0/	00	70.400	D	
TRH C6-C9	%	98	70-130	Pass	
TRH C10-C14	%	120	70-130	Pass	
LCS - % Recovery					
BTEX	0/	00	70.400	D	
Benzene	%	99	70-130	Pass	
Toluene	%	115	70-130	Pass	
Ethylbenzene	%	123	70-130	Pass	
m&p-Xylenes	%	113	70-130	Pass	
Xylenes - Total	%	117	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	104	70-130	Pass	
TRH C6-C10	%	92	70-130	Pass	
TRH >C10-C16	%	117	70-130	Pass	
LCS - % Recovery		1			
Heavy Metals					
Arsenic	%	110	80-120	Pass	
Cadmium	%	103	80-120	Pass	
Chromium	%	117	80-120	Pass	

mgt

							Acceptance	Pass	Qualifying
Test			Units	Result 1			Limits	Limits	Code
Copper			%	116			80-120	Pass	
Lead			%	116			80-120	Pass	
Mercury			%	113			75-125	Pass	
Nickel			%	112			80-120	Pass	
Zinc			%	110			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M19-Ma31739	NCP	%	95			70-130	Pass	
TRH C10-C14	M19-Ma32373	NCP	%	106			70-130	Pass	
Spike - % Recovery				,					
BTEX				Result 1					
Benzene	M19-Ma31739	NCP	%	87			70-130	Pass	
Toluene	M19-Ma31739	NCP	%	95			70-130	Pass	
Ethylbenzene	M19-Ma31739	NCP	%	96			70-130	Pass	
m&p-Xylenes	M19-Ma31739	NCP	%	90			70-130	Pass	
o-Xylene	M19-Ma31739	NCP	%	95			70-130	Pass	
Xylenes - Total	M19-Ma31739	NCP	%	91			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	M19-Ma31739	NCP	%	86			70-130	Pass	
TRH C6-C10	M19-Ma31739	NCP	%	88			70-130	Pass	
TRH >C10-C16	M19-Ma32373	NCP	%	103			70-130	Pass	
Spike - % Recovery									
				Result 1					
Sulphate (as SO4)	M19-Ma29785	NCP	%	114			70-130	Pass	
Spike - % Recovery				,					
Heavy Metals				Result 1					
Arsenic	M19-Ma35630	NCP	%	111			75-125	Pass	
Cadmium	M19-Ma35630	NCP	%	114			75-125	Pass	
Chromium	M19-Ma35630	NCP	%	120			75-125	Pass	
Copper	M19-Ma35630	NCP	%	117			75-125	Pass	
Lead	M19-Ma35630	NCP	%	117			75-125	Pass	
Mercury	M19-Ma35630	NCP	%	120			70-130	Pass	
Nickel	M19-Ma35630	NCP	%	116			75-125	Pass	
Zinc	M19-Ma35630	NCP	%	117			75-125	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
Duplicate		Source					Limits	Limits	Code
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M19-Ma37615	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M19-Ma32417	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M19-Ma32417	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M19-Ma32417	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
	W119-Wa32417	INCF	mg/kg	< 50	< 50	< 1	30%	rass_	
Duplicate BTEX				Result 1	Result 2	RPD			
Benzene	M19-Ma37615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M19-Ma37615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	M19-Ma37615 M19-Ma37615	NCP			< 0.1		30%	Pass	
Ethylbenzene m&n Yylonos			mg/kg	< 0.1	1	<1			
m&p-Xylenes	M19-Ma37615	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M19-Ma37615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M19-Ma37615	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M19-Ma37615	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M19-Ma37615	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M19-Ma32417	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M19-Ma32417	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M19-Ma32417	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	B19-Ma34751	NCP	pH Units	9.1	9.3	pass	30%	Pass	
Sulphate (as SO4)	M19-Ma29781	NCP	mg/kg	< 30	< 30	<1	30%	Pass	
% Moisture	M19-Ma35294	CP	%	12	12	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M19-Ma35630	NCP	mg/kg	4.1	4.3	3.0	30%	Pass	
Cadmium	M19-Ma35630	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M19-Ma35630	NCP	mg/kg	5.9	6.0	2.0	30%	Pass	
Copper	M19-Ma35630	NCP	mg/kg	7.8	7.9	1.0	30%	Pass	
Lead	M19-Ma35630	NCP	mg/kg	22	22	<1	30%	Pass	
Mercury	M19-Ma35630	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M19-Ma35630	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M19-Ma35630	NCP	mg/kg	70	72	3.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised By

N02

Savini Suduweli Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Julie Kay Senior Analyst-Inorganic (VIC)

General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

LBW co Pty Ltd 184 Magill Road Norwood SA 5069

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Mark Peterson

Report 647553-S

Project name SPRINGWOOD DEVELOPMENT PSI

Project ID 191076 Received Date Mar 26, 2019

Client Sample ID			TP13-06	TP14-05	TP40-04	TP23-05
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M19-Ma37524	M19-Ma37525	M19-Ma37526	M19-Ma37527
Date Sampled			Mar 21, 2019	Mar 21, 2019	Mar 22, 2019	Mar 22, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	58	69	61	69
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	9.4	8.3	8.9	9.8
Sulphate (as SO4)	30	mg/kg	-	1000	-	-
% Moisture	1	%	3.6	8.0	2.5	6.4
Heavy Metals						
Arsenic	2	mg/kg	2.5	6.6	3.3	10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.2	53	19	39
Copper	5	mg/kg	< 5	7.6	9.9	13
Lead	5	mg/kg	< 5	9.8	6.6	14
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	6.9	12	21
Zinc	5	mg/kg	< 5	19	21	33

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Mar 28, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 28, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 28, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Mar 28, 2019	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Mar 28, 2019	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Melbourne	Mar 28, 2019	28 Day
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Metals M8	Melbourne	Mar 28, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Mar 27, 2019	14 Day

- Method: LTM-GEN-7080 Moisture

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

647553

08 8331 2417

08 8331 2415

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: LBW co Pty Ltd

Address: 184 Magill Road

Norwood SA 5069

Project Name: SPRINGWOOD DEVELOPMENT PSI

Project ID: 191076

Received: Mar 26, 2019 6:15 PM

Due: Apr 3, 2019 Priority: 5 Day

Contact Name: Mark Peterson

Eurofins | mgt Analytical Services Manager : Savini Suduweli

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Χ	Х	Х	Χ	Х
Sydr	ney Laboratory	- NATA Site # 1	8217								
Brisl	oane Laborator	y - NATA Site #	20794								
Perti	n Laboratory - N	NATA Site # 237	36								
Exte	rnal Laboratory	<u>'</u>									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP13-06	Mar 21, 2019		Soil	M19-Ma37524	Х		Х	Х	Х	Х
2	TP14-05	Mar 21, 2019		Soil	M19-Ma37525	Х	Χ	Х	Х	Х	Х
3	TP40-04	Mar 22, 2019		Soil	M19-Ma37526	Х		Х	Х	Х	Х
4	TP23-05 Mar 22, 2019 Soil M19-Ma37527							Х	Х	Х	Х
Test	est Counts							4	4	4	4

Eurofins | mgt 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Reage∧**6332**eafe**45**663-S

Page 3 of 8

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				1	
Total Recoverable Hydrocarbons - 1999 NEPM Frac	ctions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank				•	
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	ctions				
TRH C6-C9	%	102	70-130	Pass	
TRH C10-C14	%	129	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	110	70-130	Pass	
Toluene	%	104	70-130	Pass	
Ethylbenzene	%	111	70-130	Pass	
m&p-Xylenes	%	104	70-130	Pass	
Xylenes - Total	%	108	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions				
Naphthalene	%	106	70-130	Pass	
TRH C6-C10	%	93	70-130	Pass	
TRH >C10-C16	%	130	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	110	80-120	Pass	
Cadmium	%	102	80-120	Pass	
Chromium	%	120	80-120	Pass	

mgt

							Acceptance	Pass	Qualifying
Test			Units	Result 1			Acceptance Limits	Limits	Code
Copper			%	114			80-120	Pass	
Lead				119			80-120	Pass	
Mercury			%	113			75-125	Pass	
Nickel			%	111			80-120	Pass	
Zinc			%	110			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S19-Ma35101	NCP	%	87			70-130	Pass	
TRH C10-C14	S19-Ma35149	NCP	%	79			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S19-Ma35101	NCP	%	83			70-130	Pass	
Toluene	S19-Ma35101	NCP	%	78			70-130	Pass	
Ethylbenzene	S19-Ma35101	NCP	%	83			70-130	Pass	
m&p-Xylenes	S19-Ma35101	NCP	%	79			70-130	Pass	
o-Xylene	S19-Ma35101	NCP	%	89			70-130	Pass	
Xylenes - Total	S19-Ma35101	NCP	%	82			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S19-Ma35101	NCP	%	79			70-130	Pass	
TRH C6-C10	S19-Ma35101	NCP	%	82			70-130	Pass	
TRH >C10-C16	S19-Ma35149	NCP	%	77			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M19-Ma39542	NCP	%	103			75-125	Pass	
Cadmium	M19-Ma39542	NCP	%	107			75-125	Pass	
Chromium	M19-Ma39542	NCP	%	118			75-125	Pass	
Copper	M19-Ma39542	NCP	%	110			75-125	Pass	
Lead	M19-Ma39542	NCP	%	116			75-125	Pass	
Mercury	M19-Ma39542	NCP	%	110			70-130	Pass	
Nickel	M19-Ma39542	NCP	%	107			75-125	Pass	
Zinc	M19-Ma39542	NCP	%	118			75-125	Pass	
Spike - % Recovery			,,,				10 .20		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C16-C34	M19-Ma35506	NCP	%	47			70-130	Fail	Q08
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	K19-Ma37480	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-Ma35138	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-Ma35138	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-Ma35138	NCP	mg/kg	< 50	82	59	30%	Fail	Q15
Duplicate	, 111		פייפיי	,	,		, 55,0		
BTEX				Result 1	Result 2	RPD			
Benzene	K19-Ma37480	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	K19-Ma37480	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	K19-Ma37480	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	K19-Ma37480	NCP	mg/kg	< 0.1	< 0.1	<u><1</u>	30%	Pass	
o-Xylene	K19-Ma37480	NCP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
Xylenes - Total	K19-Ma37480	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD		
Naphthalene	K19-Ma37480	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
TRH C6-C10	K19-Ma37480	NCP	mg/kg	< 20	< 20	<1	30%	Pass
TRH >C10-C16	S19-Ma35138	NCP	mg/kg	< 50	< 50	<1	30%	Pass
Duplicate								
				Result 1	Result 2	RPD		
pH (1:5 Aqueous extract at 25°C as rec.)	M19-Ma39815	NCP	pH Units	9.3	9.3	pass	30%	Pass
% Moisture	M19-Ma37517	NCP	%	7.4	8.0	8.0	30%	Pass
Duplicate								
Heavy Metals				Result 1	Result 2	RPD		
Arsenic	M19-Ma39542	NCP	mg/kg	4.3	4.3	<1	30%	Pass
Cadmium	M19-Ma39542	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass
Chromium	M19-Ma39542	NCP	mg/kg	12	13	1.0	30%	Pass
Copper	M19-Ma39542	NCP	mg/kg	11	11	<1	30%	Pass
Lead	M19-Ma39542	NCP	mg/kg	20	19	<1	30%	Pass
Mercury	M19-Ma39542	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass
Nickel	M19-Ma39542	NCP	mg/kg	6.2	6.1	1.0	30%	Pass
Zinc	M19-Ma39542	NCP	mg/kg	49	49	1.0	30%	Pass

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Q08

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Savini Suduweli Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Julie Kay Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix M Site Development Plans

Springwood Flora and Fauna Assessment March 2019

13 June 2019

Version 2

Prepared by EBS Ecology for Arcadian Property

		Documen	t Control		
Revision No.	Date issued	Authors	Reviewed by	Date Reviewed	Revision type
1	14/03/2019	A. Sinel	EBS Ecology	02/05/2019	Draft
	07/06/2019	A. Sinel	EBS Ecology	07/06/2019	Final

Distribution of Copies						
Revision No.	Date issued	Media	Issued to			
1	02/05/2019	Electronic	Warwick Mittiga, Chief Executive Officer, Arcadian Property			
2	07/06/2019	Electronic	Warwick Mittiga, Chief Executive Officer, Arcadian Property			

EBS Ecology Project Number: E90301

COPYRIGHT: Use or copying of this document in whole or in part (including photographs) without the written permission of EBS Ecology's client and EBS Ecology constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of EBS Ecology's client, and is subject to and issued in connection with the provisions of the agreement between EBS Ecology and its client. EBS Ecology accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

CITATION: EBS Ecology (2019) Springwood Flora and Fauna Assessment March 2019. Report to Arcadian Property. EBS Ecology, Adelaide.

Cover photograph: Springwood Creek looking east from Lomandra Grassland.

EBS Ecology
125 Hayward Avenue
Torrensville, South Australia 5031
t: 08 7127 5607
http://www.ebsecology.com.au
email: info@ebsecology.com.au

GLOSSARY AND ABBREVIATION OF TERMS

BAM Bushland Assessment Method

BDBSA Biological Database of South Australia

DEW Department for Environment and Water

DotEE Department of the Environment and Energy

EBS Ecology

EPBC Act Environment Protection and Biodiversity Conservation Act 1999

IBRA Interim Biogeographical Regionalisation of Australia

LGA Local Government Area

NPW Act National Parks and Wildlife Act 1974

NRM Act Natural Resources Management Act 2004

NV Act Native Vegetation Act 1991

NVIS Normalised Vegetation Information System

PMST Protected Matters Search Tool

SEB Significant Environmental Benefit

SPRAT Species Profile and Threats Database

TEC Threatened Ecological Community

TPZ Tree Protection Zone

Table of Contents

1	INTRODUCTION1						
	1.1	Object	tives	1			
	1.2	Spring	gwood development area	1			
2	COMPLIANCE AND LEGISLATIVE SUMMARY3						
	2.1						
	2.1	Environment Protection and Biodiversity Conservation Act 1999 Native Vegetation Act 1991					
	2.3						
	2.4 Natural Resources Management Act 2004						
3	BAC	BACKGROUND INFORMATION					
	3.1	Projec	t background	5			
	3.2	Enviro	onmental setting	5			
		3.2.1	IBRA	5			
		3.2.2	Administrative boundaries	6			
4	METHODS						
	4.1	Deskto	op assessment	7			
		4.1.1	Database searches				
		4.1.2	Literature review	7			
	4.2	2 Field survey					
	4.3	Limitations					
5	RESULTS						
	5.1	Matters of national environmental significance		g			
		5.1.1	Threatened ecological communities	10			
		5.1.2	Nationally Threatened flora	10			
		5.1.3	State threatened flora	10			
		5.1.4	Nationally threatened fauna	11			
		5.1.5	State threatened fauna	12			
		5.1.6	Nationally listed migratory / marine species	13			
	5.2	Field survey		14			
		5.2.1	Flora	14			
	5.3	Specific species and community issues		14			
		5.3.1	Eucalyptus porosa scattered trees	14			
		5.3.2	Iron-grass (Lomandra) Temperate Grassland	14			
		5.3.3	Flinders Worm Lizard	15			
		5.3.4	Peregrine Falcon	15			

6	QU	ANTIFYING EPBC IMPACTS	16	
	6.1	What is a significant impact?	16	
	6.2	Self-assessment	16	
		6.2.1 Iron-grass Temperate Grassland		
7	MITIGATION MEASURES			
	7.1	Mitigation Hierarchy	18	
8	IMP	ACT SUMMARY	19	
9	DIS	CUSSION	20	
10	REF	FERENCES	21	
11	APF	PENDICES	22	
Арі	pendix	1. Flora species BDBSA records within 5km radius of Springwood Development Area.	22	
App	pendix	2. Fauna species BDBSA records within 5km radius of Springwood Development		
		Area	32	
App	oendix	3. KBR Phase 2 ecological survey	36	
Lis	st of	Tables		
Tal		BRA bioregion, subregion, and environmental association environmental landscape summary	F	
Tal		Summary of the results of the EPBC Act Protected Matters Search Tool report		
		The threatened ecological communities identified in the PMST and their likelihood of		
		presence within the Springwood Development area.	10	
Tal		Threatened flora species listed under the EPBC Act and NPW Act identified in the		
		PMST (Source 1) and BDBSA (Source 2) database searches within 5 km of the		
		Springwood Development area	10	
Tal		Threatened fauna species listed under the EPBC Act and NPW Act identified in the		
		PMST (Source 1) and BDBSA (Source 2) database searches within 5 km of the		
		Springwood Development area	12	
Lis	st of	Figures		
		Location of the Springwood Development with masterplan layout	2	
_		Lomandra community observed still present during 2019 site visit.		

1 INTRODUCTION

EBS Ecology (EBS) was engaged by Arcadian Property (Arcadian) to undertake a review of the land at Gawler being utilised for the Springwood Development. This land was first assessed in November 2008 and then seasonally through to 2010 by Kellogg Brown and Root (KBR) on behalf of Delfin Lend Lease which involved rigorous ecological assessments of the area utilising both flora and fauna survey methods (Appendix 3). This included the use of pitfall trapping to analyse inconspicuous species such as small reptiles and mammals. A number of ecological constraints were identified within this report and this directed the future planning of the Springwood Development with a view to avoiding key areas where possible.

The review was undertaken to update changes (if any) to species of conservation significance and if the ecological conditions present at the time of the 2010 survey were still relevant to the current Springwood Masterplan. The desktop assessment involved searching Commonwealth and State databases to identify threatened species potentially occurring or known from the proposed Springwood Development site, as well as relevant matters of national environmental significance and other matters protected under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) and the *National Parks and Wildlife Act 1972* (NPW Act). A review of other available background information sources such as Naturemaps was also conducted.

The field survey, which was conducted on 18 March 2019, included a roaming fauna survey and was largely focussed on ground-truthing the ecological values as presented in KBR (2010). For all background survey methods and detailed results please refer to that report in the first instance.

1.1 Objectives

Specifically the objectives of this report are to:

- Conduct database searches to identify matters of national and state environmental significance (*Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) Protected Matters database via the online Protected Matters Search Tool (PMST) and NatureMaps Supertable results);
- Review previous biological surveys, data and reports to highlight data gaps and key issues;
- Review existing mapping data (e.g. vegetation communities, vegetation condition and aerial photographs);
- Ground truth and confirm the outcomes and findings of the desktop study by conducting a field assessment;

1.2 Springwood development area

The Springwood Development is located on the south eastern fringe of the Town of Gawler, SA approximately 39 km north east of the Adelaide CBD (Figure 1).

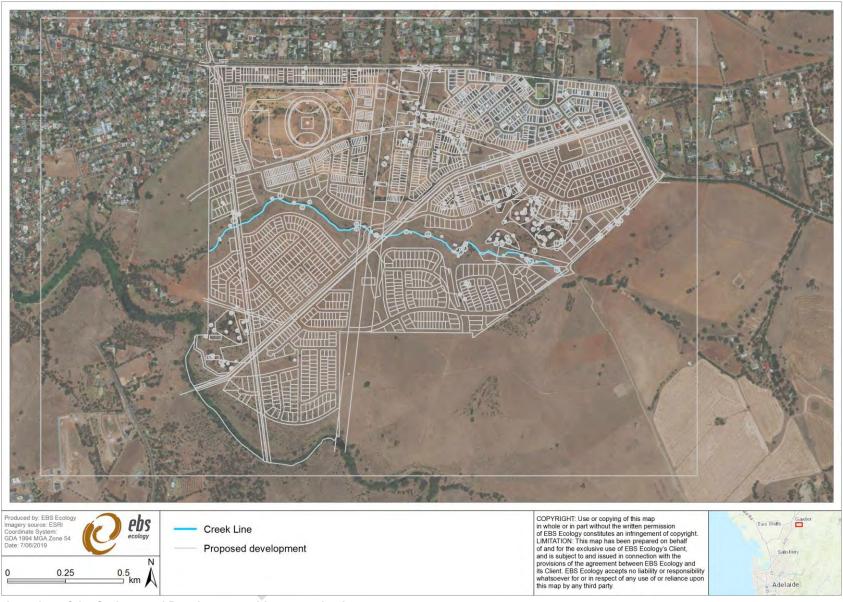


Figure 1. Location of the Springwood Development with masterplan layout.

2 COMPLIANCE AND LEGISLATIVE SUMMARY

2.1 Environment Protection and Biodiversity Conservation Act 1999

The EPBC Act and the *Environment Protection and Biodiversity Conservation Regulations 2000* provide a legal framework to protect and manage nationally and internationally important flora, fauna, ecological communities and heritage places – defined in the Act as 'matters of national environmental significance'. The nine matters of national environmental significance protected under the Act are:

- 1. World Heritage properties
- National Heritage places
- 3. Wetlands of international importance (listed under the RAMSAR Convention)
- 4. Listed threatened species and ecological communities
- 5. Migratory species protected under international agreements
- 6. Commonwealth marine areas
- 7. The Great Barrier Reef Marine Park
- 8. Nuclear actions (including uranium mines
- 9. A water resource, in relation to coal seam gas development and large coal mining development

Any action that has, will have, or is likely to have a significant impact on matters of national environmental significance requires referral under the EPBC Act. Substantial penalties apply for undertaking an action that has, will have or is likely to have significant impact on a matter of national environmental significance without approval.

2.2 Native Vegetation Act 1991

Native vegetation within the Springwood Development area is protected under the *Native Vegetation Act* 1991 (NV Act) and *Native Vegetation Regulations* 2017 which has been updated since the previous survey. Any proposed clearance of native vegetation in South Australia (unless exempt under the *Native Vegetation Regulations* 2017) is to be assessed against the NV Act Principles of Clearance, and requires approval from the Native Vegetation Council (NVC). A net environmental benefit is generally conditional on an approval being granted. This project is considered to be relevant under exemption Regulation 12(35) – Residential subdivision to allow clearance of vegetation in connection with residential subdivision, associated house sites, roads and other associated infrastructure.

Applications for clearance approval and development approval are encouraged to be made at the same time. In determining the SEB, the NVC must be provided with written notification of the entire clearance footprint at the allotment scale which includes clearance for the dwelling and any associated structures; clearance within 10 metres of a building for maintenance; fences; vehicle tracks; and any additional clearance for fire safety. Individual regulations for these clearance activities will not apply in connection to new subdivisions and must be considered at this stage.

Depending on how large the allotments, consideration of all areas for the dwelling (and associated clearance) should occur, including those areas that involve no vegetation clearance situated on a different part of the block (or where the vegetation is shown to be less significant or more degraded than the vegetation proposed to be cleared).

This regulation ensures adequate planning is undertaken for residential subdivisions and the associated house site and residual clearance required. If clearance is avoided and minimised at this stage, the SEB requirement can also be minimised.

Clearance can only occur once development approval has been granted and the NVC have approved the clearance and SEB.

2.3 National Parks and Wildlife Act 1972

Native plants and animals in South Australia are protected under the *National Parks and Wildlife Act* 1972 (NPW Act). It is an offence to take a native plant or protected animal without approval. Threatened plant and animal species are listed in Schedules 7 (endangered species), 8 (vulnerable species) and 9 (rare species) of the Act. Persons must not:

- Take a native plant on a reserve, wilderness protection area, wilderness protection zone, land reserved for public purposes, a forest reserve or any other Crown land;
- Take a native plant of a prescribed species on private land;
- Take a native plant on private land without the consent of the owner (such plants may also be covered by the NV Act);
- Take a protected animal or the eggs of a protected animal without approval;
- Keep protected animals unless authorised to do so; and
- Use poison to kill a protected animal without approval.

Conservation rated flora and fauna species listed on Schedules 7, 8, or 9 of the NPW Act are known to or may occur within the Springwood Development area. Persons must comply with the conditions imposed upon permits and approvals.

2.4 Natural Resources Management Act 2004

Under the *Natural Resources Management Act 2004* (NRM Act) landholders have a legal responsibility to manage declared pest plants and animals and prevent land and water degradation.

Key components under the Act include the establishment of regional Natural Resource Management (NRM) Boards and development of regional NRM Plans; the ability to control water use through prescription, allocations and restrictions; requirement to control pest plants and animals and activities that might result in land degradation.

3 BACKGROUND INFORMATION

3.1 Project background

The Springwood Development masterplan has allocated 74 hectares of open space, equating to 34% of the overall area. Primarily farmland, the Springwood Development area also includes a tributary of the south Para River, from this point onwards referred to as Springwood Creek.

3.2 Environmental setting

3.2.1 IBRA

The Interim Biogeographical Regionalisation of Australia (IBRA) identifies geographically distinct bioregions based on common climate, geology, landform, native vegetation and species information. The bioregions are further refined into subregions and environmental associations (DotEE, 2012). The Springwood Development area is located within the Flinders Lofty Block IBRA Bioregion, the Mt Lofty Ranges IBRA Subregion and the Rosedale Environmental associations.

Native vegetation remnancy figures for IBRA subregions and associations are useful for setting regional landscape targets. Approximately 15% (46,342 ha) of the Mt Lofty Ranges Subregion is mapped as remnant vegetation, of which 27% (12,706 ha) is formally conserved. Areas are formally conserved and protected within National Parks and Wildlife reserves, private Heritage Agreements under the NV Act and Indigenous Protected Areas. A full summary is provided below in Table 1.

Table 1. IBRA bioregion, subregion, and environmental association environmental landscape summary.

Flinders Lofty Block IBRA bioregion

Temperate to arid Proterozoic ranges, alluvial fans and plains, and some outcropping volcanics, with the semi-arid to arid north supporting Native Cypress, Black Oak (Belah) and Mallee open woodlands, *Eremophila* and *Acacia* shrublands, and Bluebush/Saltbush chenopod shrublands on shallow, well-drained loams and moderately-deep, well-drained red duplex soils. The increase in rainfall to the south corresponds with an increase in low open woodlands of *Eucalyptus obliqua* and E. *baxteri* on deep lateritic soils, and E. *fasciculosa* and *E. cosmophylla* on shallower or sandy soils.

Mount Lofty Ranges IBRA subregion

This subregion extends from north of the Fleurieu Peninsula to the Barossa Valley, and is predominantly an undulating to low hilly upland with steeper marginal ranges and hills. The Barossa Valley is the lowest area in this subregion and represents a structural basin. The rest of the subregion consists of hilly uplands on sandstone and shale with northerly trending strike ridges and dissected lateritic tableland remnants. Low open woodland commonly dominated by *Eucalyptus obliqua* and *E. baxteri* are found in higher rainfall areas on deep, lateritic soils. Shallower or sandy soils support *E. fasciculosa*, *E cosmophylla* and in the northern part of the region *E. goniocalyx*. *E leucoxylon* dominates the woodlands on podzolised soils in the lower rainfall areas, *E. viminalis* ssp. *cygnetensis* dominate the wetter and cooler woodlands and *E. odorata* characterises drier sites. Eucalypts give way to drooping sheoak (*Allocasuarina verticillata*) in the most arid woodlands and in coastal situations on shallow rocky soils.

Remnant vegetation	Approximately 15% (46,342 ha) of the subregion is mapped as remnant native vegetation, of which 27% (12,706ha) is formally conserved
Landform	Hills and valleys; alternating subparallel hilly ridges and valleys with a general N-S trend in north. In south, hilly dissected tableland.

Springwood Flora and Fauna Assessment March 2019

Dissected lateralised surface in south
Hard setting loams with red clayey subsoils, Highly calcareous loamy earths, Hard setting loams with mottled yellow clayey subsoil, Coherent sandy soils, Cracking clays.
Eucalyptus woodlands with a shrubby understorey.
129 species of threatened fauna, 270 species of threatened flora.
4 wetlands of national significance.
nvironmental association
Approximately 5% (3,089 ha) of the association is mapped as remnant native vegetation, of which 11% (331 ha) is formally conserved
Undulating to rolling plain on shale with broad floodplains.
Shale and alluvium.
Hard pedal red duplex soils, reddish friable loams and brown self-mulching cracking clays.
Open parkland of SA Blue gum, Sugar Gum, River Red gum or exotic conifers.
70 species of threatened fauna, 66 species of threatened flora. 0 wetlands of national significance.

3.2.2 Administrative boundaries

The Springwood Development area falls within The Gawler and the Barossa Councils Local Government Areas (LGA's). From an environmental perspective, the area is situated within the Adelaide and Mount Lofty Ranges (AMLRNRM) Board area.

4 METHODS

4.1 Desktop assessment

A PMST report was generated on 26 March 2019 to identify matters of national environmental significance under the EPBC Act relevant to the Springwood Development area (DotEE 2019). This was undertaken to identify any elements which may have changed since the KBR 2010 report. The PMST is maintained by the Department of the Environment and Energy (DotEE) and was used to identify flora and fauna species or ecological communities of national environmental significance that may occur or have suitable habitat within the Springwood Development area.

4.1.1 Database searches

Species listed under South Australia's NPW Act in the Springwood Development area were assessed using the BDBSA flora and fauna supertable overview. The dataset was obtained on 29th March 2019 and used to identify threatened species that have been recorded within the 5 km buffer of the Springwood Development area (DEW 2019) as well as having a spatial reliability of <1km and the record occurred within the past 30 years

4.1.2 Literature review

A review of the KBR flora and fauna survey report previously conducted within the Springwood Development area was undertaken to augment the desktop assessment. More specifically, to assist in the deliberation of the likelihood of occurrence of threatened species in the local area.

4.2 Field survey

The field survey was conducted on March 18 2019 by NVC accredited consultant Andrew Sinel. Areas highlighted from the review of the KBR report were targeted as well as any other areas that looked of higher potential ecological value. The quarry area was not assessed specifically however general observations were made based on previous surveys such as the presence of Peregrine Falcon.

4.3 Limitations

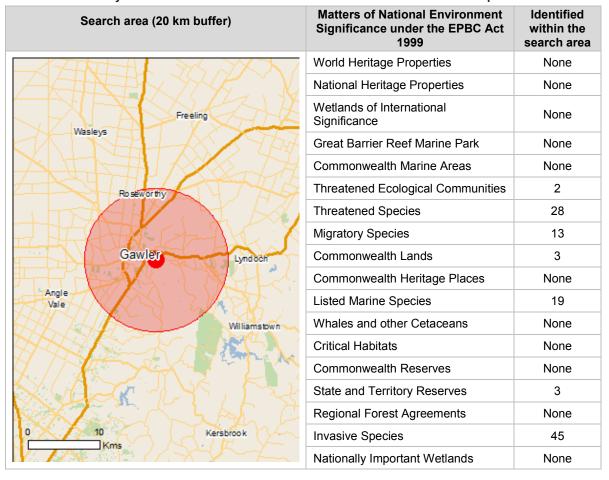
The content of the desktop assessment was derived from existing datasets and references from a range of sources. EBS has not attempted to verify the accuracy of any such information.

Flora and fauna records were sourced from the PMST and the Naturemaps flora and fauna supertable overviews. The flora and fauna super tables include verified flora and fauna records submitted to DEW or partner organisations. Although much of the data has been through a variety of validation processes, the lists may contain errors and should be used with caution. DEW give no warranty that the data is accurate or fit for any particular purpose of the user or any person to whom the user discloses the information.

The reliability of the data ranges from 100 m to over 100 km. Fauna species, in particular birds, also have the ability to traverse distances in excess of 20 km. It is also acknowledged that the presence of species may not be adequately represented by database records. Hence the PMST and supertable

results may not highlight all potential threatened flora and fauna species that may occur in the area, within a 5 km radius.

The findings and conclusions expressed by EBS are based solely upon information in existence at the time of the assessment. The combination of database records and background research have provided a solid foundation for determining the flora and fauna that are likely to, or are known to, occur within the Springwood Development area.


5 RESULTS

5.1 Matters of national environmental significance

Two threatened ecological communities (TECs), 28 threatened species and 13 migratory species were identified in the PMST as potentially occurring or having suitable habitat potentially occurring within 5 km of the Springwood Development area. The results of the EPBC Act PMST report are summarised in Table 2 (DotEE 2018).

The relevant matters of national environmental significance, other matters protected under the EPBC Act, and threatened species listed under the NPW Act are discussed in detail below (Table 2).

Table 2. Summary of the results of the EPBC Act Protected Matters Search Tool report.

5.1.1 Threatened ecological communities

Two TECs were identified in the PMST as potentially occurring within 5 km of the Springwood Development area. A summary of these TECs and comment regarding their likelihood of occurrence in the area are provided in Table 3.

Table 3. The threatened ecological communities identified in the PMST and their likelihood of presence within the Springwood Development area.

Threatened Ecological Community	EPBC Status	Likelihood of occurrence in the Development area
Iron-grass Natural Temperate Grassland of South Australia	CE	Known
Peppermint Box (E. odorata) Grassy Woodland of South Australia	CE	Unlikely

A community fitting within the criteria for Iron-grass Temperate Grassland was observed by KBR (2010). The size and condition of the community meet the requirements of condition class B as described in the EPBC Policy Statement 3.7 (DEWR 2007). If development or adverse impact on this area was likely to occur, then the proposal will require referral to DoTEE. For a summary of this community please see section 7.2.1.

5.1.2 Nationally Threatened flora

Fourteen flora species listed as threatened under the EPBC Act were identified in the PMST as potentially occurring or having suitable habitat potentially occurring within 5 km of the Springwood Development area (Table 4). One of these species (*Olearia pannosa* ssp. *pannosa*) was also identified in the 5 km BDBSA search however was not recorded in the KBR surveys. This species was not observed during the 2019 site assessment. No other species from the EPBC search tool results were deemed likely to be present based on previous records and existing conditions.

5.1.3 State threatened flora

Eleven flora species listed as threatened under the NPW Act were identified in the BDBSA search as being previously recorded within 5 km of the Springwood Development area (Table 4). Nine of the NPW Act listed species were considered as likely or possibly occurring within the Springwood Development area (Table 4) based on previous surveys and available habitat. A full list of the BDBSA flora observations is provided in Appendix 1.

Table 4. Threatened flora species listed under the EPBC Act and NPW Act identified in the PMST (Source 1) and BDBSA (Source 2) database searches within 5 km of the Springwood Development area.

		Conservation status			BDBSA last	Likelihood of occurrence
Scientific name			SA	Source	record (year)	within Development area
Acacia iteaphylla	Flinders Ranges Wattle		R	2	27/11/2002	Likely
Acacia trineura	Three-nerve Wattle		Е	2	10/02/2012	Unlikely
Austrostipa densiflora	Fox-tail Spear-grass		R	2	11/11/2005	Possible
Austrostipa gibbosa	Swollen Spear-grass		R	2	28/10/2011	Possible
Austrostipa multispiculis	Many-flowered Spear- grass		R	2	20/11/2011	Possible

			ervation atus		BDBSA last	Likelihood of occurrence	
Scientific name	Common name	Aus	SA	Source	record (year)	within Development area	
Bothriochloa macra	Red-leg Grass		R	2	21/09/2016	Likely	
Caladenia argocalla	White beauty spider Orchid	EN		1		Unlikely	
Caladenia behrii	Pink Lipped spider Orchid	EN		1		Unlikely	
Caladenia rigida	White Spider-orchid	EN		1		Unlikely	
Caladenia tensa	Greencomb Spider- orchid	EN		1		Unlikely	
Caladenia xantholeuca	White Rabbits	EN		1		Unlikely	
Cladium procerum	Leafy Twig-rush		R	2	31/01/2018	Possible	
Corybas dentatus	Toothed Helmet Orchid	VU		1		Unlikely	
Dianella longifolia var. grandis	Pale Flax-lily		R	2	1/07/2018	Possible	
Euphrasia collina ssp. osbornii	Osbornes eyebright	EN		1		Unlikely	
Maireana rohrlachii	Rohrlach's Bluebush		R	2	3/01/2013	Likely	
Olearia pannosa ssp. pannosa	Silver Daisy-bush	VU	V	1,2	22/09/2015	Possible	
Prasophyllum pallidum	Pale leek orchid	VU		1		Unlikely	
Prasophyllum pruinosum	Plum Leek Orchid	EN		1		Unlikely	
Prasophyllum validum	Sturdy leek Orchid	VU		1		Unlikely	
Pterostylis psammophila	Two-bristle Greenhood	CE		1		Unlikely	
Pterostylis sp. Hale	Hale Dwarf Greenhood	EN		1		Unlikely	
Sclerolaena muricata var. villosa	Five-spine Bindyi		R	2	30/01/2018	Unlikely	
Telymitra matthewsii	Spiral Sun Orchid	VU		1		Unlikely	

Conservation status

Aus: Australia (Environment Protection and Biodiversity Conservation Act 1999). SA: South Australia (National Parks and Wildlife Act 1972). Conservation codes: CE: Critically Endangered. EN/E: Endangered. VU/V: Vulnerable. R: Rare. ssp.: the conservation status applies at the sub-species level. Mi: Migratory species. (W): Wetland migratory species. (M): Marine migratory species. (T): Terrestrial migratory species. Ma: Marine species.

5.1.4 Nationally threatened fauna

Fourteen fauna species listed as threatened under the EPBC Act were identified in the PMST as potentially occurring or having suitable habitat potentially occurring within 5 km of the Springwood Development area (Table 5). Flinders Range Worm Lizard (*Aprasia pseudopulchella*) was considered likely to be present within the area based on available habitat and opportunistic observations made in the KBR 2010 report. The areas mapped as suitable habitat for this species in the KBR report have been avoided by the Springwood Masterplan.

5.1.5 State threatened fauna

Fourteen fauna species listed as threatened under the NPW Act were identified in the BDBSA search as being previously recorded within 5 km of the Springwood Development area (Table 5). Several of these were previously observed within the area by KBR (2010). Four species of state conservation significance were known onsite from the KBR surveys, Common Brushtail Possum (*Trichosurus vulpecula*), White Winged Chough (*Corcorax melanorhamphos*), Elegant Parrot (*Neophema elegans*) and Peregrine Falcon (*Falco peregrinus*). These are all likely to still utilise the site for some or all of the species habitat requirements. A further six were considered likely to utilise the area at some period (Table 5). A full list of the BDBSA flora observations is provided in Appendix 2.

Table 5. Threatened fauna species listed under the EPBC Act and NPW Act identified in the PMST (Source 1) and BDBSA (Source 2) database searches within 5 km of the Springwood Development area

		Conservation status		Source	BDBSA last	Likelihood of occurrence	
Scientific name	Common name	Aus	Aus SA		record (year)	within Development area	
Actitis hypoleucos	Common Sandpiper	Mi.		1		Unlikely	
Aprasia pseudopulchella	Flinders Ranges Worm- lizard	VU		1		Known	
Apus pacificus	Fork Tailed Swift	Mi.		1		Unlikely	
Botaurus poiciloptilus	Australasian Bittern	EN		1		Unlikely	
Calidris acuminata	Sharp-tailed Sandpiper	Mi.		1		Unlikely	
Calidris ferruginea	Curlew Sandpiper	CE, Mi		1		Unlikely	
Calidris melanotos	Pectoral Sandpiper	Mi.		1		Unlikely	
Cinclosoma punctatum anachoreta	Spotted Quailthrush	CE		1		Unlikely	
Corcorax melanorhamphos	White-winged Chough		R	2	31/08/2016	Known	
Coturnix ypsilophora	Brown Quail		V	2	16/09/2015	Likely	
Emydura macquarii	Macquarie River Turtle		V	2	14/10/2017	Possible	
Falco peregrinus	Peregrine Falcon		R			Known	
Falcunculus frontatus frontatus	Eastern Shriketit		R	2	2/03/2013	Likely	
Gallinago hardwickii	Latham's Snipe	Mi.	R	2	23/11/2008	Unlikely	
Grantiella picta	Painted Honeyeater	VU		1		Unlikely	
Hirundapus caudacutus	White-throated Needletail	Mi.		1		Unlikely	
Hylacola pyrrhopygia parkeri	Chestnut-rumped Heathwren	EN		1		Unlikely	
Isoodon obesulus obesulus	Southern Brown Bandicoot	EN		1		Unlikely	
Leipoa ocellata	Malleefowl	VU		1		Unlikely	
Melithreptus gularis	Black-chinned Honeyeater		R	2	24/02/2012	Possible	
Motacilla cinerea	Grey Wagtail	Mi.		1		Unlikely	
Motacilla flava	Yellow Wagtail	Mi.		1		Unlikely	
Myiagra cyanoleuca	Satin Flycatcher	Mi.		1		Unlikely	
Myiagra inquieta	Restless Flycatcher		R	2	22/09/2015	Likely	
Neophema elegans	Elegant Parrot		R	2	20/09/2017	Known	
Numenius madagascariensis	Eastern Curlew,	CE, MI		1		Unlikely	
Pandion haliaetus	Osprey	Mi.		1		Unlikely	
Parvipsitta pusilla	Little Lorikeet		Е	2	25/02/2012	Possible	

		Conservation status		_	BDBSA last	Likelihood of occurrence	
Scientific name	Common name	Aus	SA	Source	record (year)	within Development area	
Pedionomus torquatus	Plains-wanderer	CE		1		Unlikely	
Petroica phoenicea	Flame Robin		V	2	17/05/2018	Likely	
Pezoporus occidentalis	Night Parrot	EN		1		Unlikely	
Plegadis falcinellus	Glossy Ibis		R	2	25/11/2014	Possible	
Pteropus poliocephalus	Grey-headed Flying-fox	VU		1		Unlikely	
Rostratula australis	Australian Painted-snipe	EN		1		Unlikely	
Stagonopleura guttata	Diamond Firetail		V	2	18/04/2018	Likely	
Strepera versicolor	Grey Currawong		R	2	25/10/2017	Likely	
Trichosurus vulpecula	Common Brushtail Possum		R	2	2/03/2013	Known	
Tringa nebularia	Common Greenshank	Mi.		1		Unlikely	
Zoothera lunulata halmaturina	Bassian Thrush	VU		1		Unlikely	

Conservation status

Aus: Australia (*Environment Protection and Biodiversity Conservation Act 1999*). SA: South Australia (*National Parks and Wildlife Act 1972*). Conservation codes: CE: Critically Endangered. EN/E: Endangered. VU/V: Vulnerable. R: Rare. ssp.: the conservation status applies at the sub-species level. Mi: Migratory species. (W): Wetland migratory species. (M): Marine migratory species. (T): Terrestrial migratory species. Ma: Marine species.

5.1.6 Nationally listed migratory / marine species

Thirteen fauna species listed as migratory under the EPBC Act were identified in the PMST as potentially occurring or having suitable habitat potentially occurring within 5 km of the Springwood Development area (Table 5). All 13 species were bird species. Latham's Snipe (*Gallinago hardwickii*) was recorded immediately south of the area by KBR (2008) and could potentially occur in the creek habitat within the Springwood Development area as a vagrant visitor. There has been no further observations of this species within the BDBSA search to 2019. Based on the lack of habitat within the Springwood Development site, a referral for this species is not required.

Rainbow Bee-eater (*Merops ornatus*) was previously recorded across the area and noted onsite at the time of the 2019 survey. This species (previously listed as a migratory) is now listed only as a marine species under the EPBC Act which means protection is limited to Commonwealth Marine Areas. Commonwealth Marine Areas are not present within the Springwood Development Area. A referral for this species is not required.

٠

5.2 Field survey

5.2.1 Flora

While seasonal conditions have been very good in the interim period since the 2010 KBR report, the past few seasons have had exceptionally dry periods and this has been coupled with a dramatic increase in the numbers of Western Grey Kangaroos (*Macropus fuliginosus*) which were described as commonly recorded though confined to few individuals throughout the site in the 2008 report. Based on the number of observations in 2019, it can be assumed that this population has expended significantly, and this would be consistent with many areas surrounding the Adelaide metropolitan and peri – urban areas. Despite this, the vegetation communities were represented in similar condition and the range of species previously present could be expected to persist since that time. The range of perennial grass tussocks present however was most likely reduced due to seasonal inputs.

5.3 Specific species and community issues

5.3.1 Eucalyptus porosa scattered trees

Scattered *Eucalyptus porosa* (Mallee Box) trees are dominant on the northern slopes of the South Para River anabranch with a few other scattered remnants in other sections of the Springwood Development area. These trees are subject to the *Native Vegetation Act 1991*. There are permitted clearance activities authorised under the *Native Vegetation Regulations 2017*. The Regulations outline the circumstances where clearing native vegetation is permitted, outside of the clearance controls in the Native Vegetation Act 1991. This development allows a clearance application to occur under the Native Vegetation Regulation exemption 12(35) – Residential subdivision.

The Regulations place a great emphasis on the proponent applying the Mitigation Hierarchy, a fundamental principle which encourages proponents to consider all possible ways to avoid and minimise clearance to reduce the level of clearance required. Reducing the level of clearance also reduces the SEB offset (where required) and associated cost to the proponent. The Native Vegetation Council (NVC) assesses whether proponents have adequately applied the Mitigation Hierarchy.

In determining the SEB, the NVC must be provided with written notification of the entire clearance footprint at the allotment scale which includes clearance for the dwelling and any associated structures; clearance within 10 metres of a building for maintenance; fences; vehicle tracks; and any additional clearance for fire safety. Individual regulations for these clearance activities will not apply in connection to new subdivisions and must be considered at this stage.

5.3.2 Iron-grass (Lomandra) Temperate Grassland

This was identified within the KBR report and was observed as still being present and in relatively good condition in terms of tussock density and size. It was not possible to make an accurate assessment as the herbaceous species diversity during the March visit due to appalling conditions from a seasonal perspective. The masterplan avoids the area mapped as the Threatened Ecological Community. See section 6.2.1 for further discussion on this area.

Figure 2. Lomandra community observed still present during 2019 site visit.

5.3.3 Flinders Worm Lizard

An opportunistic observation of this species was made within the area by KBR (2010) and has not been recorded onsite since. No new records for this species have been made within the Gawler area since that observation. While the species is likely to be in low density, they are widespread and any retention of habitat is of high conservation value. The Springwood Masterplan has avoided all areas mapped as high habitat value within the 2010 KBR report.

5.3.4 Peregrine Falcon

KBR observed Peregrine Falcon using the site as a roosting and hunting area. A pair was observed in a roost site within the high wall of the quarry precinct and hunting over the adjacent areas of the quarry and Mallee Box woodland south of the quarry fence line over 2008 to 2010. There was no evidence of past or current nesting / breeding in the quarry or elsewhere. The March visit confirmed likely ongoing use by this species which, while not observed directly, there was significant whitewash on the walls of the quarry suggesting the quarry walls were being used as roosting and resting habitat.

6 QUANTIFYING EPBC IMPACTS

6.1 What is a significant impact?

The Australian Government Department of Sustainability, Environment, Water, Population and Communities publication 'Actions on, or impacting upon, Commonwealth land, and actions by Commonwealth agencies: Significant Impact Guidelines 1.2' states: 'A 'significant impact' is an impact which is important, notable, or of consequence, having regard to its context or intensity. Whether or not an action is likely to have a significant impact depends upon the sensitivity, value, and quality of the environment which is impacted, and upon the intensity, duration, magnitude and geographic extent of the impacts.

6.2 Self-assessment

An action is likely to have a significant impact on species if there a real chance or possibility that the action will cause the following criteria to occur. A self-assessment for Iron-grass Temperate Grasslands has been conducted below.

6.2.1 Iron-grass Temperate Grassland

The Springwood Development will not impact directly on the TEC based on the Masterplan design. The close proximity of housing allotments to the mapped community will be likely to cause indirect impacts. These include potential disturbances such as illegal dumping; e.g. lawn clippings and garden waste; and increased foot traffic and bike use. A self-assessment of the *Lomandra* grassland is made based on criteria used in assessing matters of national environmental significance.

Will the Development lead to a long term decrease in the size of the population.

There is every likelihood that this project will lead to a slow long term decrease in the population due to the impacts listed above

Will the Development reduce the area of occupancy of the species.

The Springwood Development area will not directly reduce the area of occupancy

• Will the Development fragment an existing population.

The project will not fragment the existing population

• Will the Development adversely affect critical habitat.

The Springwood Development area is not considered to impact other areas of critical habitat.

Will the Development disrupt breeding cycles.

No changes to the pollination or seed production potential of the community would be expected.

• Will the Development modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline.

It is likely that some alterations to the quality of the habitat would occur, partly due to potential weed competition but also through soil compaction and degradation of the slopes where the community is present.

 Will the Development result in the establishment of invasive species that are harmful to the species.

High potential for this impact with garden waste and increased likelihood of garden escapees

Will the Development introduce disease that may cause the species to decline.

The proposed project is not considered likely to act as a vector for disease.

• Will the Development interfere with the recovery of the species.

The proposed project will not impact on the recovery of this community at the wider scale.

It is likely that the close proximity of the Springwood Development to a nationally listed ecological community will impact the community through a long term decrease in size and threats from invasive species. It is recommended that a referral for this area is conducted. The potential outcome of this would be mitigation measures employed such as buffer zones from the Iron-grass community and a conservation management plan to ensure the longevity and sustainability of the community.

7 MITIGATION MEASURES

7.1 Mitigation Hierarchy

Avoid outline measures taken to avoid clearance of native vegetation such as making adjustments to the location, design, size or scale of the activity in order to reduce the impact.

Areas of the highest density trees are of particularly high value with many having large hollows and provide other habitat values such as food and roosting resources. Springwood has avoided the areas of highest vegetation cover where practical and maintains over 70ha of open space.

Minimise if clearance cannot be avoided, outline measures taken to minimize the extent, duration and intensity of impacts of the clearance on biodiversity to the fullest possible extent.

Prior to development commencing, a Vegetation Management Plan (VMP) and a Construction Environmental Management Plan (CEMP) must be developed so as to guide the future development of the site. Reserves have been incorporated into the strategic design where remnant trees are present where possible in a bid to reduce SEB requirements while also improving the amenity value of the development.

Rehabilitate/restore - outline measures taken to rehabilitate ecosystems that have been degraded, and to restore ecosystems that have been degraded, or destroyed by the impact of clearance that cannot be avoided or further minimized, such as allowing for the re-establishment of the vegetation

WGA has included a preliminary stormwater treatment strategy for the site. This considers the drainage for the Springwood Development and includes elements such as Macrophyte beds, shallow wetland ponds and ecological sponges / reed beds. KBR provided input into the most suitable sites and has assisted in the initial stormwater treatment planning. The wetland systems and ponds along the eastern section of the Springwood Creek avoids the important reptile habitat areas, all of the remnant trees and will allow for development of biologically productive riparian habitats in what is currently a weed infested gully.

Offset- any adverse impact on native vegetation that cannot be avoided or further minimized should be offset by the achievement of a significant environmental benefit that outweighs that impact.

Offsets are intended to compensate for any residual adverse impacts. An offset should only be considered after all reasonable steps have been taken to avoid, minimise and rehabilitate/restore the impacts of clearance activities.

8 IMPACT SUMMARY

The following is a summary of the direct and indirect impacts associated with the Masterplan based on the KBR 2010 report and follow up site visit in March 2019 with likely mitigation or follow up requirements.

- Recommendation for a referral to the minister under the EPBC Act for potential indirect impacts to the TEC Iron-grass Temperate Grassland.
- Scattered Tree Assessment clearance application provided to the Native Vegetation Council for the removal of up to 70 individual *Eucalyptus porosa* (Mallee Box) trees with measures utilising the mitigation hierarchy undertaken.

9 DISCUSSION

This Springwood Development area has an overall low ecological value with pasture the dominant vegetation type present which commonly had high weed cover as part of the composition. Based on species observations made by KBR (2010), the survey effort was commensurate with the biological values of the site and annual and seasonal variation components were undertaken through 2008 to 2010.

Impacts on fauna will be mostly associated with rehabilitation of the quarry and the consequent impacts on avifauna. Rehabilitation and major earthworks are a necessity in order to make the quarry precinct safe. Remediation of the high wall of the quarry must be undertaken to manage some of the geotechnical risks and it is unlikely that mitigation actions can be undertaken for species utilising the quarry wall such as Rainbow Bee-eater, Peregrine Falcon, White-winged Chough and Fairy Martin and these species will be displaced from the site. Given the man-made nature of the quarry, this feature has been a temporary habitat structure and it is expected that species will adapt to changes again with each of these species having differing opportunities to re-locate in the region. This includes greater use of other habitats, both natural and man-made such as woodland, sand quarries and natural cliff and rock outcrops in the region.

Stormwater management plans utilizing sections of Springwood Creek as temporary flow management buffers is supported by EBS. Joint planning undertaken by WPG and KBR identified suitable sections devoid of native vegetation for retention and riffle banks. In an area of increasing urbanization, extremely low remnancy of native vegetation, historical records of migratory wetland birds and indirect pressures such as climate change, any efforts to increase the extent and frequency of ephemeral or semi -riparian zones is welcomed from an ecological perspective.

Culverts associated with these structures are not expected to provide significant habitat fragmentation or restriction of biodiversity corridor values provided by Springwood Creek based on the likely fauna community structure expected within an urban area.

10 REFERENCES

- Department for Environment and Water (2019). BDBSA Supertable overview.

 http://www.environment.sa.gov.au/Science/Information_data/Biological_databases_of_South_Au stralia (29th March 2019)
- Department of the Environment and Energy (DotEE) (2012) Interim Biogeographic Regionalisation for Australia v. 7 (IBRA) [ESRI shapefile]. Available at:

 http://intspat01.ris.environment.gov.au/fed/catalog/search/resource/details.page?uuid=%7B3C18
 2B5A-C081-4B56-82CA-DF5AF82F86DD%7D [Accessed 29th March 2019].
- Department of the Environment and Energy (DotEE) (2019) EPBC Act Protected Matters Report. http://www.environment.gov.au/erin/ert/epbc/index.html [Report created 29th March 2019]
- Kellogg Brown and Root (2010) Gawler East Development Plan Amendment, Gawler East Ecological Survey.

11 APPENDICES

Appendix 1. Flora species BDBSA records within 5km radius of Springwood Development Area

Species	Common	AUS	SA	Date
Acacia acinacea	Wreath Wattle			3/01/2013
Acacia continua	Thorn Wattle			1/08/2012
Acacia cyclops	Western Coastal Wattle			17/12/2014
Acacia iteaphylla	Flinders Ranges Wattle		R	27/11/2002
Acacia ligulata	Umbrella Bush			10/12/2014
Acacia melanoxylon	Blackwood			22/09/2016
Acacia notabilis	Notable Wattle			13/10/2015
Acacia paradoxa	Kangaroo Thorn			19/10/2017
Acacia pycnantha	Golden Wattle			19/10/2017
Acacia retinodes	Wirilda			1/08/2012
Acacia salicina	Willow Wattle			25/11/2012
Acacia saligna	Golden Wreath Wattle			10/02/2012
Acacia sp.	Wattle			17/06/2001
Acacia trineura	Three-nerve Wattle		Е	10/02/2012
Acacia victoriae ssp.	Elegant Wattle			18/02/2015
Acaena echinata	Sheep's Burr			25/10/2017
Aira cupaniana	Small Hair-grass			28/10/2011
Aira elegantissima	Delicate Hair-grass			28/10/2011
Aira sp.	Hair-grass			25/10/2017
Allium triquetrum	Three-cornered Garlic			29/09/2015
Allocasuarina verticillata	Drooping Sheoak			13/10/2015
Amaranthus albus	Stiff Tumbleweed			1/05/2012
Anredera cordifolia	Madeira Vine			29/09/2015
Anthosachne scabra	Native Wheat-grass			31/01/2018
Arctotheca calendula	Cape Weed			25/10/2017
Aristida behriana	Brush Wire-grass			5/12/2017
Aristida contorta	Curly Wire-grass			20/11/2011
Artemisia arborescens	Silver Wormwood			31/01/2018
Arthropodium fimbriatum	Nodding Vanilla-lily			30/11/2016
Arthropodium sp.	Vanilla-lily			18/09/2010
Arthropodium strictum	Common Vanilla-lily			23/09/2013
Arundo donax	Giant Reed			31/01/2018
Asparagus asparagoides (NC)	Bridal Creeper			23/11/1999
Asparagus asparagoides f.	Bridal Creeper			24/10/2012
Asparagus asparagoides f. asparagoides	Bridal Creeper			25/02/2015
Asphodelus fistulosus	Onion Weed			25/10/2017
Asteriscus spinosus	Golden Pallensis			3/04/2018
Atriplex prostrata	Creeping Saltbush			31/01/2018
Atriplex semibaccata	Berry Saltbush			27/11/2014

Species	Common	AUS	SA	Date
Atriplex sp.	Saltbush			1/10/2011
Atriplex suberecta	Lagoon Saltbush			25/11/2012
Austrostipa blackii	Crested Spear-grass			3/01/2013
Austrostipa curticoma	Short-crest Spear-grass			25/11/2012
Austrostipa densiflora	Fox-tail Spear-grass		R	11/11/2005
Austrostipa drummondii	Cottony Spear-grass			23/11/2012
Austrostipa elegantissima	Feather Spear-grass			25/11/2012
Austrostipa eremophila	Rusty Spear-grass			3/01/2013
Austrostipa gibbosa	Swollen Spear-grass		R	28/10/2011
Austrostipa mollis	Soft Spear-grass			1/12/2014
Austrostipa multispiculis	Many-flowered Spear-grass		R	20/11/2011
Austrostipa nodosa	Tall Spear-grass			3/01/2013
Austrostipa puberula	Fine-hairy Spear-grass			24/10/2012
Austrostipa scabra ssp. falcata	Slender Spear-grass			28/10/2011
Austrostipa sp.	Spear-grass			25/10/2017
Avena barbata	Bearded Oat			31/01/2018
Avena sp.	Oat			3/01/2013
Baumea juncea	Bare Twig-rush			31/01/2018
Bellardia latifolia	Red Bartsia			24/10/2012
Boerhavia dominii	Tar-vine			25/10/2017
Boerhavia dominii (NC)	Tar-vine			6/04/2013
Bolboschoenus caldwellii	Salt Club-rush			28/10/2011
Bothriochloa macra	Red-leg Grass		R	21/09/2016
Brachypodium distachyon	False Brome			25/10/2017
Brassica sp.				13/01/2004
Brassica tournefortii	Wild Turnip			24/10/2012
Briza maxima	Large Quaking-grass			25/10/2017
Briza minor	Lesser Quaking-grass			25/10/2017
Bromus diandrus	Great Brome			25/10/2017
Bromus diandrus (NC)	Great Brome			27/11/2002
Bromus hordeaceus ssp. hordeaceus	Soft Brome			19/10/2017
Bromus madritensis	Compact Brome			28/10/2011
Bromus rubens	Red Brome			28/10/2011
Bromus sp.	Brome			31/01/2018
Bursaria spinosa ssp.	Bursaria			15/11/2005
Bursaria spinosa ssp. spinosa	Sweet Bursaria			24/10/2012
Callitris gracilis	Southern Cypress Pine			26/11/2012
Calostemma purpureum	Pink Garland-lily			13/04/2016
Cardamine flexuosa	Wood Bitter-cress			26/08/2015
Carduus pycnocephalus	Shore Thistle			13/10/2015
Carex bichenoviana	Notched Sedge			10/12/2014
Carthamus lanatus	Saffron Thistle			8/12/2017
Casuarina glauca	Grey Buloak			29/09/2015
Casuarinaceae sp.	Sheaok Family			19/10/1999
Catapodium rigidum	Rigid Fescue			29/10/2014

Species	Common	AUS	SA	Date
Cenchrus ciliaris	Buffel Grass			1/01/2012
Cenchrus clandestinus	Kikuyu			2/10/2014
Cenchrus longisetus	Feather-top			11/06/2015
Cenchrus setaceus	Fountain Grass			31/01/2018
Centaurea calcitrapa	Star Thistle			10/12/2010
Centaurium erythraea	Common Centaury			19/12/2014
Centipeda cunninghamii	Common Sneezeweed			10/05/2017
Chasmanthe floribunda	African Corn-flag			29/09/2015
Cheilanthes austrotenuifolia	Annual Rock-fern			18/09/2010
Cheilanthes distans	Bristly Cloak-fern			10/08/1999
Cheilanthes lasiophylla	Woolly Cloak-fern			18/12/2014
Cheilanthes sp.	Rock-fern			21/09/2016
Chenopodium glaucum	Glaucous Goosefoot			31/01/2018
Chenopodium murale	Nettle-leaf Goosefoot			31/05/2017
Chloris gayana	Rhodes Grass			11/06/2015
Chloris truncata	Windmill Grass			17/12/2014
Chondrilla juncea	Skeleton Weed			6/12/2017
Chrozophora tinctoria	Dyer's Litmus Plant			8/12/2017
Cirsium vulgare	Spear Thistle			21/06/2018
Citrullus colocynthis	Colocynth			8/12/2017
Cladium procerum	Leafy Twig-rush		R	31/01/2018
Convolvulus angustissimus ssp.	Narrow-leaf Bindweed			8/12/2017
Convolvulus angustissimus ssp. angustissimus (NC)	Narrow-leaf Bindweed			10/12/2014
Convolvulus angustissimus ssp. peninsularum (NC)	Narrow-leaf Bindweed			23/11/2012
Convolvulus arvensis	Field Bindweed			10/12/2010
Convolvulus erubescens (NC)	Australian Bindweed			27/11/2002
Convolvulus erubescens complex				10/09/2013
Convolvulus remotus	Grassy Bindweed			28/10/2014
Convolvulus sp.	Bindweed			30/01/2013
Conyza bonariensis	Flax-leaf Fleabane			15/02/2018
Corybas diemenicus	Veined Helmet-orchid			22/08/2016
Crassula colligata ssp. colligata				25/11/2011
Crassula colorata var. acuminata	Dense Crassula			24/10/2012
Crassula sp.	Crassula/Stonecrop			18/09/2010
Crepis capillaris	Smooth Hawksbeard			13/10/2015
Crepis foetida ssp. foetida	Stinking Hawksbeard			4/12/2017
Cucumis myriocarpus ssp. myriocarpus	Paddy Melon			31/05/2017
Cullen australasicum	Tall Scurf-pea			19/10/2017
Cycnogeton procerum	Water-ribbons			9/11/2012
Cymbopogon ambiguus	Lemon-grass			31/01/2018
Cynara cardunculus ssp. flavescens	Artichoke Thistle			31/01/2018
Cynodon dactylon (NC)	Couch			13/01/2004
Cynodon dactylon var.	Couch			14/02/2018
Cynodon dactylon var. dactylon	Couch			25/10/2017
Cynoglossum suaveolens	Sweet Hound's-tongue			28/10/2011

Cynosurus echinatus Cyperus gymnocaulos	Rough Dog's-tail Grass Spiny Flat-sedge		31/01/2018
**	Spiny Flat-sedge		
			23/11/2012
Cyperus sp.	Flat-sedge		31/01/2018
Cyperus vaginatus	Stiff Flat-sedge		28/10/2011
Dactylis glomerata	Cocksfoot		5/12/2017
Danthonia sp. (NC)	Wallaby-grass		27/11/2002
Datura inoxia	Downy Thorn-apple		16/12/2014
Dianella longifolia var. grandis	Pale Flax-lily	R	1/07/2018
Dianella revoluta var.			26/11/2012
Dianella revoluta var. revoluta	Black-anther Flax-lily		26/11/2014
Dichanthium sericeum ssp.	Silky Blue-grass		23/11/2012
Dichanthium sericeum ssp. sericeum	Silky Blue-grass		3/01/2013
Dichondra repens	Kidney Weed		8/12/2017
Digitaria ammophila	Spider Grass		3/01/2013
Digitaria brownii	Cotton Panic-grass		24/10/2012
Diplotaxis tenuifolia	Lincoln Weed		6/06/2017
Disa bracteata	South African Weed Orchid		31/01/2018
Dittrichia graveolens	Stinkweed		14/02/2018
Dodonaea viscosa ssp.	Sticky Hop-bush		23/11/2012
Dodonaea viscosa ssp. spatulata	Sticky Hop-bush		31/01/2018
Drosera auriculata	Tall Sundew		10/09/2013
Drosera macrantha ssp. planchonii	Climbing Sundew		15/11/2005
Dysphania pumilio	Small Crumbweed		12/05/2017
Echium plantagineum	Salvation Jane		31/01/2018
Ehrharta calycina	Perennial Veldt Grass		22/10/2014
Ehrharta longiflora	Annual Veldt Grass		25/10/2017
Einadia nutans ssp.	Climbing Saltbush		23/10/2013
Einadia nutans ssp. nutans	Climbing Saltbush		28/10/2011
Enchylaena sp.			25/11/2012
Enchylaena tomentosa var.	Ruby Saltbush		25/08/2017
Enchylaena tomentosa var. tomentosa	Ruby Saltbush		27/11/2002
Enneapogon nigricans	Black-head Grass		5/12/2017
Enteropogon acicularis	Umbrella Grass		3/01/2013
Eragrostis barrelieri	Pitted Love-grass		23/05/2016
Eragrostis cilianensis	Stink Grass		11/06/2015
Eragrostis curvula	African Love-grass		13/05/2013
Eragrostis minor	Small Stink-grass		11/06/2015
Eragrostis trichophora	Hairyflower Lovegrass		11/06/2015
Eremophila longifolia	Weeping Emubush		24/10/2012
Erodium botrys	Long Heron's-bill		8/12/2017
Erodium crinitum	Blue Heron's-bill		16/11/2017
Erodium sp.	Heron's-bill/Crowfoot		15/11/2005
Eucalyptus camaldulensis ssp.	River Red Gum		25/10/2017
Eucalyptus camaldulensis ssp. camaldulensis	River Red Gum		31/01/2018
Eucalyptus cladocalyx (NC)	Sugar Gum		15/11/2005

Species	Common	AUS	SA	Date
Eucalyptus leucoxylon ssp.	South Australian Blue Gum			25/10/2017
Eucalyptus leucoxylon ssp. leucoxylon	South Australian Blue Gum			28/10/2011
Eucalyptus leucoxylon ssp. pruinosa	Inland South Australian Blue Gum			28/10/2011
Eucalyptus odorata	Peppermint Box			16/10/2014
Eucalyptus odorata (NC)	Peppermint Box			23/11/1999
Eucalyptus porosa	Mallee Box			3/01/2013
Eucalyptus socialis ssp. socialis	Beaked Red Mallee			12/02/2012
Eucalyptus sp.				11/07/2013
Euphorbia drummondii (NC)				13/03/2013
Euphorbia drummondii s.str.				3/04/2018
Euphorbia terracina	False Caper			29/09/2015
Foeniculum vulgare	Fennel			31/01/2018
Fraxinus angustifolia ssp. angustifolia	Desert Ash			31/01/2018
Freesia cultivar	Freesia			29/09/2015
Fumaria capreolata	White-flower Fumitory			25/10/2017
Fumaria densiflora	Dense Fumitory			17/10/2012
Gahnia lanigera	Black Grass Saw-sedge			12/02/2012
Galenia pubescens var. pubescens	Coastal Galenia			3/04/2018
Galium aparine	Cleavers			7/10/2016
Gazania linearis	Gazania			6/06/2017
Gazania sp.	Gazania			19/10/1999
Geranium retrorsum	Grassland Geranium			11/11/2005
Geranium solanderi	Austral Geranium			17/09/2012
Geranium sp.	Geranium			18/09/2010
Gladiolus undulatus	Wild Gladiolus			1/12/2014
Gleditsia triacanthos				2/10/2014
Gomphocarpus cancellatus	Broad-leaf Cotton-bush			31/01/2018
Gomphocarpus fruticosus	Narrow-leaf Cotton-bush			1/05/2012
Gonocarpus elatus	Hill Raspwort			8/06/2017
Goodenia pinnatifida	Cut-leaf Goodenia			18/11/2014
Gramineae sp.	Grass Family			22/05/2000
Hainardia cylindrica	Common Barb-grass			14/11/2016
Haloragis aspera	Rough Raspwort			10/11/2005
Heliotropium asperrimum	Rough Heliotrope			19/10/2017
Heliotropium europaeum	Common Heliotrope			15/02/2018
Heliotropium supinum	Creeping Heliotrope			31/01/2018
Helminthotheca echioides	Ox-tongue			31/01/2018
Hordeum glaucum	Blue Barley-grass			23/11/1999
Hordeum leporinum	Wall Barley-grass			2/10/2014
Hordeum sp.	Barley-grass			3/01/2013
Hordeum vulgare	Barley			19/10/1999
Hyparrhenia hirta	Tambookie Grass			29/01/2018
Hypochaeris glabra	Smooth Cat's Ear			31/01/2018
Hypochaeris radicata	Rough Cat's Ear			25/10/2017
Hypochaeris sp.	Cat's Ear			8/12/2015

Species	Common	AUS	SA	Date
Juncus kraussii	Sea Rush			28/10/2011
Juncus subsecundus	Finger Rush			28/10/2011
Juncus usitatus	Common Rush			28/10/2011
Kickxia commutata ssp. graeca				18/04/2018
Kickxia elatine ssp.	Sharp-leaf Toadflax			6/12/2017
Lachnagrostis filiformis	Common Blown-grass			28/10/2011
Lactuca saligna	Willow-leaf Lettuce			31/01/2018
Lactuca serriola f.	Prickly Lettuce			8/12/2017
Lavandula stoechas ssp. stoechas	Topped Lavender			1/12/2012
Leiocarpa tomentosa	Woolly Plover-daisy			24/10/2012
Lepidium africanum	Common Peppercress			23/10/2013
Lepidium sp.	Peppercress			24/10/2012
Lichen sp.				25/11/2012
Limonium companyonis	Sea-lavender			11/06/2015
Lobelia anceps	Angled Lobelia			31/01/2018
Lolium rigidum	Wimmera Ryegrass			3/01/2013
Lolium sp.	Ryegrass			25/10/2017
Lomandra collina	Sand Mat-rush			23/09/2013
Lomandra densiflora	Soft Tussock Mat-rush			25/10/2017
Lomandra effusa	Scented Mat-rush			3/01/2013
Lomandra multiflora ssp.	Many-flower Mat-rush			13/04/2016
Lomandra multiflora ssp. dura	Hard Mat-rush			18/12/2014
Lomandra nana	Small Mat-rush			23/11/2012
Lomandra sororia	Sword Mat-rush			28/10/2011
Lomandra sp.	Mat-rush			13/03/2013
Lycium australe	Australian Boxthorn			10/08/1999
Lycium ferocissimum	African Boxthorn			31/01/2018
Lysimachia arvensis	Pimpernel			19/12/2014
Lythrum hyssopifolia	Lesser Loosestrife			17/10/2012
Maireana brevifolia	Short-leaf Bluebush			15/02/2018
Maireana enchylaenoides	Wingless Fissure-plant			25/10/2017
Maireana rohrlachii	Rohrlach's Bluebush		R	3/01/2013
Malva parviflora	Small-flower Marshmallow			25/02/2016
Malva preissiana	Australian Hollyhock			13/10/2015
Malva preissiana (NC)	Australian Hollyhock			28/10/2011
Malva weinmanniana	Australian Hollyhock			25/10/2017
Malvaceae sp.				19/10/1999
Marrubium vulgare	Horehound			25/10/2017
Medicago minima	Little Medic			23/10/2013
Medicago polymorpha	Burr-medic			23/10/2013
Medicago scutellata	Snail Medic			15/11/2005
Medicago sp.	Medic			17/06/2001
Melaleuca brevifolia	Short-leaf Honey-myrtle			31/01/2018
Melaleuca lanceolata	Dryland Tea-tree			12/02/2012
Melaleuca sp.	Tea-tree			17/06/2001

Species	Common	AUS	SA	Date
Mentha pulegium	Pennyroyal			31/01/2018
Microtis frutetorum				15/11/2005
Moraea miniata	Two-leaf Cape Tulip			6/10/2016
Moraea setifolia	Thread Iris			7/10/2016
Moss sp.				26/11/2012
Myoporum montanum	Native Myrtle			10/08/1999
Myriophyllum sp.	Milfoil			28/10/2011
Nassella neesiana				4/10/2009
Nicotiana glauca	Tree Tobacco			31/01/2018
Not naturalised in SA sp.				23/11/1999
Oenothera stricta ssp. stricta	Common Evening Primrose			14/12/2017
Olea europaea ssp.	Olive			9/05/2017
Olea europaea ssp. europaea	Olive			3/07/2018
Olearia pannosa ssp. pannosa	Silver Daisy-bush	VU	V	22/09/2015
Onopordum acaulon	Horse Thistle			15/06/2017
Orobanche minor	Lesser Broomrape			24/09/2018
Oxalis perennans	Native Sorrel			2/11/2017
Oxalis perennans (NC)	Native Sorrel			18/06/2003
Oxalis pes-caprae	Soursob			3/07/2018
Oxalis purpurea	One-o'clock			13/10/2015
Panicum capillare var. brevifolium	Witch-grass			21/06/2017
Panicum effusum var. effusum	Hairy Panic			24/10/2012
Panicum hillmanii	Witch-grass			11/06/2015
Panicum sp.	Panic/Millet			1/12/2014
Papaver rhoeas	Field Poppy			4/12/2017
Paspalum dilatatum	Paspalum			31/01/2018
Pentameris pallida	Pussy Tail			31/01/2018
Phalaris aquatica	Phalaris			31/01/2018
Phalaris sp.	Canary Grass			3/07/2018
Phoenix canariensis	Canary Island Palm			2/04/2015
Phragmites australis	Common Reed			31/01/2018
Picnomon acarna	Soldier Thistle			11/01/2017
Pimelea micrantha	Silky Riceflower			24/10/2012
Pinus halepensis	Aleppo Pine			27/11/2002
Pinus sp.	Pine			19/10/1999
Piptatherum miliaceum	Rice Millet			6/12/2017
Pittosporum angustifolium	Native Apricot			31/01/2018
Plantago lanceolata var.	Ribwort			6/12/2017
Plantago lanceolata var. lanceolata	Ribwort			13/11/2015
	Plantain			17/06/2001
Plantago sp. Pleurosorus rutifolius				
	Blanket Fern			28/10/2010
Poa annua Poa arganizaudov	Winter Grass			26/05/2017
Poa crassicaudex	Thick-stem Tussock-grass			24/10/2012
Poa labillardieri var. labillardieri	Common Tussock-grass			3/01/2013

Species	Common	AUS	SA	Date
Polygonum arenastrum	Wireweed			23/10/2013
Polygonum aviculare	Wireweed			10/02/2012
Polypogon monspeliensis	Annual Beard-grass			31/01/2018
Populus nigra	Lombardy Poplar			11/06/2015
Portulaca oleracea	Common Purslane			17/12/2014
Potamogeton pectinatus	Fennel Pondweed			28/10/2011
Prunus dulcis	Almond			13/10/2015
Prunus persica var.	Peach			3/02/2014
Prunus sp.	Plum			27/11/2002
Pseudognaphalium luteoalbum	Jersey Cudweed			23/05/2018
Ptilotus angustifolius	Narrow-leaf Yellow-tails			23/11/2012
Ptilotus seminudus	Rabbit-tails			15/11/2005
Ptilotus spathulatus	Pussy-tails			8/12/2017
Raphanus raphanistrum	Wild Radish			31/01/2018
Rapistrum rugosum ssp. rugosum	Turnip Weed			25/10/2017
Reichardia tingitana	False Sowthistle			6/12/2017
Reseda lutea	Cut-leaf Mignonette			14/04/2016
Rhagodia parabolica	Mealy Saltbush			11/12/2014
Rhamnus alaternus	Blowfly Bush			29/09/2015
Roepera glauca	Pale Twinleaf			25/11/2012
Romulea rosea var. australis	Common Onion-grass			16/08/2016
Romulea sp.	Onion-grass			18/06/2003
Rosa canina	Dog Rose			18/12/2014
Rostraria cristata	Annual Cat's-tail			25/10/2013
Rumex acetosella	Sorrel			28/10/2011
Rumex brownii	Slender Dock			28/10/2011
Rumex conglomeratus	Clustered Dock			31/01/2018
Rumex crispus	Curled Dock			3/01/2013
Rumex hypogaeus	Three-corner Jack			25/10/2017
Rumex sp.	Dock			13/04/2016
Rytidosperma auriculatum	Lobed Wallaby-grass			15/11/2005
Rytidosperma caespitosum	Common Wallaby-grass			3/01/2013
Rytidosperma duttonianum	Brown-back Wallaby-grass			28/10/2011
Rytidosperma racemosum var. racemosum	Slender Wallaby-grass			10/11/2005
Rytidosperma setaceum	Small-flower Wallaby-grass			3/01/2013
Rytidosperma sp.	Wallaby-grass			25/10/2017
Salsola australis	Buckbush			17/04/2018
Salvia verbenaca var.	Wild Sage			31/01/2018
Salvia verbenaca var. verbenaca	Wild Sage			25/10/2017
Samolus repens	Creeping Brookweed			31/01/2018
Scabiosa atropurpurea	Pincushion			15/02/2018
Scandix pecten-veneris ssp. pecten- veneris	Shepherd's Needle			15/11/2005
Schinus molle	Pepper-tree			25/10/2017
Schoenoplectus subulatus	Shore Club-rush			28/10/2011
Schoenoplectus tabernaemontani	River Club-rush			31/01/2018

Species	Common	AUS	SA	Date
Sclerolaena muricata var. villosa	Five-spine Bindyi		R	30/01/2018
Scorzonera laciniata var. calcitrapifolia	Scorzonera			4/12/2017
Senecio odoratus	Scented Groundsel			21/11/2014
Senecio phelleus	Woodland Groundsel			19/06/2018
Senecio picridioides	Purple-leaf Groundsel			11/12/2014
Senecio pterophorus	African Daisy			31/01/2018
Senecio quadridentatus	Cotton Groundsel			4/06/2014
Senecio sp.	Groundsel			11/11/2005
Senecio vulgaris	Common Groundsel			16/11/2017
Senna artemisioides ssp.	Desert Senna			9/05/2017
Senna artemisioides ssp. petiolaris				27/11/2002
Senna artemisioides ssp. X coriacea	Broad-leaf Desert Senna			24/10/2012
Setaria constricta	Knotty-butt Paspalidium			23/11/2012
Setaria jubiflora	Warrego Summer-grass			2/11/2017
Sherardia arvensis	Field Madder			28/10/2011
Sida corrugata var.	Corrugated Sida			23/06/2012
Sida corrugata var. angustifolia	Grassland Sida			13/03/2013
Sida corrugata var. corrugata	Corrugated Sida			24/10/2012
Silybum marianum	Variegated Thistle			26/10/2017
Sisymbrium erysimoides	Smooth Mustard			11/06/2015
Sisymbrium sp.	Wild Mustard			19/10/1999
Solanum elaeagnifolium	Silver-leaf Nightshade			21/06/2018
Solanum linnaeanum	Apple Of Sodom			3/07/2018
Solanum nigrum	Black Nightshade			15/02/2018
Sonchus asper	Rough Sow-thistle			31/01/2018
Sonchus oleraceus	Common Sow-thistle			31/01/2018
Stackhousia monogyna	Creamy Candles			25/10/2017
Stackhousia monogyna (NC)	Creamy Candles			10/09/2013
Symphyotrichum subulatum	Aster-weed			31/01/2018
Tamarix parviflora	Athel Pine			29/09/2015
Taraxacum sp.	Dandelion			1/06/2012
Teucrium racemosum	Grey Germander			25/11/2011
Themeda triandra	Kangaroo Grass			8/06/2017
Thyridia repens	Creeping Monkey-flower			14/02/2018
Tragopogon porrifolius	Salsify			19/10/2016
Tribulus terrestris	Caltrop			29/01/2018
Trifolium angustifolium	Narrow-leaf Clover			25/10/2017
Trifolium arvense var. arvense	Hare's-foot Clover			31/01/2018
Trifolium campestre	Hop Clover			31/01/2018
Trifolium sp.	Clover			11/07/2013
Trifolium subterraneum	Subterranean Clover			17/10/2012
Tropaeolum majus	Nasturtium			2/10/2014
Typha domingensis	Narrow-leaf Bulrush			31/01/2018
Urtica urens	Small Nettle			31/05/2017
Velleia arguta	Toothed Velleia			24/10/2012

Springwood Flora and Fauna Assessment March 2019

Species	Common	AUS	SA	Date
Verbascum virgatum	Twiggy Mullein			8/12/2017
Verbena supina var. erecta	Trailing Verbena			15/01/2016
Vicia sativa ssp.	Common Vetch			10/09/2013
Vicia sativa ssp. sativa	Common Vetch			28/10/2011
Vicia sp.	Vetch			11/11/2005
Vicia tetrasperma	Slender Vetch			2/03/2012
Vittadinia blackii	Narrow-leaf New Holland Daisy			20/11/2015
Vittadinia cervicularis var. cervicularis	Waisted New Holland Daisy			25/11/2011
Vittadinia cuneata var.	Fuzzy New Holland Daisy			3/11/2017
Vittadinia cuneata var. cuneata	Fuzzy New Holland Daisy			3/01/2013
Vittadinia gracilis	Woolly New Holland Daisy			25/10/2017
Vittadinia megacephala	Giant New Holland Daisy			24/10/2012
Vulpia bromoides	Squirrel-tail Fescue			28/10/2011
Vulpia muralis	Wall Fescue			28/10/2011
Vulpia myuros f.	Fescue			15/11/1999
Vulpia myuros f. myuros	Rat's-tail Fescue			25/10/2017
Vulpia sp.	Fescue			31/01/2018
Wahlenbergia sp.	Native Bluebell			1/02/2011
Wahlenbergia stricta ssp. stricta	Tall Bluebell			28/10/2011
Walwhalleya proluta	Rigid Panic			6/12/2017
Walwhalleya proluta (NC)	Rigid Panic			27/11/2002
Watsonia meriana var. bulbillifera	Bulbil Watsonia			25/10/2017
Withania somnifera	Winter Cherry			15/02/2018
Xanthium spinosum	Bathurst Burr			9/05/2017
Xanthorrhoea quadrangulata	Rock Grass-tree			9/05/2017

Appendix 2. Fauna species BDBSA records within 5km radius of Springwood Development Area

Class	Species	Common	AUS	SA	DATE
ACTINOPTERI	Carassius auratus	Goldfish			25/11/2011
	Cyprinus carpio	European Carp			8/12/2015
	Galaxias maculatus	Common Galaxias			8/12/2015
	Gambusia holbrooki	Eastern Gambusia			25/11/2011
	Philypnodon grandiceps	Big-headed Gudgeon			15/11/2012
AMPHIBIA	Crinia signifera	Common Froglet			28/06/2018
	Limnodynastes dumerilii	Banjo Frog			10/09/2013
	Limnodynastes tasmaniensis	Spotted Marsh Frog			27/07/2017
	Litoria ewingii	Brown Tree Frog			14/09/2005
	Tadpole sp.	tadpole			6/12/2017
AVES	Acanthagenys rufogularis	Spiny-cheeked Honeyeater			15/06/2017
	Acanthiza chrysorrhoa	Yellow-rumped Thornbill			18/04/2018
	Acanthiza reguloides	Buff-rumped Thornbill			14/12/2017
	Accipiter cirrocephalus cirrocephalus	Collared Sparrowhawk			14/03/2011
	Accipiter fasciatus	Brown Goshawk			29/01/2018
	Acrocephalus australis	Australian Reed Warbler			25/10/2017
	Aegotheles cristatus	Australian Owlet-nightjar			5/09/2009
	Alauda arvensis	Eurasian Skylark			10/09/2013
	Anas gracilis	Grey Teal			5/09/2012
	Anas superciliosa	Pacific Black Duck			31/01/2018
	Anthochaera carunculata	Red Wattlebird			18/04/2018
	Anthus australis	Australian Pipit			24/08/2017
	Aphelocephala leucopsis	Southern Whiteface			18/10/2010
	Aquila audax	Wedge-tailed Eagle			21/03/2018
	Ardea alba modesta	Great Egret			25/10/2012
	Ardea pacifica	White-necked Heron			20/09/2017
	Artamus cinereus	Black-faced Woodswallow			3/04/2018
	Artamus cyanopterus	Dusky Woodswallow			25/08/2011
	Cacatua galerita	Sulphur-crested Cockatoo			25/10/2017
	Cacatua sanguinea sanguinea	Little Corella			25/10/2017
	Cacatua tenuirostris	Long-billed Corella			1/08/2011
	Cacomantis flabelliformis	Fan-tailed Cuckoo			8/08/2012
	Cacomantis pallidus	Pallid Cuckoo			27/06/2018
	Caligavis chrysops	Yellow-faced Honeyeater			31/05/2018
	Carduelis carduelis	European Goldfinch			26/07/2017
	Chalcites basalis	Horsfield's Bronze Cuckoo			18/09/2015
	Chalcites lucidus	Shining Bronze Cuckoo			25/02/2012
	Chenonetta jubata	Maned Duck			6/10/2016
	Cheramoeca leucosterna	White-backed Swallow			19/06/2018
	Circus assimilis	Spotted Harrier			16/03/2017
	Climacteris picumnus	Brown Treecreeper			26/10/2017
	Colluricincla harmonica	Grey Shrikethrush			25/10/2017

Class	Species	Common	AUS	SA	DATE
	Columba livia	Feral Pigeon			25/10/2017
	Coracina novaehollandiae	Black-faced Cuckooshrike			6/06/2018
	Corcorax melanorhamphos	White-winged Chough		R	31/08/2016
	Corvus coronoides	Australian Raven			18/10/2009
	Corvus mellori	Little Raven			18/04/2018
	Coturnix pectoralis	Stubble Quail			22/05/2018
	Coturnix ypsilophora	Brown Quail		V	16/09/2015
	Dacelo novaeguineae	Laughing Kookaburra			31/01/2018
	Daphoenositta chrysoptera	Varied Sittella			28/02/2012
	Dicaeum hirundinaceum	Mistletoebird			14/05/2018
	Egretta novaehollandiae	White-faced Heron			18/04/2018
	Elanus axillaris	Black-shouldered Kite			23/05/2018
	Elseyornis melanops	Black-fronted Dotterel			25/10/2017
	Eolophus roseicapilla	Galah			25/10/2017
	Epthianura albifrons	White-fronted Chat			16/10/2017
	Falco berigora	Brown Falcon			22/05/2018
	Falco cenchroides	Nankeen Kestrel			25/10/2017
	Falco longipennis	Australian Hobby			17/12/2014
	Falcunculus frontatus frontatus	Eastern Shriketit		R	2/03/2013
	Gallinago hardwickii	Latham's Snipe		R	23/11/2008
	Gallinula tenebrosa	Dusky Moorhen			31/01/2018
	Gallirallus philippensis mellori	Buff-banded Rail			29/03/2010
	Gavicalis virescens	Singing Honeyeater			22/05/2018
	Geopelia placida	Peaceful Dove			22/05/2018
	Glossopsitta concinna	Musk Lorikeet			25/10/2017
	Grallina cyanoleuca	Magpielark			25/10/2017
	Gymnorhina tibicen	Australian Magpie			18/04/2018
	Haliastur sphenurus	Whistling Kite			25/05/2018
	Hieraaetus morphnoides	Little Eagle			14/02/2018
	Hirundo neoxena	Welcome Swallow			25/10/2017
	Lalage tricolor	White-winged Triller			8/12/2017
	Malacorhynchus membranaceus	Pink-eared Duck			18/01/2012
	Malurus cyaneus	Superb Fairywren			21/06/2018
	Malurus cyaneus leggei	Superb Fairywren (Mainland SA)			13/10/2015
	Manorina melanocephala	Noisy Miner			21/02/2013
	Megalurus cruralis	Brown Songlark			19/10/2017
	Megalurus gramineus	Little Grassbird			24/10/2012
	Megalurus mathewsi	Rufous Songlark			25/10/2017
	Melithreptus brevirostris	Brown-headed Honeyeater			31/01/2018
	Melithreptus gularis	Black-chinned Honeyeater		ssp	24/02/2012
	Melithreptus lunatus	White-naped Honeyeater		JJP	20/07/2015
	Merops ornatus	Rainbow Bee-eater			25/10/2017
	Microcarbo melanoleucos				
	melanoleucos	Little Pied Cormorant			31/01/2018
	Milvus migrans	Black Kite			25/03/2015
	Myiagra inquieta	Restless Flycatcher		R	22/09/2015

Class	Species	Common	AUS	SA	DATE
	Neophema elegans	Elegant Parrot		R	20/09/2017
	Ninox boobook	Southern Boobook			19/06/2018
	Northiella haematogaster (NC)	Bluebonnet		ssp	16/10/2009
	Ocyphaps lophotes	Crested Pigeon			15/06/2017
	Pachycephala pectoralis	Golden Whistler			28/06/2018
	Pachycephala rufiventris	Rufous Whistler			22/05/2018
	Pachycephala rufiventris rufiventris	Rufous Whistler			27/10/2015
	Pardalotus punctatus	Spotted Pardalote			31/03/2016
	Pardalotus striatus	Striated Pardalote			22/09/2016
	Parvipsitta porphyrocephala	Purple-crowned Lorikeet			2/11/2011
	Parvipsitta pusilla	Little Lorikeet		Е	25/02/2012
	Passer domesticus	House Sparrow			8/12/2017
	Pelecanus conspicillatus	Australian Pelican			4/12/2017
	Petrochelidon ariel	Fairy Martin			14/10/2017
	Petrochelidon nigricans	Tree Martin			24/08/2017
	Petroica goodenovii	Red-capped Robin			15/05/2018
	Petroica phoenicea	Flame Robin		V	17/05/2018
	Phalacrocorax carbo	Great Cormorant			1/02/2013
	Phalacrocorax sulcirostris	Little Black Cormorant			7/11/2012
	Phalacrocorax varius	Great Pied Cormorant			9/11/2012
	Phaps chalcoptera	Common Bronzewing			19/06/2018
	Phasianus colchicus	Common Pheasant			25/10/2016
	Phylidonyris novaehollandiae	New Holland Honeyeater			18/04/2018
	Phylidonyris novaehollandiae novaehollandiae	New Holland Honeyeater (mainland SA)			28/08/2015
	Platycercus elegans	Crimson Rosella			18/04/2018
	Plegadis falcinellus	Glossy Ibis		R	25/11/2014
	Podargus strigoides	Tawny Frogmouth			27/03/2018
	Porphyrio porphyrio	Purple Swamphen			10/09/2013
	Porzana fluminea	Australian Crake (Australian Spotted Crake)			18/01/2012
	Psephotus haematonotus	Red-rumped Parrot			25/10/2017
	Psephotus haematonotus haematonotus	Red-rumped Parrot (eastern SA except NE)			19/12/2014
	Ptilotula penicillata	White-plumed Honeyeater			18/04/2018
	Rhipidura albiscapa	Grey Fantail			16/08/2016
	Rhipidura leucophrys	Willie Wagtail			18/04/2018
	Smicrornis brevirostris	Weebill			25/10/2017
	Spilopelia chinensis	Spotted Dove			24/10/2012
	Stagonopleura guttata	Diamond Firetail		V	18/04/2018
	Strepera versicolor	Grey Currawong		ssp	25/10/2017
	Strepera versicolor melanoptera	Black-winged Currawong (SE, MLR, MM)			28/08/2015
	Streptopelia risoria	Barbary Dove			10/09/2011
	Sturnus vulgaris	Common Starling			31/01/2018
	Tachybaptus novaehollandiae	Australasian Grebe			11/01/2017
	Threskiornis moluccus	Australian White Ibis			11/01/2017
	Todiramphus sanctus	Sacred Kingfisher			19/10/2017

Springwood Flora and Fauna Assessment March 2019

Class	Species	Common	AUS	SA	DATE
	Tribonyx ventralis	Black-tailed Nativehen			27/08/2013
	Trichoglossus haematodus	Rainbow Lorikeet			25/10/2017
	Turdus merula	Common Blackbird			2/03/2013
	Tyto delicatula delicatula	Eastern Barn Owl			1/05/2018
	Vanellus miles	Masked Lapwing			25/10/2017
	Vanellus tricolor	Banded Lapwing			17/08/2011
	Zosterops lateralis	Silvereye			18/04/2018
MAMMALIA	Cervus dama	Fallow Deer			3/09/2015
	Cervus elaphus	Red Deer			17/12/2013
	Felis catus	Domestic Cat (Feral Cat)			25/06/2012
	Lepus europaeus	European Brown Hare			22/05/2018
	Macropus (Osphranter) robustus	Euro			27/06/2018
	Macropus fuliginosus	Western Grey Kangaroo			16/04/2018
	Mus musculus	House Mouse			24/08/2017
	Oryctolagus cuniculus	Rabbit (European Rabbit)			8/12/2017
	Ovis aries	Sheep (Feral Sheep)			13/02/2013
	Rattus norvegicus	Brown Rat (Sewer Rat, Norway Rat)			3/05/2017
	Tachyglossus aculeatus	Short-beaked Echidna	ssp		10/09/2013
	Trichosurus vulpecula	Common Brushtail Possum		R	2/03/2013
	Vulpes vulpes	Fox (Red Fox)			14/05/2018
REPTILIA	Chelodina longicollis	Eastern Long-necked Turtle			30/08/2013
	Christinus marmoratus	Marbled Gecko			2/03/2013
	Cryptoblepharus pannosus	Speckled Wall Skink			15/10/2014
	Ctenotus spaldingi	Eastern Striped Skink			30/01/2018
	Delma molleri	Gulfs Delma			18/06/2015
	Emydura macquarii	Macquarie River Turtle		V	14/10/2017
	Hemiergis decresiensis	Three-toed Earless Skink			9/08/2017
	Hemiergis peronii	Four-toed Earless Skink			29/03/2010
	Lampropholis guichenoti	Garden Skink			14/10/2017
	Lerista bougainvillii	Bougainville's Skink			16/09/2015
	Menetia greyii	Dwarf Skink			15/08/2015
	Morethia obscura	Mallee Snake-eye			19/10/2009
	Parasuta flagellum	Little Whip Snake			29/03/2010
	Pogona barbata	Eastern Bearded Dragon			28/10/2016
	Pseudechis porphyriacus	Red-bellied Black Snake			14/10/2017
	Pseudonaja textilis	Eastern Brown Snake			27/11/2017
	Tiliqua rugosa	Sleepy Lizard			31/01/2018
	Tiliqua scincoides	Eastern Bluetongue			17/04/2018

Appendix 3. KBR Phase 2 ecological survey

GAWLER EAST DEVELOPMENT PLAN AMENDMENT

Gawler East Ecological Survey

Prepared for:

DELFIN LEND LEASE PTY LTD

1 Main Street MAWSON LAKES SA 5106

Prepared by:

Kellogg Brown & Root Pty Ltd

ABN 91 007 660 317 186 Greenhill Road PARKSIDE SA 5063 Telephone (08) 8301 1234, Facsimile (08) 8301 1301

20 August 2010

AEN814-G-REP-003 Rev. 1

Limitations Statement

The sole purpose of this report and the associated services performed by Kellogg Brown & Root Pty Ltd (KBR) is to provide a flora fauna survey in accordance with the scope of services set out in the contract between KBR and Delfin Lend Lease Pty Ltd ('the Client'). That scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

KBR derived the data in this report primarily from visual inspections, examination of records in the public domain and interviews with individuals with information about the site made on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further exploration at the site and subsequent data analysis, and re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, KBR has relied upon and presumed accurate certain information (or absence thereof) relative to the site provided by government officials and authorities, the Client and others identified herein. Except as otherwise stated in the report, KBR has not attempted to verify the accuracy or completeness of any such information.

The findings, observations and conclusions expressed by KBR in this report are not, and should not be considered, an opinion concerning seasonal and annual variation in some species. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings, observations and conclusions are based solely upon site conditions, information, drawings supplied by the Client in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between KBR and the Client. KBR accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Revision History

Revision	Date			Signatures		
		Comment	Originated by	Checked by	Approved by	
0	1/2/2010	Foruse	SJR	RJA.	SJR	
1	20/8/2010	For use	MY	WF	My	

CONTENTS

Section		Page
1	INTRODUCTION	
2	LEGISLATION AND POLICY	
3 3.1 3.2	METHODOLOGY Pitfall trapping Observation and active searching	3-3 3-5
4 4.1	RESULTS — MAIN SITE Main site	4-1
5 5.1 5.2 5.3 5.4	RESULTS — QUARRY PRECINCT Vegetation and flora Introduced and pest plants Fauna Pest animals	5-1 5-3 5-4 5-5
6 6.1 6.2 6.3 6.4	MATTERS OF CONSERVATION SIGNIFICANCE Commonwealth Other matters of national conservation significance National parks and wildlife act 1972 (SA) Regional status	6-1 6-5 6-6 6-7
7.1 7.2 7.3 7.4 7.5 7.6	DISCUSSION AND CONCLUSIONS Potential and proposed impact areas and consequences Vegetation communities and flora Fauna habitat and species Para woodland reserve Site management issues Other matters	7-2 7-2 7-3 7-5 7-5 7-6
8	REFERENCES	
APPE A B	Species List Photographs (Spring 2008 and Summer 2008/2009)	

1 Introduction

Kellogg, Brown & Root Pty Ltd (KBR) was commissioned by Delfin Lend Lease (Delfin, the Client) to undertake an ecological assessment for a site at Gawler East, South Australia which is the subject of a Development Plan Amendment (DPA). An initial assessment report was based on on-site reconnaissance surveys and a review of 'desktop information' over July to September 2008 and November 2008 to January 2009 (KBR 2009).

Detailed assessment of vegetation, flora and fauna was undertaken in 2009, with seasonal observations made over July to December 2009 and up to May 2010. A more detailed fauna survey, including a trapping assessment of ground fauna, occurred in October 2009. This report describes the findings from all components of the field assessments during 2008 to 2010. Appendix A includes copies of species lists for the site. This extended period of survey provided for ecological investigations under both drought and more normal weather and rainfall conditions. It also allowed for comprehensive records to be compiled of annual and seasonal variation in some flora and fauna groups.

2 Legislation and policy

Commonwealth legislation relevant to the project in relation to vegetation communities and flora and fauna species and their habitat is the:

Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act). This Act relates to the definition, protection and management of all matters of national environmental significance such as ecological communities, species and their habitat and sites. It also includes strategic assessments, threatening processes and recovery plans, including regional recovery plans. It is illegal to undertake an action that will have a significant adverse impact on a matter of national environmental significance.

The EPBC Act provides for the implementation and administration of international agreements concerning fauna to which Australia is a signatory, namely:

- CITES—Convention on International Trade in Endangered Species of Wild Fauna and Flora (1973)
- JAMBA—Agreement between the Government of Japan and the Government of Australia for the Protection of Migratory Birds and Birds in Danger of Extinction and their Environment (1974)
- CAMBA—Agreement between the Government of Australia and the Government of the Peoples Republic of China for the Protection of Migratory Birds and their Environment (1986)
- ROKAMBA—Agreement between the Government of Australia and the Government of the Republic of Korea for the Protection of Migratory Birds (2007)
- Bonn Convention—Convention on the Conservation of Migratory Species of Wild Animals, for which Australia is a range state under the Convention (1979)
- Earth Summit—Convention on Biological Diversity (Rio de Janeiro, 1992).
 Convention on Biological Diversity and The National Strategy for the Conservation of Australia's Biological Diversity (ANZECC, Department of the Environment, Sport and Territories 1996)
- National Strategy for the Conservation of Australian Species and Communities Threatened with Extinction (Endangered Species Advisory Committee 1992).

A proponent of any proposed development that may have an adverse impact upon Matters of National Environmental Significance (MNES) must submit a referral under the EPBC Act to the Commonwealth Minister of Environment.

State legislation includes:

- National Parks and Wildlife Act 1972 (NP&W Act), especially Schedules 7, 8 and 9 as revised in the National Parks and Wildlife (Miscellaneous) Amendment Act 2000 and in 2008.
- Natural Resources Management Act 2004 (NRM Act), which repeals the Animal and Plant Control (Agricultural Protection and Other Purposes) Act 1986 and the Soil Conservation and Land Care Act 1997 and incorporates the functional requirements of these latter Acts under the NRM Act. The NRM Act establishes provisions for the management of the State's natural resources, including the land and water resources plus pest plants and animals.
- Native Vegetation Act 1991, Native Vegetation (Miscellaneous) Amendment Act 2002 and the Native Vegetation Regulations 2003.

In addition, the *Development Act 1993* will be relevant to the occurrence of significant trees and the *Mining Act 1971* may be relevant to actions undertaken in the former quarry.

State agreements, policies and strategies relevant to habitats, communities and species include:

- Threatened Species Strategy for South Australia (Department of Environment and Natural Resources 2007).
- The State Government policy, No Species Loss A Biodiversity Strategy for South Australia 2006–2016 is the key policy for protection of biodiversity in the State and is applicable to the project.
- Tackling Climate Change: South Australia's Greenhouse Strategy 2007-2020 also relates to the sustainable management of natural resources and includes requirements to assess the potential risks associated with climate change influences on native and invasive species.
- The South Australian Biosecurity Strategy 2008-2013 is a risk management framework that provides a summary review of threats posed by pests in the State, plus potential implementation requirements. This Strategy is applicable to the project.
- Informing biodiversity conservation for the Adelaide and Mount Lofty Ranges Region, South Australia. Priorities, Strategies and Targets (Department for Environment and Heritage 2009a.). This strategic document provides a summary of nature conservation matters for the region in which the site is located.

3 Methodology

Following review of an aerial photograph of the site, a reconnaissance survey of the site was undertaken in August and September 2008 by Dr Bob Anderson and Sarah Reachill. This survey involved a general assessment of all of the site and identification of areas of potential conservation significance. Specific areas of potential interest, such as riparian, rocky and remnant woodland sites, were assessed on foot. These included sections of the South Para River and an unnamed tributary of the River to the north, plus areas of remnant *Eucalyptus porosa* (Mallee box) woodland in the east and south of the site. Site-specific and incidental observations of all species observed were recorded for the site and surrounding area. The results of the initial surveys are described in KBR (2009).

Following on from the initial assessments it was determined that much of the site is anthropogenic and provides habitat primarily for introduced plants and for a few common native flora and fauna species only. However, there are smaller areas of higher quality habitat for some native flora and fauna species. These include:

- The rocky creekline (the unnamed tributary of the South Para River referred to above) which traverses the site in an east to west direction. This section of the site, including rocky outcrops, represented potential habitat for Iron-grass grassland, which is a nationally threatened plant association, the nationally threatened Flinders Ranges worm-lizard (*Aprasia pseudopulchella*) and a number of other reptile species, possibly including the nationally endangered Pygmy bluetongue lizard (*Tiliqua adelaidensis*).
- Riparian areas of the South Para River, primarily for avifauna and aquatic species, but also for reptiles in rocky areas.
- Areas of remnant native woodland and grassland, for bats, some avifauna and possibly, a few reptile species, including species dependent on spider burrows. This could include Pygmy bluetongue lizard.

Following a project review with Delfin in 2009, KBR was informed that there would be no development along the South Para River corridor, primarily due to the very steep and rugged terrain and its riparian values. The Gawler East DPA drafted by Government indicates that the South Para River corridor will be in an Open Space Zone and will be protected from development. In addition, much of the corridor is under private ownership and access to some areas of private property is difficult to negotiate. It was agreed that most of the survey effort in 2009/10 would be directed at documenting in detail the remainder of the site.

Detailed observations were made of the site on 21 - 23 November 2008 (dawn and day surveys) and 27 - 28 December 2008 (dawn and dusk surveys) and

16 January 2009 (day survey). Vegetation and fauna surveys were undertaken on 5 September; 4 October, 16 October and 18 October; 13 November and 28 December 2009 and 29 March and 14 May 2010. These were dawn and day surveys.

A reconnaissance of the quarry precinct was undertaken over two days in July 2009 and initial observations and species lists compiled. A detailed fauna assessment of the quarry site was carried out by observation on 11 December 2009 and 29 March 2010, primarily for seasonally dependent (migratory) avifauna. A brief boundary survey of the quarry was undertaken on 28 December 2009 and 14 May 2010.

Each survey occasion reviewed the vegetation, flora and habitat areas on the site. Specific faunal groups surveyed by observation on each occasion included:

- Mammals and avifauna (terrestrial and riparian)
- reptiles
- · amphibians.

Conditions at the time of each assessment varied according to season, including cool mornings and evenings and warm days during December 2008 and hot and dry for the week preceding the January 2009 survey. Mallee box was flowering in November 2008 and 2009. *Eucalyptus camaldulensis* (River red gum) was flowering in December 2008 and 2009 and January 2009. Some of the planted tree and shrub species were flowering during all site assessments. All flowering trees were key attractants for some woodland bird species.

Remnant pools of water were present in the South Para River section of the site in November and December 2008, but only a few remained in January 2009. Water was present over September to December 2009 and into May 2010, including a number of deep pools.

Water was not present in much of the unnamed tributary of the River during all of these surveys i.e. the eastern section, east of the SA Water pipeline. Water was confined to occasional shallow pools and a surface film in January 2009 and present as a low level flow and pools in the western section of the tributary for much of the winter and spring. It was present as a low flow and pools up to 20 cm deep throughout the central section of the tributary over July to December 2009. Parts of this section were dry in 2010, with some areas of stagnant water and slow trickle flows in others.

The October 2009 survey was undertaken in cool to warm weather with daytime temperatures varying between 17°C to 27°C. Night time temperatures were also cool (7°C-12°C) with the exception of one warm night (17°C). Nil rainfall was recorded for this period.

Conditions over the main period of observation from September to December 2009, the main period of assessment, are summarised below in Table 3.1 (data sourced from the Bureau of Meteorology for the Edinburgh Station).

Table 3.1 Weather averages for 2009

	September 2009	October 2009	November 2009	December 2009
Total rainfall (mm)	55.2	16.2	25.4	20.6
Average temperature (°C)	19.8	22.6	32.0	14.2

Areas of loose rocks and rock outcrop, especially those in and surrounding the watercourses, were thoroughly investigated on multiple occasions by rock turning to ascertain the presence of ground fauna (primarily reptiles) and to assess the presence of invertebrate fauna.

Observations of all flora and fauna species were recorded as field notes. Collections of flora were made and will be lodged in the State Herbarium following curation and completion of the project.

Discussions were held with members of Birds South Australia and Birds Australia, the South Australian Museum curators and Dr Aaron Fenner in order to access information not in the public domain. Dr Fenner recently completed a PhD on Pygmy bluetongue lizards and he inspected the site to assess its suitability as habitat for this species.

3.1 PITFALL TRAPPING

Following initial review and site reconnaissance, key habitat areas for trapping were determined and a stratified assessment by pitfall traps established. Elliott trap and cage trap trapping was not undertaken due to large populations of meat ants present across the site.

Stratification targeted the two dominant habitats, namely:

- Mallee box mature open woodland
- Anthropogenic grassland with shallow rock strata and surface rock scatter suitable for reptiles.

A total of eight traplines five pitfall buckets/trapline were established (Figures 3.1 and 3.2). Pitfall lines (as straight line transects) were placed in an orientation which provided maximum sampling of the target habitat (e.g. woodlands and rocky outcrops). Five straight sided plastic buckets were buried at 5 m intervals with their opening at or slightly below ground level. Where soil conditions—usually the presence of rock at shallow depth—prevented digging the required depth for a 15 or 10 L bucket, a smaller size (5 L) was inserted. Appendix B includes photographs of each pitfall line.

A low, temporary fence (drift net) of black fly wire 20 cm high was erected along the length of the pitfall line such that it passed over the centre of each bucket. To provide captured animals with protection, cardboard cylinders, paper towel, shredded paper, rocks and/or leaf litter were placed in each bucket. To prevent dehydration, a small amount of water was added to each bucket. A metal lid with wire supports 15 cm high was installed over each bucket to provide shade and to protect captured animals from pilfering by other animals (primarily foxes, magpies and ravens).

Following the completion of trapping, pitfall traps were filled with rocks *insitu*, closed by a secure plastic lid, capped with a large rock, buried with soil and each lid further

covered with cobbles and boulders. The end points of each trap line site were marked with pink flagging tape or a 1 m high wooden stake.

Table 3.2 Fauna trapping sites data

Site	Trapping method	X^1	\mathbf{Y}^1	Comment
GE1	5 pits	296315	6168130	Open Mallee box woodland on open hill crest
GE2	5 pits	296249	6168134	Open Mallee box woodland on drainage line
GE3	5 pits	296321	6168030	Open Mallee box woodland adjacent to rocky outcrop
GE4	5 pits	293362	6167980	Open Mallee box woodland on south facing slope with remnant native grassland
GE5	5 pits	296326	6167921	Open Mallee box woodland on south facing slope adjacent to deadfall with areas of remnant native grassland
GE6	5 pits	296098	6168158	Open Mallee box woodland on open bare ground
GE7	5 pits	295880	6168090	Rocky, anthropogenic grassland on drainage line
GE8	5 pits	295887	6168090	Rocky, anthropogenic grassland on crest

¹. Datum is GDA 94.

State Government permits and approvals relevant to the fauna assessment are as follow:

- Scientific Research Permit Z25683-1
- Animal Ethics Approval 1/2009
- Animal Welfare Licence No. 167.

All approvals are current until 2011. Copies of all field fauna data will be provided to the South Australian Biological Survey database at the completion of the project.

Delfin provided the approvals from the landholders for access.

Figure 3.1 Pitfall line in Eucalyptus porosa (Mallee box) open woodland

Figure 3.2 Pitfall line in anthropogenic grassland

3.2 OBSERVATION AND ACTIVE SEARCHING

Direct observations made of fauna species were recorded as field notes. This primarily included birds, larger mammals and reptiles during opportunistic and active searches.

Observations were made of actual and potential burrows, nest sites, diggings/scratching/forage areas, paw prints and scats. Each sign was an indicator of the presence of animals and all were recorded.

Active searching generally involved rock-turning, litter raking and excavating fresh burrows. Most effort was directed at rock turning. This method was undertaken in the following fauna habitat areas;

- Eucalyptus porosa open woodland, especially where it occurs over rocky outcrops
- E. camaldulensis open woodland over tall to low sedgeland and grassland along riparian areas
- South Para River and the unnamed eastern drainage line (primarily the rock outcrops associated with these watercourses and their tributaries)
- anthropogenic grassland and cropping and pasture areas
- quarry precinct.

In addition, active searching and observation of all buildings and structures able to be inspected in the quarry precinct was undertaken to assess the presence of microchiropteran bats and roosting birds.

4 Results — main site

The results of the site assessments are considered in two sections in this report. The information about the largest section of the site (172.46 ha, defined as the main site), which includes all land areas excluding the quarry, and the quarry precinct (discussed in Section 5).

4.1 MAIN SITE

4.1.1 Vegetation and flora

KBR (2009) provides an introduction to the landscape setting and an initial analysis of the vegetation and flora of the site. A number of additional native and introduced (including pest) plant species were recorded during 2009 and 2010, as summarised in Appendix A. The areas of relatively intact communities which contain remnant native flora, primarily as overstorey and understorey, are depicted on Figure 7.5 at the end of the report. Note: no areas of native shrubstorey were recorded in the site; indeed, there is only one native shrub recorded in the site.

Two vegetation communities were more obvious and in much better condition in 2009/10 than 2008, presumably due to the more average rainfall conditions, especially the occurrence of rain in spring. Additional information is provided about these in this section.

The riparian grassland and sedgeland dominated by *Typha domingensis* (Narrow-leaf bulrush), *Bolboschoenus caldwellii* (Sea club-rush), *Juncus kraussii* (Sea rush) and *Cyperus gymnocaulos* (Spiny flat-sedge) associated with the western section of the unnamed creekline is relatively intact (as it is along parts of the South Para River). Despite severe grazing impacts and pest plant infestations, this community remains in good condition. Sub-surface seepage from the quarry to the north of the creekline may be responsible for much of the water present here over summer and autumn.

Two small areas of Iron-grass (*Lomandra effusa – L. multiflora* ssp. *dura*) Natural Temperate Grassland of South Australia (estimated to be about 1.4 ha), plus areas of potential habitat for this community, occur on the southern side (north facing slope) of the unnamed tributary (Refer to Figure 6.3). The community is confined to South Australia, listed as a nationally threatened community of ecological significance and is rated as being critically endangered under the EPBC Act.

This Grassland community in the site is in moderate to good condition, despite having been exposed to excessive grazing and severe trampling-compaction pressure by livestock and grazing by rabbits in the past and currently. Although the occurrence has moderate to heavy weed infestations, the native flora species diversity is considered to be reasonable with 16 species recorded. Additional native species would be likely to

occur following the cessation of livestock grazing. Other areas east of the occurrence may have supported this community in the past, although there are no plants of the Iron-grass species. These areas are considered as providing suitable, potential habitat for this Grassland.

Over 2008 to 2010, 70 indigenous flora species were recorded across the site. Additional flora species, potentially including some of State or regional conservation significance may occur in the site. However, their detection will remain problematic until the grazing pressure is reduced.

4.1.2 Introduced and pest plants

A total of 96 introduced species were recorded during the survey i.e. 58% of the total floristic diversity across the site. A range of introduced grasses, including species associated with pasture improvement, such as *Phalaris aquatica* (Phalaris) and *Dactylis glomerata* (Cocksfoot), are dominant. Various annual and perennial broadleaf species also occur, including a range of woody weeds with the species and relative abundance of each varying according to location and grazing pressure. *Cynara cardunculus* (Artichoke thistle) is a dominant broadleaf weed species of many areas in the site, such as over the area disturbed to install the SEAGas gas pipeline and adjacent to the Barossa Trunk water pipeline (SA Water). Ongoing weed control of this species will be required to prevent its spread further into the woodland areas and into the small areas of native grassland.

Lycium ferocissimum (African boxthorn) and Olea europaea (Olive), both declared woody weeds in the AMLR NRM Board region and South Australia, occur throughout the site, especially along creeklines and in the woodlands. The latter species is dominant and is the monotypic overstorey species in much of the open, anthropogenic grassland sections of the site. Very limited control of some trees and shrubs in small areas has been undertaken.

There is a wide range of other pest plants that will require active management, such as *Marrubium vulgare* (Horehound), *Xanthium spinosum* (Bathurst burr) and a number of other thistle species. Two species of particular concern and interest are discussed immediately below.

A relatively large infestation of *Nassella leucotricha* (White needlegrass, Texas needlegrass) was recorded over about 2 – 3 ha adjacent to the SA Water pipeline at the northern part of the site (Refer Figure 4.1). This is considered to be a significant pest species for the State, with its occurrence more typical of eastern Australia. The SA Herbarium database has two recorded collections only for the species, at Scott Creek and Clarendon Weir i.e. well distant from the current infestation. Additional small infestations are known for the Southern Lofty botanical region, but collections have not apparently been lodged with the Herbarium or have yet to be recorded on its database.

Withania somnifera (Winter cherry) was recorded in the southern half of the site. This is an unusual weed species for both the State and the site with five records of it in the SA Herbarium, including two from the Adelaide metropolitan region. The current collection is the first from the Southern Lofty botanical region outside of the metropolitan area. The species is thriving and actively colonizing an area of over 5 ha.

Figure 4.1 Example of Nassella leucotricha

4.1.3 Fauna species and habitat

No Department for Environment and Natural Resources (DENR, formerly the Department of Environment and Heritage, DEH) Biological Survey assessment sites are located at or near this location (Armstrong et al. 2003, NatureMaps 2008). DENR (BDBSA) and SA Museum databases have records of 21 bird species and five frog species for the general region of the site. There are nil records of mammals and reptiles. Including the southern section of the North Para River in the search area indicates records of 29 bird species, 20 mammal species, including five introduced species and five species considered to be extinct in the region, 36 reptile species and six frog species for the general region of the site.

However, within the wider region i.e. an area of 10 km x 10 km from the centre of site, about 290 species from all faunal groups have been recorded from all sources in the literature. This provides a far greater number of species and also introduces a degree of ambiguity, primarily because it includes a wide range of habitats, especially large areas of relatively intact native vegetation communities, species and habitats which do not occur on the site.

The regional data includes records from Birds Australia (Barrett et al. 2003, Paton et al. 2004 and Atlas records) and some of the relevant regional assessments reported in DTEI (2007). The dominant native faunal group is birds (avifauna) with 210 species, followed by reptiles (40 species), mammals (20 species) and amphibians (six species). The remainder of the species recorded are introduced.

This current assessment is primarily a survey of the terrestrial environment, with limited information being reported for the aquatic environments.

The main habitat areas for faunal groups present in the site are:

- *Eucalyptus porosa* (Mallee box) open grassy woodland, especially where it occurs over rocky outcrops
- *E. camaldulensis* (River red gum) open to very open woodland over sedgeland and grassland along riparian areas, with the better quality areas being along the South Para River
- South Para River and the unnamed eastern drainage line, including tributaries, primarily as the habitat provided by the rock outcrops and surface rock scatter associated with these watercourses
- anthropogenic cropping and pasture areas, which is dominant, occupying about 130 ha (67% of the site).

From a fauna habitat perspective, there is limited complexity remaining on most of the site, with the better quality areas, which are most prospective for fauna, associated with:

- the large, mature trees, particularly those with hollows for birds, micro-chiropteran bats and some reptiles and some of the small areas of native grassland
- riparian areas for aquatic fauna, especially amphibians and some birds, plus as a
 water source for fauna generally. This includes steep, sandy and rocky banks
 suitable for nesting by some bird species and as cover for reptiles
- rocky outcrops and surface rock scatter for reptiles.

These habitat areas are of moderate to high value.

The remaining areas are anthropogenic and would be expected to be used by common and cosmopolitan native and introduced species only, especially avifauna.

It is likely that the mining faces in the quarry and some other areas here would provide suitable habitat for some bird, reptile and rodent species. This is discussed in Section 5.

Amphibians

Four species were recorded by their advertisement calls in riparian areas of the site, with the South Para River corridor containing the largest populations. All species are common in the State and region. An additional two species could occur, but would require a much greater survey effort than was possible.

Reptiles

About 36 reptile species probably occurred in or adjacent to the site in the past. Current reptile diversity across the site is typical of what was predicted to occur in the region, with the majority of species being small lizard species. Potential habitat is present for a number of other species not recorded, such as Tawny dragon, Earless dragon, Wood gecko and several small snake species.

A total of 16 reptile species were recorded on the site through a combination of active searching and pitfall trapping. Table 3 provides a summary of the pitfall trapping results.

Table 4.1 Results of pitfall trapping (October 2009)

Pitfall no.	Habitat	Scientific name
1	Eucalyptus porosa open woodland	-
2	Eucalyptus porosa open woodland	Menetia greyii
		Morethia obscura
		Lerista bougainvillii
		Cryptoblepharus plagiocephalus
3	Eucalyptus porosa open woodland	Lerista bougainvillii
4	Eucalyptus porosa open woodland	Lerista bougainvillii
5	Eucalyptus porosa open woodland	-
6	Eucalyptus porosa open woodland Cryptoblepharus plagiocephalu.	
7	Anthropogenic grassland	Delma molleri
		Lerista bougainvillii
8	Anthropogenic grassland	Lerista bougainvillii

Active searching along small rocky gullies, such as those around pitfall lines 7 and 8, yielded more reptile species than the woodland areas; *Ctenotus robustus* (Eastern striped skink), *Delma molleri, Hemiergis peronii* (Four-toed earless skink), *Lerista bougainvillii* (Bougainville's skink), *Parasuta flagellum* (Little whip snake), *Pseudonaja textilis* (Eastern brown snake) and *Pogona barbata* (juvenile) (Eastern bearded dragon) were all recorded under rocks in these areas. Each of these species was also recorded elsewhere in the site in similar habitat, such as along the slope between pitfalls 1 and 2.

The highest diversity and largest number of reptile species were observed in those sections of grassland with discontinuous scree of medium and large sized, relatively flat rocks on the surface, usually over relatively shallow bedrock. Most of these sites are located along the watercourses. Ant and termite colonies were frequently present beneath these rocks and provide a secure food source for small lizards.

Other species recorded on site by direct observation were *Christinus marmoratus* (Marbled gecko) and larger species as *Chelodina longicollis* (Long-necked tortoise) (South Para River only), *Pseudonaja textilis* (Eastern brown snake), *Tiliqua rugosa* (Sleepy lizard) and *Tiliqua scincoides scincoides* (Eastern bluetongue). *Pseudechis porphyriacus* (Red-bellied black snake) was recorded once along the South Para River. *Notechis scutatus* (Tiger snake) is known to have occurred in the site in the past (KBR 2009).

Lerista bougainvillii (Bougainville's skink), Ctenotus robustus (Eastern striped skink) and Delma molleri were the species most commonly recorded in the site by all assessment methods. Cryptoblepharus plagiocephalus (Wall skink) was the most common species recorded in woody debris in the understorey in woodland.

Birds

A total of 65 native bird species were recorded across all habitats in this section of the site during the survey, representing approximately 30% of the surrounding regions' avifauna diversity. The complete species list is in Appendix A.

The majority of bird species were recorded in woodland habitat at various locations throughout the site. Some of the *Eucalyptus porosa* (Mallee box) and *E. camaldulensis*

(River red gum) were flowering during the 2008 to 2010 surveys. While much of the flowering was sparse, occasional trees and small areas of woodland had an average to heavy flowering and these areas were being used by many of the bird species.

The majority of bird species recorded are considered common within the State and region and some were recorded in very small numbers or on a seasonal basis only. Based on all survey data, the dominant terrestrial species are the cosmopolitan species typically recorded in open sites with limited woodland and habitat diversity, namely *Manorina melanocephala* (Noisy miner), *Anthochaera carunculata* (Red wattlebird), *Lichenostomus penicillatus* (White-plumed honeyeater), *Gymnorhina tibicen* (Australian magpie), *Corvus coronoides* (Australian raven), *Geophaps lophotes* (Crested pigeon) and *Eolophus roseicapilla* (Galah).

Nonetheless, 17 species observed on or adjacent to the site are of National, State and/or regional conservation significance. These are summarized in Table 6.1 and discussed in more detail Section 6. In summary, *Gallinago hardwickii* (Latham's snipe), *Gallirallus philippensis* (Buff-banded rail), *Todiramphus sanctus* (Sacred kingfisher) and *Pachycephala rufiventris* (Rufous whistler) were only recorded along the South Para River corridor on one occasion for each species. *Podargus strigoides* (Tawny frogmouth) was recorded here and at Dead Man's Pass Reserve too. *Merops ornatus* (Rainbow bee-eater) was present in the main site, where it was recorded feeding on feral European honeybees. There was no evidence of past or recent nest sites. These were recorded in the quarry as discussed in Section 5. The species was also recorded adjacent to the site in Dead Man's Pass Reserve and at a number of locations along the South Para River corridor.

Acanthiza chrysorrhoa (Yellow-rumped thornbill), Aphelocephala leucopsis (Southern whiteface), Petrochelidon ariel (Fairy martin), Ephthianura albifrons (White-fronted chat), Neophema elegans (Elegant parrot), Psephotus haematonotus (Red-rumped parrot) and Petronica goodenovii (Red-capped robin) were recorded in the main site. Of these species, Acanthiza chrysorrhoa and Psephotus haematonotus are considered to be breeding residents and were recorded at a number of locations. Podargus strigoides (Tawny frogmouth) and Cuculus pallidus (Pallid cuckoo) were recorded adjacent to the site.

Mammals

Macropus fuliginosus (Western grey kangaroo) was commonly recorded, though confined to a few observed individuals, throughout most of the site, especially along the drainage lines. *Tachyglossus aculeatus* (Short-beaked echidna) was also noted once in the woodland area, but probably forages throughout the site.

Trichosurus vulpecula (Common brushtail possum) and Pseudocheirus peregrinus (Common ringtail possum) were recorded occasionally in the region. The former species was confined to the South Para River corridor and is listed as rare in the State.

While not formally assessed, insectivorous bats will be present throughout the site, primarily as a result of the large number of tree hollows and the water sources present. Seven species of micro-bats are commonly recorded in the region. The SA Museum (2006) and DTEI (2007) provide more information about their occurrence, with a summary of information about rare species provided below.

Saccolaimus flaviventris (Yellow-bellied sheathtail bat) is listed as rare in South Australia (a total of 20 records only of the species) and it appears to be an occasional migrant only in the State and rarely in this section of the State. There is a recent record of the species along the Gawler River.

Vespadelus vulturnus (Little forest bat), occurs in the Mt Lofty Ranges but it is at its north-western distributional limit. This species could eventually be recorded in the region. Another species, *Scotorepens balstoni* (Western broad-nosed bat), has been recorded 70 km north of Gawler and in Adelaide but these records were from 70 years ago. However, a recent record of the species in Adelaide indicates that it appears to be very rare in the region (Terry Reardon, SA Museum, pers. comm., November 2009). The vegetated corridor of the Gawler River to the west and isolated clumps and areas of woodland in the site and along the South Para River are areas of remnant overstorey vegetation with hollows in the region i.e. potential roost sites for bats.

Invertebrates

Invertebrates were common throughout the site, although the assemblage was dominated by introduced species and there was low species richness of ground invertebrates. The introduced Portuguese millipede, five species of ground spider and three species of ant were those most commonly recorded in the pitfall lines. A total of 11 ant species were recorded. Due to the large number of *Iridomyrmex* colonies, this ant species was the most commonly recorded native species. Three species of introduced land snail were present, namely the white snails, *Cernuella (Helicella) virgata*, which was the dominant species, plus *Theba pisana*, and *Cochlichella acuta*.

Feral European honeybee colonies were recorded in a number of hollows in Mallee box and River red gum trees.

Aquatic fauna

Aquatic survey sites in the region have been established as part of Waterwatch and the AMLR NRM Board and by the EPA (DTEI 2007, AMLR NRM Board 2008 and pers. comm. February 2010). Most of these assess macro-invertebrates and there are relatively few fish sampling sites. There are macro-invertebrate survey sites for the South Para River at Dead Man's Pass and the Para Woodlands Reserve. Macro-invertebrate diversity is moderate at both sites (rated as "fairly healthy").

Hammer et al. (2009) and AMLR NRM Board (2008) indicate that eight native and one introduced fish species were known to occur in the Gawler River catchment (which includes the North and South Para and Gawler Rivers) prior to 1990. Eight native fish species, of which two are additional to pre 1990 records, and four introduced species have been recorded.

Two native species have been recorded in the South Para River near to the Para Woodlands, namely Climbing galaxias and Flathead gudgeon and four native species have been recorded from the southern section of the North Para River. The pest species, Gambusia, has also been commonly recorded in all rivers in the region and at the sites referred to above.

Introduced and pest animals

Vulpes vulpes (European red fox), Oryctolagus cuniculus (European rabbit) and Lepus capensis (Brown hare) were recorded during the surveys. Adults and sub-adults and fox scats, prints and runs were evident through the woodland areas and especially along gully and riparian sites. Rabbit scats (as buck heaps) were present in parts of the site and several large active warrens were noted along the watercourses. However, there is a low incidence of the species across the whole site. Brown hare occurred as individuals throughout the site. It is expected Felis catus (feral cat) would also be present on site, although no evidence of the species was seen during the surveys. Mus musculus (House mouse) was recorded over summer and autumn 2009-10.

Introduced bird species recorded on site included *Carduelis carduelis* (European goldfinch), Alauda arvensis (Eurasian skylark), *Turdus merula* (Common/Eurasian blackbird), *Columba livia* (Rock dove), *Streptopelia chinensis* (Spotted turtle-dove, Indian dove), *Passer domesticus* (House sparrow) and *Sturnus vulgaris* (Common starling). All of these species were common and breeding in the site, with Common starling being the dominant species of all avifauna recorded. It is out-competing most native species for use of tree hollows and was recorded breeding in many of these hollows. The species occurred in flocks of several hundred individuals during summer.

Four introduced fish species have been recorded in the Gawler River catchment (AMLR NRM Board 2008).

5 Results — Quarry precinct

A disused sand quarry (Holcim quarry) is located to the north of the main site and occupies 61.71 ha. There has been minimal site clean-up and remediation of the quarry following the cessation of mining and there is an array of buildings, plant and machinery still present.

From a fauna habitat perspective, there is limited habitat remaining on this section of the site, with the better quality areas, which are most prospective for fauna, associated with the:

- Small areas of planted woodland, possibly with an occasional remnant tree, for birds and micro-chiropteran bats
- very small areas of native grassland
- riparian areas of the ponds and dams for aquatic fauna, especially amphibians and some birds, plus as a water source for fauna generally. This includes steep banks suitable for nesting by some bird species
- rocky faces and outcrops of the abandoned working faces for bird species, and possibly some reptiles.

Most of the quarry site is totally disturbed and anthropogenic, with large areas that are bare or infested with introduced species plus some small areas that have been planted with a mix of native and indigenous overstorey species as part of mine rehabilitation.

5.1 VEGETATION AND FLORA

Amenity plantings are present along the main entrance and include various eucalypt species and a range of other native species (Refer Appendix A). The former office site is present on the western side of the main entrance and adjacent to this area is a small area (0.82 ha) of planted Mallee box woodland, estimated to be about 30 - 40 years old. An occasional remnant Mallee box appears to be present here too.

Amenity and screening plantings are present around and throughout the site and include *Callitris gracilis* (Southern cypress pine) around the slime ponds and various shrubs such as *Acacia iteaphylla* (Flinders Range Wattle), *Acacia saligna* (Common wreath wattle) and *Dodonaea viscosa* (Sticky hop bush). The majority of overstorey vegetation in the main area of the quarry has been planted on areas of overburden and fill. Therefore, these areas are believed to have been planted and are not subject to the Native Vegetation Act or Native Vegetation Council clearance requirements. Nonetheless, this vegetation provides a useful habitat for some bird species from within the region and locally.

The ground flora is dominated by a wide range of introduced grass, herb and forb species, including a large number of pest plants. Small areas of terrestrial grassland species are actively colonising the site, mostly as *Chloris truncata* (Windmill grass), *Enneapogon acicularis, Austrodanthonia* spp. (Wallaby-grasses), especially *A. setacea* (Small-flower wallaby-grass), and *Aristida behriana* (Brush-wire Grass), with a lower incidence of *Austrostipa* spp. (Spear-grasses). A total of 35 indigenous plant species (24% of the total flora) were recorded in the quarry.

Wetlands in the quarry are associated with the slimes ponds, sumps and other low lying areas of the site. Some are bare, while others have areas of *Typha domingensis* (Narrow-leaf bulrush) as the dominant species, and others are dominated by varying sized infestations of a few weed species.

Figure 5.1 Eucalyptus porosa with White-winged choughs. This bird species is considered to be State and regionally significant.

Regrowth patches of regrowth native tussock grassland of *Austrodanthonia caespitosa* (Common wallaby-grass), several species of *Austrostipa* and *Aristida behriana* (Brush-wire grass) is present west of the main entrance and along the main driveway into the site.

Good quality remnant *Austrodanthonia caespitosa* tussock grassland was recorded as a very small area near one of the disused sand mining areas (adjacent to a power pylon within the powerline easement) and its occurrence accords with the Pre-European settlement vegetation communities for the region of Kraehenbuehl (1996) (refer to Figure 5.2).

Figure 5.2

Austrodanthonia caespitosa and Aristida behriana remnant native grassland

5.2 INTRODUCED AND PEST PLANTS

A total of 114 introduced plant species were recorded during the survey comprising approximately 76% of the total floristic diversity recorded across this portion of the proposed development area.

Artichoke thistle (*Cynara cardunculus*) is present as a colonizing species and is dominant in most of the heavily disturbed areas of the site (as it is in sections of the main site) (Figure 5.3). Weed control of this species will be required to prevent further spread. African boxthorn (*Lycium ferocissimum*) and Olive (*Olea europaea*), both declared weeds in South Australia, were recorded in varying infestations mostly as small plants. Skeleton weed (*Chondrilla juncea*), also a declared plant in South Australia, is present near the high wall adjacent to a wetland area. This species will spread easily given the lack of existing ground cover and its mode of dispersal ('daisy' seeds transported by wind) and control will be required. A number of other species, including *Tribulus terrestris* (Caltrop), *Chrysanthemoides monilifera* (Boneseed), *Xanthium spinosum* (Bathurst burr) and *Cortaderia selloana* (Pampas grass), will also require control as part of any development.

Figure 5.3
Example of Artichoke thistle infestation present in the quarry area (and elsewhere in the site)

5.3 FAUNA

Macropus robustus (Euro) is present here as a small breeding population (about six individuals recorded) and Echidna scratchings were present around some ant colonies. Micro-bats were not recorded in any of the abandoned buildings and other structures.

In total, 48 bird species were recorded within the quarry site. A number of these are breeding residents or migratory species and seven species are listed as being of conservation significance at a Commonwealth, State or regional level. The abandoned quarry provides habitat, in the form of secure rock ledges, for nest sites for species such as *Petrochelidon ariel* (Fairy martin) and *Hirundo neoxena* (Welcome swallow).

Suitable habitat is present for a number of common reptile species and the areas of ponded water +/- Typha sedgeland are suitable breeding habitat for several amphibian species. These species are similar to those described in KBR (2009) and Section 4 for the remainder of the site.

The EPBC Act listed migratory bird species, *Merops ornatus* (Rainbow bee-eater), was observed and has nested within disused compacted sand stockpiles in the site. Breeding pairs were present here in 2009, hence the site is of regional importance for this species. The species has recently been recorded as a breeding 'resident' elsewhere in the region and it was recorded as non-breeding birds at a number of sites in the quarry.

Three bird species of state significance were recorded within the quarry site. Corcorax melanorhamphos (White-winged chough) was present on one occasion

within the only area of Mallee box woodland with a good leaf litter layer. One old and one recent nest were present in the woodland.

Falco peregrinus (Peregrine falcon) and Haliastur sphenurus (Whistling kite) were also recorded on this site. A pair of Peregrine falcon was roosting at one area of the quarry 'high wall'. Whistling kite is likely to be an overfly species only. This species is known to nest along the Gawler River.

Acanthiza chrysorrhoa (Yellow-rumped thornbill) (breeding), Petrochelidon ariel (Fairy martin) (breeding), and Psephotus haematonotus (Red-rumped parrot), which are listed in the Regional Recovery Plan of Willson and Bignall (2009), were recorded here.

There is limited habitat available for most reptile species, with the most obvious difference between the main site being the lack of surface rock and sub-crop. Seven reptile species were recorded here, with *Christinus marmoratus* (Marbled gecko) being the commonly recorded species, primarily in the abandoned equipment and buildings and *Hemiergis peronii* (Four-toed earless skink) and *Lerista bougainvillii* (Bougainville's skink) were recorded under debris in the quarry. Delfin staff recorded a 'black snake' in a building in the north east of the site during 2009. It is unknown if it was a *Pseudechis porphyriacus* (Red-bellied black snake) or *Notechis scutatus* (Tiger snake) (both species have been recorded in the region in historical records).

5.4 PEST ANIMALS

Pest vertebrate animal numbers are considered to be low to moderate in the quarry. Little evidence was found to indicate high numbers of *Vulpes vulpes* (European red fox), semi-feral cat, *Lepus capensis* (Brown hare) and *Oryctolagus cuniculus* (European rabbit), although all are present and spotlight surveys were not undertaken. There is at least one breeding pair of fox present and rabbits are breeding residents here. *Columbia livia* (Rock dove, feral pigeon) is present and breeding in disused plant and equipment in the site. *Turdus merula* (Eurasian blackbird), *Streptopelia chinensis* (Spotted turtle-dove, Indian dove), *Passer domesticus* (House sparrow) and *Sturnus vulgaris* (Common starling) are breeding residents here also.

Introduced invertebrate numbers are high through the site and dominate the assemblage, especially Portuguese millipede and land snails. Four species of introduced land snail were present, namely *Cantareus (Helix) aspersa*, the white snails, *Cernuella (Helicella) virgata*, which was the dominant species and *Theba pisana*, and *Cochlichella acuta*.

6 Matters of conservation significance

All matters of conservation significance are discussed in this section according to Commonwealth and State legislation.

6.1 COMMONWEALTH

Environment Protection and Biodiversity Conservation Act 1999 (EPBC)

The following section describes EPBC Act listed species and communities identified on site and those which are likely to occur. EPBC listed species and communities which are potentially impacted as a result of development will require the project to be referred to the Commonwealth for approval.

6.1.1 EPBC Act listed Species

No flora species and habitat for these species, of national conservation significance (as described in the Protected Matters Search), were recorded in the site. *Olearia pannosa* subsp. *pannosa* (Silver daisy-bush) and *Prasophyllum pallidum* (Pale leek orchid) are listed as vulnerable under the EPBC Act and are noted as likely to occur in the area. The initial site and subsequent surveys did not indicate that the required habitat was present to support either of these species in the site.

No other flora species of national significance are predicted to occur here.

Nationally significant bird species observed on or adjacent to the site were the migratory species, *Gallinago hardwickii* (Latham's snipe) and *Merops ornatus* (Rainbow bee-eater). The former was recorded once as a single bird along the edge of sedgeland and reed beds on the South Para River, to the east of the site boundary.

Rainbow bee-eater was primarily recorded within the quarry precinct, especially in the eastern section, including the Mallee box woodland here, and in the main section of the site. It is estimated that about 20 birds were present in the quarry. This species has been recorded as a breeding migrant elsewhere in the region in the past and currently, over 2008 to 2010, for example at Clonlea Park along the North Para River, at Dead Man's Pass Reserve and along the South Para River. Over the same time period it was also recorded throughout a much wider region, including from the North Para River, Greenock Creek, Sandy Creek Conservation Park, Para Wirra Recreation Park, Tanunda Golf Course and around Buckland Park (R. Anderson, pers. obs.; R. Attwood, Birds SA, pers. comm. February 2010).

Merops ornatus is an inter-continental migrant and migrates to the southern parts of Australia from northern areas of the continent during spring and remains over summer to early autumn before returning north. At the time of survey in summer 2009, three breeding pairs and up to 14 other birds were observed using the disused quarry. The quarry precinct contains numerous potential nesting areas, which, by observation,

were predominantly unused. Compacted sand stockpiles were the only recorded breeding site. Areas of water near the quarry face provide potential food and water sources, as do the woodlands in the local and surrounding region. The woodlands provide observation, 'hawking platforms' and roosting habitat for this species. Much of the site has rocky, skeletal or heavier loam and clay soils which would preclude their use for nesting by the species.

The development of the quarry area would result in a significant impact on this population of the species and its preferred habitat.

Figure 6.1
Rainbow bee-eater nesting sites

Aprasia pseudopulchella (Flinders Ranges worm-lizard) has previously been recorded in the region and on site by observation in an earlier survey by KBR. The species was not recorded during the pitfall fauna survey or during rock turning observations over 2009 and 2010.

Aprasia pseudopulchella is currently considered to be endemic to South Australia and is classified as vulnerable under the EPBC Act. It was previously listed at a State level under the National Parks and Wildlife Act but was delisted in 2008 (DEH 2008). The delisting occurred because the Worm-lizard is now believed to be relatively common and widespread throughout the northern Adelaide Plains, northern Mount Lofty Ranges to the Flinders Ranges region of South Australia. Taxonomically, the species is barely distinguishable from another species, *Aprasia parapulchella*, which occurs in NSW and Victoria. The species is considered to be relatively common (M. Hutchinson SA Museum, pers. comm., 2009).

The distribution of the species and its apparent rarity in the past led to its classification as a species of national conservation significance (DEWHA 2008). Prior to 2000 (Robinson et al. 2000), the species was considered to be confined to the Flinders Ranges and the Northern Mount Lofty Ranges, with a few occurrences in the foothills

and western escarpment of the Mount Lofty Ranges, such as in and around the Cobbler Creek Recreation Park and the upper region of the Little Para Linear Park (City of Salisbury 2009) and one record from near Mylor in the Adelaide Hills (DEH 2008). There is one historical record of the species south of Adelaide (Noarlunga).

The species occurrence was considered to be sparse. For example, Mitchell (1992) recorded eight individuals over a 30 month survey period at Cobbler Creek.

The species is co-distributed with *Tiliqua adelaidensis* (Pygmy bluetongue lizard) and also occurs in other habitats. As a result of extensive trapping surveys as part of ecological studies of *T. adelaidensis* in the Mid North of SA, the species has been recorded relatively frequently and there are good annual records for it every year from a range of sites around Burra over 2004 to 2009. Here the species has been recorded in *Lomandra*-dominated and other grasslands and shrublands with a scatter of small surface rocks. Around Clare and Auburn the species occurs in grassy woodlands with native grassland understorey.

It will also use modified grasslands i.e. those which contain some weed species. The ecology of the species remains poorly studied and known. It occurs in open woodland, native tussock grassland, riparian habitats and rocky isolates (Cogger et al. 1993). Specifically, steep areas with surface rock, and stony soils or clay soils with stony surface appear to be its preferred habitat. The diet of most *Aprasia* species consists of the larvae and pupae of ants.

Previously it has been considered as a species which resides underground and only rarely appearing at or near the soil surface, usually in about September to October, presumably during mating season. However, recent surveys indicate that it shelters below surface rocks and can be found in these locations during autumn and winter. It is found on the surface during warm conditions in October to December and in February to April, especially a few days after rain (Anderson, pers. obs., 2008 and 2009). Juveniles are most commonly recorded during this latter time period.

The Regional Recovery Plan for Threatened Species and Ecological Communities of Adelaide and Mount Lofty Ranges 2009-2014 (Willson and Bignall 2009) states that the greatest risks to the Worm-lizard are habitat destruction or modification and predation by *Vulpes vulpes* (European red fox) and feral and uncontrolled cats (*Felis catus*). Weed invasion resulting in habitat modification is also considered a moderate risk. This species is considered a high priority conservation species for the region in Willson and Bignall (2009).

Detailed searches of the site in a range of seasons and conditions identified areas of potential fair to good quality habitat for the species, along with ample suitable food resources and it is considered highly likely that this species occurs in parts of the proposed development area. Other areas of marginal habitat are present, along with large areas of unsuitable habitat also.

Pygmy bluetongue lizard originally occurred in the region (KBR 2009), although the closest extant population is now around Auburn in the Mid North. The species was not recorded on the site. Abandoned (empty) spider burrows constructed by large lycosid and mygalomorph spiders are essential habitat for the species, since it uses these burrows as refuges. A detailed inspection of the site indicated that there are few areas of remnant grassland and very few spider burrows of sufficient size throughout

the site to support this species (A. Fenner, pers. comm.., October, 2009). Consequently, it is considered very unlikely that this species occurs in the site.

Figure 6.2
Termite colony beneath loose surface rock

EPBC Act listed communities

The Iron-grass (Lomandra effusa – L. multiflora ssp. dura) Natural Temperate Grassland of South Australia is listed as a threatened community of ecological significance and critically endangered under the EPBC Act. An area of this community (estimated to be about 1.5 ha) occur on the southern side (north facing slope) of the unnamed tributary (Refer Figure 6.3). Both species are present in the occurrence, with L. effusa dominant. Being on a rocky, steep slope, this section of the site is not arable and has not been subject to cultivation. The community is in moderate to good condition, despite having been exposed to livestock grazing in the past and currently, and having considerable weed infestations. The species diversity in the occurrence is considered to be reasonable with 16 native species recorded, including a number of grazing and disturbance resistant species. Additional native species would be likely to be recorded following the cessation of livestock grazing and the occurrence is amenable to rehabilitation.

Turner (2010) provides the Draft National Recovery Plan for this Grassland Community. The current example of the community is slightly south of the southern boundary on the distribution map in this reference. Nonetheless, it is clearly this community and other examples of it have been recorded around Blakeview, even further south (Anderson, pers. obs., 2005, KBR 2007).

The size and condition of the community meet the requirements of condition class B as described in the EPBC Policy Statement 3.7 (DEWR 2007). If development or

adverse impact on this area was likely to occur, then the proposal will require referral to DEWHA.

The *Eucalyptus odorata* (Peppermint box) woodland community predicted to occur in the region, and potentially the site, by the EPBC Protected Matters search databases, does not occur in the site. The few trees of this species recorded have been planted. This community is present on a small section of the Para Woodland Reserve adjacent to the site (Bentz and Milne 2007).

6.2 OTHER MATTERS OF NATIONAL CONSERVATION SIGNIFICANCE

A Regional Recovery Plan (Willson and Bignall 2009) has been prepared by DEH for a range of communities and species in the Adelaide and Mount Lofty Ranges (AMLR) region, which includes the site. The Plan complies with EPBC Act requirements for a formal Recovery Plan for adoption under the Act. The Plan divides the region into a series of sub-regions (based on landscape context) and the site is located in the Adelaide Plains sub-region. Threatened species exclude those species listed under the EPBC Act and some of the species listed in Schedules to the NPW Act. Based on analyses, each species is assigned a conservation rating for both the region and each sub-region, although these ratings are not officially recognised under legislation.

Within each sub-region, each species is further analysed and provided with a priority and threat summary. Priority includes three categories, very high, high and medium and threat summary has four categories, which are the same as for priority ranking and including low also.

Table 6.1 Bird species of conservation significance recorded on site

Family	Scientific name	Common name	Conservation status	
ACANTHIZIDAE	Acanthiza chrysorrhoa	Yellow-rumped thornbill (B)	Regional Uncommon	
	Aphelocephala leucopsis	Southern whiteface	Regional Vulnerable	
ACCIPITRIDAE	Haliastur sphenurus	Whistling kite	Regional Uncommon	
CORCORACIDAE	Corcorax melanorhamphos	White-winged chough (B)	State Rare, Regional Vulnerable	
CUCULIDAE	Cacomantis pallidus	Pallid cuckoo	Regional Vulnerable	
FALCONIDAE	Falco peregrinus	Peregrine falcon	State Rare, Regional Vulnerable	
HALCYONIDAE	Todiramphus sanctus	Sacred kingfisher	Regional Uncommon	
HIRUNDINIDAE	Petrochelidon ariel	Fairy martin (B)	Regional Uncommon	
MELIPHAGIDAE	Epthianura albifrons	White-fronted chat	Regional Uncommon	
MEROPIDAE	Merops ornatus	Rainbow bee-eater (B)	National (Migratory)	
PACHYCEPHALIDAE	Pachycephala rufiventris	Rufous Whistler	Regional Uncommon	
PETROICIDAE	Petroica goodenovii	Red-capped robin	Regional Vulnerable	
PODARGIDAE	Podargus strigoides	Tawny frogmouth (B)	Regional Uncommon	
PSITTACIDAE	Neophema elegans	Elegant parrot	State Rare	
	Psephotus haematonotus	Red-rumped parrot (B)	Regional Uncommon	
RALLIDAE	Gallirallus philippensis	Buff-banded rail	Regional Vulnerable	
SCOLOPACIDAE	Gallinago hardwickii	Latham's snipe	National (Migratory)	

B= breeding resident or migrant.

14 species with a conservation rating at the AMLR regional level were recorded on all sections of the site, including areas adjacent to it, as per Table 6.1 (Figure 7.2). All of these species are ranked as being of medium priority and most have a low, or occasionally, medium threat status.

The total includes two species with a State conservation status of Rare. Two species with national conservation status and two with State status were present as listed in Table 6.1.

Figure 6.3

Lomandra effusa – L. multiflora ssp. dura Natural Temperate Grassland community with native Austrostipa grassland in background

6.3 NATIONAL PARKS AND WILDLIFE ACT 1972 (SA)

Three bird species of State significance were recorded on site, *Falco peregrinus* (Peregrine falcon), *Corcorax melanorhamphos* (White-winged chough) and *Neophema elegans* (Elegant parrot), each of which is listed as rare. Each of these species is considered in the previous section with additional information immediately below. *Neophema elegans* is listed as rare, but is excluded from consideration in the Regional Recovery Plan.

Peregrine falcon uses the site as a roosting and hunting area, especially the pigeons that flock and breed in the site. A pair was observed in a roost site within the high wall of the quarry precinct and hunting over the adjacent areas of the quarry and Mallee box woodland south of the quarry fenceline over 2008 to 2010. There is no evidence of past or current nesting in the quarry or elsewhere. There are two breeding pairs of the species in the region, with the closest pair being in an abandoned quarry east of the site and on the South Para River, and at least an additional two pairs in the wider region. The pair in the quarry may represent a new pair of birds or may be one of the current pairs in the region that is using the quarry as a roost site out of the breeding season.

A flock of White-winged chough (about 15 birds) was recorded once within Mallee box woodland in the quarry site. The species is considered to be a breeding 'resident', although it appears to be migratory in the region i.e. it uses a large area of habitat of which the quarry is a component. This species forages in leaf litter and relies on woodland habitat, with its apparent decline in recent years linked to land clearing in South Australia (Willson and Bignall 2009).

Elegant parrot was recorded as two birds in 2008 only.

Gallirallus philippensis (Buff-banded rail), which is considered to be vulnerable in the region and was formerly of State conservation significance, was recorded once as a single adult bird in aquatic tall grassland (reed) habitat along the South Para River adjacent to the site. This species is particularly secretive and cryptic.

Trichosurus vulpecula (Common brushtail possum), listed as rare in the state, is a hollow-dependent species and is present along the woodland of the South Para River.

Pseudophryne bibronii (Bibron's toadlet) (State rare) has been recorded near Gawler recently (Ecological Associates 2005, A. Shackley, November 2008, email). The species may still be present along some of the better quality riparian sites and grassland areas which are subject to temporary inundation. The species was not observed and did not respond to aural call playback in summer and autumn. Future late summer to autumn surveys following average or above average rainfall would be required to detect the species (if present).

6.4 REGIONAL STATUS

The consideration of regional status of flora and fauna is primarily derived from Willson and Bignall (2009). There are no flora species in the site that are listed under their Regional Recovery Plan.

Lang and Kraehenbuehl (2002) in the 2008 update of Florlist provide the regional status of flora species in the State. Within the site, there are two species listed as rare and nine species listed as uncommon in the Southern Lofty botanical region.

Shackley (2009) provides lists of flora species, including threatened species, for Dead Man's Pass and the South Para River corridor, including the Para Woodland Reserve. He indicates that about 170 native species occur in both sites. It is possible that some of these species occurred in the site at some stage; however, agricultural and extractive industry use of it has resulted in the current species diversity. Nonetheless, removal of grazing impacts may well allow some additional species to be recorded in future.

Carpenter and Reid (2000) provided the original assessment of regional status for avifauna. However, the more recent regional conservation ratings for the Adelaide Mount Lofty Ranges region (AMLR) and the Adelaide Plains sub-region for all fauna species of Willson and Bignall (2009) have been applied. Sub-region ratings are described in terms of landscape species priority and further defined in terms of regional vulnerability (Very high, high, and low priority).

14 bird species rated at the AMLR regional level were recorded on or adjacent to the site. All are rated as being of moderate priority for conservation and most have a low priority for the region i.e. they are thought to be declining, but are species with risk. All have been discussed in the earlier sections of this report.

6.4.1 Potentially present species

KBR (2009) provided information about a range of species potentially present in the region. Some of these data referenced were provided by Councillor A. Shackley, Town of Gawler in a list of observations and past records for flora and fauna species in the local area (P. Gatsios, email to KBR, 19 November 2008). Additional information on this topic was provided in his Submission to the Development Policy Advisory Committee in regard to the Gawler East Plan Amendment (Shackley 2009).

Some species of national conservation significance originally occurred in or near the site, but these are now considered to be extinct, either in the State or the region. These include species such as *Bettongia lesueur* (Burrowing bettong), *Isoodon obesulus* (Southern brown bandicoot), *Leipoa ocellata* (Mallee fowl), *Pedionomus torquatus* (Plains-wanderer), *Cinclosoma punctatum* (Spotted quail-thrush), *Alcedo azurea* (Azure kingfisher) and *Xanthomyza phrygia* (Regent honeyeater). For example, the current population of the Regent honeyeater in all of eastern Australia is less than 1,500 birds (Birds Australia 2008). The species is considered to be extinct in South Australia and Western Victoria (Armstrong et al. 2003, AMLR NRM Board 2008). No additional survey for this species (or the other species referred to above) in the site or region is warranted.

Turnix varius (Painted button quail) and Melithreptus gularis (Black-chinned honeyeater) (listed as rare at a State level) have been recorded adjacent to the site in the past (1996 and 1981 respectively). It is unlikely that both of the species are present due to the lack of suitable habitat. Neither species was recorded in the site or adjacent region over 2008 to 2010.

Other species of particular significance include Coturnix ypsilophora (Brown quail), Microeca fascinans (Jacky winter), Myiagra inquieta (Restless flycatcher), Melanodryas cucullata (Hooded robin) and Melithreptus albogularis (White-throated honeyeater). Species which might still occur on or adjacent to the site for part of the year include Falcunculus frontatus (Crested shrike-tit), Stagonopleura guttata (Diamond firetail), Climacteris picumnus (Brown tree-creeper), Chrysococcyx lucidus (Shining bronze-cuckoo), Petroica phoenicea (Flame robin) and Taeniopygia guttata (Zebra finch). Some of these species are seasonal or altitudinal migrants and many occur in very small numbers in the region. No recent sightings of most of these species have been made for this part of the region, although there are recent records for some adjacent areas (R. Attwood, Birds Australia. pers. comm., December 2008). Habitat for some species, such as Diamond firetail and Brown quail, is not available in the site. It is considered that there is a very low risk of these species being present. The other species may occur here with their occurrence being confined to native woodland and grassland habitats. Providing these habitats are conserved and managed appropriately, then the species will be likely to use the site.

Wetland species, such as *Biziura lobata* (Musk duck), *Oxyura australis* (Blue-billed duck) and *Stictonetta naevosa* (Freckled duck), are considered very unlikely to use this site as primary habitat due to the lack of large areas of permanent water. However, these and other threatened aquatic species may occur in the riparian areas as occasional visitors. There are no records of these species being present in the region for many years.

Egernia cunninghami (Cunningham's skink), a species potentially present in the site and region was last recorded in the wider region east of the site in 1926 (SA Museum

collection records). A detailed assessment of the site did not record any evidence of the species. This is a similar conclusion to that recorded by Milne in Ecological Associates (2005) during an assessment of the North Para River. Potential habitat is present for a number of other reptile species not recorded during the survey, such as *Ctenophorus decresii* (Tawny dragon), *Tympanocryptis pinguicolla* (Earless dragon), Wood gecko (*Diplodactylus vittatus*) and several small snake species. None of these have an official conservation status, but their occurrence here would be of scientific interest. Two additional amphibian species may occur, including *Pseudophryne bibronii* (Bibron's toadlet), rated as rare South Australia.

Fish species such as *Pseudaphritis urvillii* (Congolli), *Mordacia mordax* (Shortheaded lamprey) and *Tandanus tandanus* (Freshwater catfish) have been recorded in the catchment in the past. These species are considered to have a conservation status by Hammer et al. (2009). Drought, lack of environmental flows, including nil or reduced estuarine connections, and other management issues has resulted in major changes in the abundance of these and some other native fish species.

Figure 6.4
Peregrine falcon roosting habitat with Fairy martin nests on the roof of the rock chamber

7 Discussion and conclusions

There are three matters of national environmental significance (MNES) present on the site to which the EPBC Act is relevant:

- Two bird species and one reptile species and their habitat
- a small area of one threatened plant community and a larger area of potential habitat for the community
- avifauna species listed under a Regional Recovery Plan.

Subject to design and final use for sections of the development area, if any of the habitats and areas occupied by MNES are potentially or likely to be adversely impacted by development then a Referral to DEWHA will be required. The definition of 'adverse impact' includes all forms of impact associated with a development, including direct, indirect, potential, combined and cumulative. Delfin has indicated that it will submit a Referral to DEWHA for the project later in 2010 i.e. prior to any work commencing on the site.

Over 2009 and 2010, more detail has been provided by Delfin to KBR on the planned development and management measures proposed for the site and the conservation value of these measures are considered in the current section.

Consultation with groups in DENR will be required so as to provide for written approval from this agency. For example, this will be in relation to species of State conservation significance and in the event that any areas of native vegetation will be adversely affected.

Approval by Council will be required if any significant trees are proposed to be removed. If these are indigenous, remnant native trees then approval by the Native Vegetation Council will be required also.

The pest plants management group of the AMLR NRM Board will need to be informed of the pest plant infestations, for example, *Nassella leucotricha* (White (Texas) needlegrass), *Withania somnifera* (Winter cherry) and *Lycium ferocissimum* (African boxthorn). Other species with regional priority and high environmental threat will require control also, such as *Xanthium spinosum* (Bathurst burr), *Tribulus terrestris* (Caltrop), *Chondrilla juncea* (Skeleton weed), *Chrysanthemoides monilifera* (Boneseed) and *Cynara cardunculus* (Artichoke thistle). Management of these species will likely require the development and implementation of detailed Weeds Management Plan.

Figures 7.1, 7.2, 7.3 and 7.5 record the location of MNES and the other sites of biological significance recorded to date. Ongoing survey and monitoring of the condition of the proposed conservation management areas and measures is recommended.

7.1 POTENTIAL AND PROPOSED IMPACT AREAS AND CONSEQUENCES

This site is not homogeneous in its biological significance and much of it (67%) contains few species or habitats of biological value. This is a similar conclusion to that provided by Bentz and Milne (2007) in their assessment of the Para Woodlands Reserve adjacent to the site.

Based on species observations, the survey effort appears to be commensurate with the biological values of the site and annual and seasonal variation components have been able to be undertaken over 2008 to 2010. There are some areas of fair to good value (see Figures7. 1, 7.2, 7.3 and 7.5) and, wherever practicable, these would need to be excluded from development, or, investigated for exclusion from development. Delfin has provided commitment to these investigations as part of its early master planning for the project. Some of these areas of biological importance would require strengthening through appropriate management measures so as to retain and improve these values.

7.2 VEGETATION COMMUNITIES AND FLORA

Mallee box grassy woodland is no longer listed as a conservation priority for the State (DEH 2005). However, Armstrong et al. (2003) consider that this woodland is still of particular conservation significance in the region. By observation, any example of mature woodland remaining in peri-urban areas is unusual and hence is biologically important and all good quality examples of it on site are of at least regional value.

Planning to retain the River red gum woodland, which occurs as sparse tall woodland and isolated trees along watercourses in the site should be undertaken. An arborist's assessment may be required to assess the risk associated with these trees and to establish a retention strategy.

There are no flora species, or their habitat, in the site that are listed under the EPBC Act. No species listed under the NPW Act or the Regional Recovery Plan of Willson and Bignall (2009) were recorded.

Within the site, there are two species listed as rare in the Southern Lofty botanical region and nine species listed as uncommon (Lang and Kraehenbuehl 2002, 2008 update). Lomandra effusa (Iron-grass) is confined to one location in the site and is a component of the Iron-grass (Lomandra effusa – L. multiflora ssp. dura) Natural Temperate Grassland of South Australia community. The whole of this community and potential habitat for colonisation by the species adjacent to the occurrence should be planned for conservation as part of the development. Delfin has indicated that its intention is to reserve the whole of this area subject to detailed design and any approval requirements established by DEWHA and DENR..

Nine species listed as uncommon for the region are present. One species, *Calystegia sepium* (Large bindweed), was confined to the South Para River corridor. This area will not be impacted by construction.

Aristida behriana (Brush-wire grass) occurs occasionally in sections of the site with occurrences in the quarry along the main access road and with most of its distribution in the main site along the un-named watercourse. The former occurrence is likely to be removed during remediation of the quarry and the latter will be conserved.

Lomandra densiflora (Sword mat-rush) and Mallee box are primarily confined to the northern section of the main site, especially adjacent to both sides of the un-named watercourse, with occasional occurrences elsewhere in the site. Delfin has advised that major remnant occurrences of these species have been included in its master planning for conservation, conserved through excluding development in these areas of occurrence. It is expected that most of the individual trees would also be conserved, either in open space areas or in appropriately sized development sites, although this will be subject to detailed planning. The exception is some of the planted Mallee box in the quarry and these are likely to require removal as part of remediation of this precinct.

The occurrence of all of the other species is in the understorey of the south facing area of Mallee box woodland in the site (Figure 7.5). As discussed above, this area is planned to be reserved from development subject to the detailed planning process and formal approvals.

7.3 FAUNA HABITAT AND SPECIES

The largest impact on fauna will be associated with rehabilitation of the quarry and the consequent impacts on avifauna. Discussions with Delfin have indicated that rehabilitation and major earthworks are a necessity in order to make the quarry precinct safe. Therefore, Rainbow bee-eater, Peregrine falcon, White-winged chough and Fairy martin habitat will be removed by the proposed development and these species will be displaced from the site.

Each of these species will have differing opportunities to re-locate in the region, including greater use of other habitats, such as woodland, sand quarries and natural cliff and rock outcrops in the region. Some degree of management will be possible, for example, removing livestock and weeds from the Mallee box woodland and allowing a litter layer to develop could allow Choughs to eventually use the dry woodlands in the main site and it is highly likely that steep-sided compacted sand piles can be constructed elsewhere in the site to allow for the Rainbow bee-eater) to breed. Fairy martin will use a variety of steep sided structures for nest sites, including under bridges, culverts and eaves. Delfin has indicated that remediation of the high wall of the quarry must be undertaken to manage some of the geotechnical risks and it is unlikely that mitigation actions can be undertaken for the Peregrine falcon roosting within the development site.

Hollow-dependent bird and bat species and nest building bird species are present on site, although by observation, the breeding numbers of the former are very limited due to competition with introduced birds, such as Common starling and Rock dove and also feral European honeybee colonies. Since the woodlands will not be removed, both groups of bird species will be unlikely to be impacted by development. Initial and ongoing control of pest species would greatly assist in providing more habitat for hollow-dependent species.

Woodland bird species of significance were recorded in the site, but in relatively small numbers. The site does not have the biological values and habitat diversity required by many woodland bird species, or to support large populations of these species, as occur to the north, for example in Para Wirra and Sandy Creek Conservation Reserves. The occurrence of individuals of species such as Red-capped robin, Pallid cuckoo and Rufous whistler is typical of species moving from area to area to find

suitable habitat. In particular, there is no native shrubstorey present on the site and there are but a few areas of natural regeneration of the overstorey species. In most of the site, feral European olive) and African boxthorn provides the only shrubstorey. This limits the number of small bird species resident in the site. For example, *Rhipidura albiscapa* (Grey fantail), *Petroica phoenicea* (Flame robin) and thornbill species (other than Yellow-rumped thornbill) were not recorded here.

Delfin has commenced detailed master planning for the site and this includes identifying those areas that are best suited to be set aside for biological reserves and open space areas as part of managing development of the site. The basis of this will be the areas of biological value extant in the site (Table 7.1). Future planning will require development of a formal management plan that should be developed in consultation with the Town of Gawler i.e. the future custodians of the land when Delfin transfer land areas as a designated community reserve.

A revegetation plan for areas developed as conservation sites based on the use of indigenous species from the site and region to reinforce the existing values would greatly benefit a wide range of bird species. This necessarily involves collection of propagating material from the site and developing a revegetation strategy for use of tubestock and direct seeding. In addition, the most successful strategy will involve fencing, exclusion of livestock and control of weeds. This will allow native species to colonize adjacent areas.

Table 7.1 Vegetation communities and habitat areas of biological value

Community or Habitat	Area (ha)
Iron-grass Community	1.41
Potential Iron-grass Community habitat	1.37
Flinders Ranges worm-lizard (fair to good habitat)	13.48
Flinders Ranges worm-lizard (marginal habitat)	9.61
Mallee box woodland	8.56
Native vegetation as understorey	6.62
Riparian grassland and sedgeland (excluding South Para River)	1.84
Wallaby-grass grassland	0.0796
River red gum trees (excluding South Para River)	Single and scattered mature trees only

Rainbow bee-eater, Peregrine falcon, White-winged chough and Fairy martin are species primarily located in the quarry precinct that will be affected by rehabilitation works necessarily required as part of the development of the site. It is likely that similar works would have been required as part of restoration under PIRSA's requirements for the site. Nonetheless, these species will be displaced as a result of the proposal. Suitable Rainbow bee-eater nesting habitat could be established elsewhere in the site through construction of compacted silty sand banks and piles. The other three species would be displaced and would have to shift to other locations in the site or region. There are opportunities to provide for other habitats in the site as an integral part of master planning for the development for Fairy martin and White-winged chough.

Wallbridge & Gilbert (2010) has reviewed and revised the initial stormwater management strategy for the site presented as part of the DPA. A revised report considers the drainage for the development and includes management of the

watercourses. Consequently, this implicates the areas of biological significance in the site. KBR has been provided with this report and has assisted in its development. The biologically sensitive areas are now mostly avoided by the elements of the strategy. The wetland systems and ponds along the eastern section of the un-named watercourse avoids the important reptile habitat areas, all of the remnant trees and will allow for development of biologically productive riparian habitats in what is currently a weed infested gully.

7.4 PARA WOODLAND RESERVE

The Para Woodland Reserve was established in 2003. It now occupies about 400 ha, abuts the south eastern boundary of the site, and includes a relatively large frontage along the South Para River. The Reserve has a number of similarities with the Delfin site, including large areas of degraded grazing land and small areas of Mallee box woodland, as well as differences, such as the presence of *Eucalyptus odorata* (Peppermint box) woodland (Bentz and Milne 2007). The Para Woodland is jointly owned and managed by DENR and the Nature Conservation Society of South Australia. Weed species and fire management are being undertaken, complemented by revegetation works with the long term aim of re-establishing a diverse woodland ecosystem. Ongoing funding has been recently obtained to allow for future management of the Reserve in perpetuity.

Biologically it would be useful to provide a linkage between the Para Woodland to the Mallee box woodland and un-named tributary corridor on the site. In the long term, this would allow for biological connectivity from south to north and east to west. Establishing riparian vegetation in the eastern portion of the watercourse and managing the weeds and pest animals along the whole length of the corridor would be of particular value for the site.

Following cessation of livestock grazing, the site would also be able to provide ample propagating material for a range of understorey species not recorded in the Para Woodland. The combination of all of these actions could be a valuable conservation opportunity for the region.

7.5 SITE MANAGEMENT ISSUES

Management of weeds will be essential, and, in most areas of the site will involve their initial and ongoing removal as part of construction. Management within conservation and open space areas must be targeted with a long term commitment aimed at eradicating all high threat introduced species and replacing these with indigenous species.

Flora and fauna habitat management and improvement will need to be an integral part of site development. The details associated with these initiatives will developed in future but will be based on a vision and desire of protecting and managing the higher quality areas of biological significance sensitively within a planned residential development. Examples of specific programs should include:

- Weed and pest animal species control, including feral European honeybee colonies and pest fauna using tree hollows
- rehabilitation and revegetation using site and regionally specific indigenous species

- re-establishing Iron-grass Grassland in areas which are potentially suitable for this nationally threatened community
- transplanting of native understorey species which will be disturbed by development
- development and maintenance of a seed bank of native species for the site
- fencing, including virtual fencing, to exclude people from some areas
- on-site passive recreation and education areas
- development of habitat for specific fauna groups and species, including ground fauna and avifauna displaced from the quarry site during its rehabilitation
- integrating stormwater management with conservation initiatives as part of design and development
- initial and ongoing monitoring of impacts.

Cessation of livestock grazing has advantages and risks, the most important of which will be an increase in fine fuel loads in the large areas of tall grasslands of introduced species. During and as part of any long term development of the site, a fire management plan must be developed in collaboration with the CFS. Continuation of livestock grazing may be required to assist the control of fuel loads. If so, then grazing should be excluded from the areas proposed as conservation zones by temporary fencing. Active control of weeds in these zones would be a necessary, ongoing action. Cessation of grazing in the Iron-grass Grassland areas will require ongoing assessment and adaptive management in order to establish the best management regime, both in the current term and future, especially a commitment to ongoing, judicious control of pest plants in the community.

Delfin indicates that residential development is likely to commence in the north east section of the site. This area has been subject to cereal cropping for many years and is biologically insensitive for native vegetation and fauna. Therefore, there is no impediment to development here.

Any construction within the South Para River corridor will require management, especially in regard to effects on water quality and fauna. Once the impact corridor and construction methods have been agreed and a final design developed, then a baseline monitoring program will be required.

General and detailed monitoring programs should be established for the conservation areas established in the development of the site. Observations and data collection which document the management actions undertaken in relation to the response of flora and fauna should continue to be made during future surveys. Monitoring of ground fauna, primarily reptiles, should be undertaken and further representative collections made on behalf of the SA Museum of all new species found on the site.

7.6 OTHER MATTERS

The assessment has been undertaken over a range of seasonal conditions during 2008 to 2010. 2009 was a year of average rainfall, both in total and distribution. 2008 was a drought year, with little spring rainfall and 2010 was a year of below average rainfall until May, then an average to above average year thereafter (to date). In addition, livestock grazing pressure has continued to be high to extreme during all of the assessment period, especially over each summer and early autumn. Consequently, it is

considered that some additional plant and fauna species will be recorded in the site. For examples of these grazing pressures see Photos 17 and 18 in Appendix B.

For some terrestrial migratory species, such as cuckoo, all were relatively rare in south eastern Australia over 2005 to 2008. However, Pallid cuckoo was extremely widely reported in 2009 over much of this region and in southern South Australia generally. This presumably was a result of the impacts of drought in previous years.


The commencement of the planned project is unlikely to cause any significant long term effect on local bat populations or other hollow-dependent species. However, if there is the likelihood that some hollow trees will need to be removed during construction, then all trees with potential bat roosts or suitable for use by other native species should be identified and efforts made to capture and re-locate bats, and other native fauna species, from the trees before removal. Relocation and use of all such hollow trees in the conservation areas as part of habitat management is recommended.

Prior to development commencing, a Vegetation Management Plan (VMP) and a Construction Environmental Management Plan (CEMP) must be developed so as to guide the future development of the site. This would include establishing Significant Environmental Benefit requirements as off-sets for any native vegetation and areas of fauna habitat removed. Future conservation initiatives, especially habitat conservation and restoration, pest species management actions and revegetation guidelines should be included in these documents. A range of conservation and open space initiatives could be developed for the site subject to design and planning considerations. The logical timing to develop these is part of the detailed planning process. Some of these suggestions are discussed above, although more detailed planning and commitment will be required to understand and implement these opportunities properly. Approval from the Native Vegetation Council will be required for the VMP.

The development and implementation of ongoing monitoring of the proposed conservation management measures and conservation areas is recommended and may be required as part of the VMP and other conditions of approval. Ongoing liaison with State and Council authorities by Delfin will also be necessary.

Figures 7.1 to 7.5 indicate the location of MNES, other sites of biological significance and some of the key pest plant infestations recorded in the site to date.

†	0	250 Metres	500 	1:8,000	@A4
<u> </u>		ivieties			
D ' ' II D II' I II D II' I II D II' I I I D II' I I I D I I I I					

SOURCE Base imagery supplied by Delfin Lend Lease Pty Ltd, 2010 (captured 2006)

GIS FILE

AEN814-GIS-005

PROJECTION FINAL APPROVAL DATE MGA 94 Zone 54 B. Anderson 20Aug10 Kellogg, Brown & Root Pty Ltd **KBR**

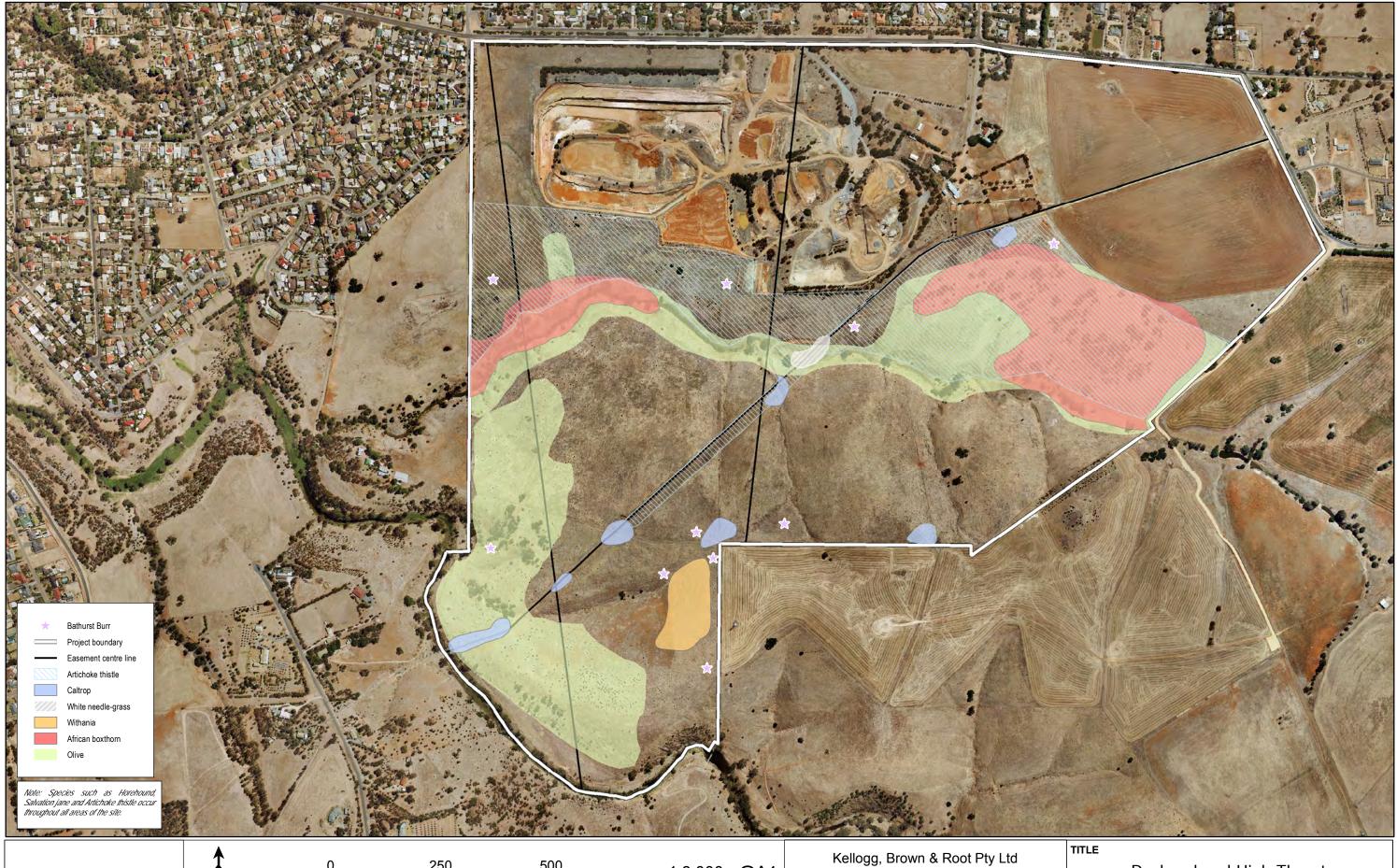
Kellogg, Brown & Root Pty Ltd ABN 91 007 660 317 186 Greenhill Rd, Parkside SA 5063

Drawn by J. Paull

Matters of National **Environmental Significance**

FIGURE No. Rev 7.1

SOURCE Base imagery supplied by Delfin Lend Lease Pty Ltd, 2010 (captured 2006)


GIS FILE AEN814-GIS-007 **PROJECTION** MGA 94 Zone 54 FINAL APPROVAL DATE B. Anderson 20Aug10

Kellogg, Brown & Root Pty Ltd ABN 91 007 660 317 186 Greenhill Rd, Parkside SA 5063

Drawn by J. Paull

Species of State Significance and Associated Habitat Areas

FIGURE No. Rev 7.3

\$	0	250 I	500 J	1:8,000	@A4
		Metres			

SOURCE Base imagery supplied by Delfin Lend Lease Pty Ltd, 2010 (captured 2006)

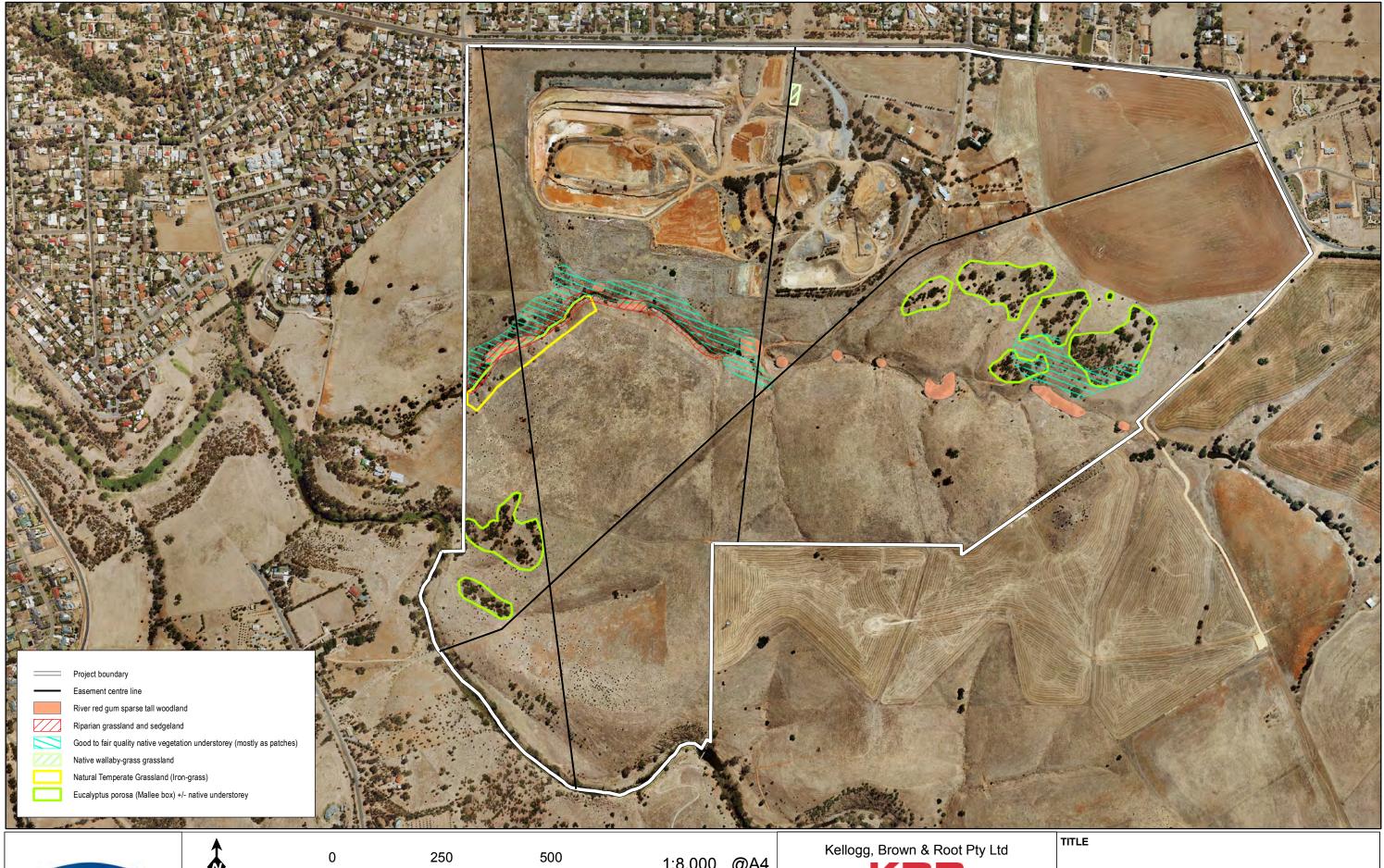
GIS FILE

AEN814-GIS-008

PROJECTION MGA 94 Zone 54

FINAL APPROVAL DATE B. Anderson 20Aug10

KBR


Kellogg, Brown & Root Pty Ltd ABN 91 007 660 317 186 Greenhill Rd, Parkside SA 5063

Drawn by J. Paull

Declared and High Threat **Environmental Weed Species**

FIGURE No. 7.4

Rev

1:8,000 @A4 Metres

SOURCE Base imagery supplied by Delfin Lend Lease Pty Ltd, 2010 (captured 2006)

GIS FILE

AEN814-GIS-009

PROJECTION MGA 94 Zone 54

FINAL APPROVAL DATE B. Anderson 20Aug10

Kellogg, Brown & Root Pty Ltd ABN 91 007 660 317 186 Greenhill Rd, Parkside SA 5063

Drawn by J. Paull

Native Vegetation Areas

FIGURE No. 7.5

Rev

8 References

Adelaide and Mount Lofty Ranges Natural Resources Management Board. 2008. *State of the region report*. AMLR NRMB, Adelaide.

Armstrong, D.M., Croft, S.J. and J.N. Foulkes. 2003. *A biological survey of the Southern Mount Lofty Ranges, South Australia, 2000-2001*. Department for Environment and Heritage, South Australia.

Barker, W.R., Barker, R.M., Jessop, J.P. and H.P.Vonow (Eds). 2005. Census of South Australian Vascular Plants. 5th edition. *J. Adelaide Bot. Gardens Supplement 1*. Adelaide:Botanic Gardens of Adelaide and State Herbarium

Barossa Council. 2008. Development Plan. Planning SA.

Barrett G, Silcocks A, Barry S, Cunningham R and Poulter R. 2003. *The new atlas of Australian birds*. Royal Australasian Ornithologists Union, Hawthorn East, Victoria.

Bentz, T. and Milne, T. 2007. Revisiting South Para: Monitoring Changes in Vegetation, Bird Diversity and Bushland Condition. Nature Conservation Society of South Australia Inc., Adelaide.

Carpenter, G and Reid, J 2000. Status of Native Birds in South Australia's Agricultural Regions. Unpublished database. Department for Environment and Heritage, South Australia.

City of Salisbury. 2009. Biodiversity corridors management plan. Draft 2a. City of Salisbury.

Cogger, H.G. 2000. Reptiles and Amphibians of Australia - 6th edition. Reed New Holland, Sydney.

Cogger, H.G., E.E. Cameron, R.A. Sadlier and P. Eggler. 1993. *The Action Plan for Australian Reptiles*. [Online]. Australian Nature Conservation Agency. ANCA, Canberra. Available from:

http://www.environment.gov.au/biodiversity/threatened/action/reptiles/index.html.

Daniels CB and Tait CJ. 2005 *Adelaide Nature of a City The ecology of a dynamic city* 1836 to 2036. BioCity: Centre for Urban Habitats, University of Adelaide.

Department for Environment and Heritage, SA. 2002. Remnant vegetation data, as calculated December 2002. Unpublished data. Department for Environment and Heritage, Adelaide.

Department for Environment and Heritage. 2005. Provisional list of threatened ecosystems in South Australia. In progress, unpublished and provisional list. Department for Environment and Heritage, Adelaide.

Department for Environment and Heritage. 2007. No species loss A nature conservation strategy for South Australia 2007-2017. DEH, Adelaide.

Department for Environment and Heritage. 2008. Threatened species profile *Aprasia* pseudopulchella. Adelaide: Biodiversity Conservation Unit.

Department for Environment and Heritage. 2009. NatureMaps database of vegetation communities and Biological Survey sites.

Department for Environment and Heritage. 2009a. Informing biodiversity conservation for the Adelaide and Mount Lofty Ranges Region, South Australia. Priorities, Strategies and Targets. Adelaide

Department for Transport, Energy and Infrastructure. 2007. Northern Expressway Gawler to Salisbury Highway Environmental Report.

Department of the Environment and Water Resources. 2007. EPBC Policy Statement 3.7 - Peppermint Box (*Eucalyptus odorata*) Grassy Woodland of South Australia and Iron-grass Natural Temperate Grassland of South Australia.

Department of the Environment, Water, Heritage and the Arts. 2008. Approved conservation advice for *Aprasia pseudopulchella* (Flinders Ranges Worm-lizard). Canberra.

Ecological Associates 2005. North Para Flood Control Dam: Assessment of Potential Ecological Impacts (revised report). Unpublished report prepared for Gawler River Flood Plain Management Authority.

Hammer, M. Wedderburn, S. and van Weenen, J. 2009. *Action Plan for South Australian Freshwater Fishes:* 2007-2012. Native Fish Australia (SA), Inc., Adelaide.

Kellogg, Brown and Root Pty Ltd. 2007. Vegetation assessment of Purdie Road, Blakeview. Unpublished report prepared for Land Management Corporation.

Kellogg, Brown and Root Pty Ltd. 2009. Gawler East Development Plan. Gawler East flora and fauna survey – preliminary findings. Unpublished report prepared for Delfin Lend Lease Pty Ltd.

Kraehenbuehl, D.N. 1996. Pre-European vegetation of Adelaide: A survey from the Gawler River to Hallett Cove. Adelaide: Nature Conservation Society

Lang, P.J. and D.N. Kraehenbuehl. 2002. Plants of particular conservation significance in South Australia's agricultural regions. 2008 update of unpublished database. Department for Environment and Heritage, South Australia.

Laut P., P.C. Heyligers, G. Keig, E. Loffler, C. Margules, R.M. Scott, and M.E. Sullivan. 1977. *Environments of South Australia Province 3 Mt. Lofty Block*. CSIRO Publishing, Canberra.

Milne, T., Hutchinson, M., and Clarke, S. 2000. National Recovery Plan for the Pygmy Bluetongue Lizard (*Tiliqua adelaidensis*). Department of the Environment, Water, Heritage and the Arts.

Mitchell D. J. 1992. A survey of reptiles of the Cobbler Creek Recreation Park, Salisbury East, South Australia. *Herpetofauna* 22, 36-37.

Native Vegetation Council. 2005. Draft guidelines for a native vegetation significant environmental benefit policy for the clearance of scattered paddock trees. DWLBC, Adelaide

Neagle N. 1995. An update of the conservation status of the major plant associations of South Australia. Department of Environment and Natural Resources, South Australia.

Paton, D. C., Rogers, D. J. and Harris, W. 2004. Birdscaping the environment: restoring the woodland systems of the Mt Lofty region, South Australia. In *Conservation of Australia's Forest Fauna* (second edition), Daniel Lunney (ed.). Royal Zoological Society of New South Wales, Mossman, NSW, Australia, pp. 331-358.

Robinson A.C., Casperson, K.D. and M.N. Hutchinson. 2000. A list of the vertebrates of South Australia. Adelaide: DEH.

South Australian Museum. 2006. Northern Expressway Bats Survey. Unpublished report prepared for KBR on behalf of DTEI.

Steinwedel landscape consultants. 2007. Significant tree assessment Gawler East, 27-11-2007. Unpublished report prepared for Delfin Lend Lease.

Tait CJ, Daniels CB and Hill RS. 2005. Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836-2002. *Ecological Applications* 15:346-359.

Turner, M.S. 2001. Conserving Adelaide's biodiversity resources. Urban Forestry Biodiversity Program, Adelaide

Turner, J. 2010. *Draft National Recovery Plan for the Iron-grass Natural Temperate Grassland of South Australia ecological community, 2010.* Unpublished draft, July 2010. Department of Environment and Natural Resources, South Australia.

Shackley, A. 2009. Gawler East Development Plan Amendment Submission to the Development Policy Advisory Committee.

Wallbridge & Gilbert. 2010. Gawler East residential stormwater management strategy. Unpublished report prepared for Delfin Lend Lease.

Willson, A and Bignall, J. 2009. Regional Recovery Plan for Threatened Species and Ecological Communities of Adelaide and the Mount Lofty Ranges, South Australia. Department for Environment and Heritage, South Australia.

Wilson, S.K. and D.G. Knowles 1988. *Australia's Reptiles: A Photographic Reference to the Terrestrial Reptiles of Australia*. Collins Publishers, Australia.

