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Biochar‑driven rhizoremediation of soil 
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engineered solutions, microbiome enrichment, 
and bioeconomic benefits for ecosystem 
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Abstract 

Soil contamination with organic pollutants is a growing environmental concern, with the FAO reporting that 80% 
of agricultural soils contain such residues. Industrial chemical production has doubled to 2.3 billion tonnes 
and is projected to increase by 85% by 2030, exacerbating the issue. Key pollutants include pesticides, pharmaceu-
ticals, antimicrobials, and plastic residues, contributing to a 15–20% loss in agricultural productivity. In this context, 
rhizosphere-mediated remediation has gained significant attention for its potential to degrade organic contami-
nants. Rhizoremediation, when integrated with biochar application, not only enhances contaminant degradation 
but also supports plant and microbial growth due to biochar’s nutritive properties and its role in improving contami-
nant bioavailability. This review explores the synergistic interactions between plant–microbe systems and the role 
of biochar in accelerating the degradation of major organic contaminants, including crude oil, pesticides, polycyclic 
aromatic hydrocarbons (PAHs), antibiotics, and organic dyes, aligning with circular bioeconomy principles. Addition-
ally, meta-omics approaches such as metagenomics, transcriptomics, and metabolomics provide insights into active 
microbial communities involved in the rhizoremediation-biochar process. The efficiency of pollutant sorption 
and desorption is influenced by biochar’s chemical structure, composition, porosity, surface area, pH, elemental ratios, 
and functional groups. Therefore, this review also highlights the potential of engineered biochar for enhanced rhizore-
mediation while addressing challenges associated with its application, emphasizing the need for optimization strate-
gies to mitigate any negative impacts. Furthermore, the exponential growth of the biochar market, valued at USD 2.05 
billion in 2023, presents a promising opportunity for both global economic expansion and ecosystem restoration, 
underscoring the significance of biochar in sustainable environmental management.

Highlights 

•	 Biochar application with rhizoremediation is a novel strategy for organic contamination remediation.
•	 Meta-omics technologies reveal degradation insights in rhizoremediation with biochar amendments.
•	 Bioengineered biochar improves eco-restoration strategies and promotes plant growth.
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•	 The global biochar market can boost the circular economy and support sustainable restoration.

Keywords  Organic contamination, Rhizoremediation, Catalysts, Meta-omics, Biochar engineering

Graphical Abstract

1  Introduction
In 2015, the United Nations established the seven-
teen Sustainable Development Goals (SDGs) to tackle 
worldwide issues related to environmental conserva-
tion, human health consequences, poverty eradication, 
and the promotion of peace and economic stability 
(Khargonekar and Samad 2024). Despite being explic-
itly addressed in objectives 3.9 and 12.4, soil pollution 
has the potential to impede the achievement of other 
SDGs such as "clean water and sanitation" (SDG 6) and 
"zero hunger" (SDG 2) (Zhou et  al. 2021; Pingali and 
Plavšić, 2022a, b), highlighting its consequences and 
the urgent need for mitigation strategies (Scarborough 
et al. 2023).

One-third of global soil is polluted and dealing with 
global environmental issue due to organic contami-
nants (Gautam et  al. 2023). Environmental contami-
nants are responsible for around 13 million fatalities 
annually throughout the globe (Awewomom et al. 2024). 
Approximately 50% of Canada’s federal soil has been 
identified as contaminated with various types of con-
taminants, including phenolic compounds, PAHs, halo-
genated compounds, crude oil, petroleum products, 
pesticides, and chlorinated compounds (Miglani et  al. 
2022). According to a 2018 study by the FAO, the petro-
leum and its by-products affected the soil of more than 
100,000 hectares of land in Russian Federation (NOS-
DRA, 2006; Matuszak, 2021). Between 2006 and 2022, 
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Nigeria recorded a total of 4102 crude oil spillage inci-
dents, including the accidental discharge of 253,143 bar-
rels of oil into the lands (Adeniran et  al. 2023). UNEP’s 
report indicates a concerning increase in pesticide active 
ingredient usage per unit of crop land from 1990 to 2016, 
with a 75% increase from 1.9 kg ha–1 to 3.3 kg ha–1 (Sib-
oni 2023a, b), contributing to the emergence of antimi-
crobial resistance (AMR) (Barathe et al. 2024).

Persistent organic contaminants tend to bioaccumu-
late and biomagnifies within the food chain, resulting 
in frequent human exposure through various pathways, 
including ingestion, inhalation, dermal absorption, and 
intravenous routes (Aravind et al. 2022). Soil contamina-
tion with crude oil leads to 60% food security reduction 
and 24% malnutrition in children due to their accumu-
lation within the food chain (Das et  al. 2024a, b). Over 
600 million people worldwide are affected by PAHs, 
which pose significant health risks due to their muta-
genic and carcinogenic properties (Das et  al. 2024a, b). 
Table 1 shows the different health impact caused due to 
the xenobiotics’ contamination in soil and the sources of 
contamination.

Techniques such as coagulation, filtration, adsorption, 
chemical precipitation, electrolysis, and ozonation are 
commonly employed for the degradation of organic con-
taminants. However, concerns regarding their reliability 
and the potential generation of toxic by-products high-
light risks associated with their application (Singha and 
Pandey 2021). Rhizoremediation, a nature-based solu-
tion, leverages the synergistic interaction between plant 
roots and beneficial microbial communities to degrade 
environmental contaminants. The enhanced influence 
of plants in rhizosphere environments can improve the 
efficacy of this process by promoting the active micro-
bial population capable of metabolizing and neutralizing 
organic contaminants (Bisht et al. 2015; Singha and Pan-
dey 2017). Nevertheless, the effectiveness of rhizoreme-
diation can be hindered by several challenges, including 
restricted microbial activity and the limited bioavailabil-
ity of pollutants, which may reduce the degradation effi-
ciency for the contaminants (Wani et al. 2023). Thus, the 
application of biochar may significantly contribute to the 
enhancement of plant growth and facilitate the bioavail-
ability of contaminants for degradation.

The use of biochar-based materials as catalysts or cata-
lytic supports in environmental detoxification is increas-
ingly gaining attention. Biochar is a porous carbonaceous 
material, produced from various feedstocks via ther-
mochemical and biochemical methods (Muh and Tabet 
2019). The addition of biochar to the soil has a significant 
capacity to enhance carbon (C) sequestration due to the 
aromatic structure of the C in biochar (Perchikov et  al. 
2024). Research suggests that the global application of 

biochar has the potential to reduce greenhouse gas emis-
sions by up to 12% (Yin et  al. 2021). The incorporation 
of 20% coffee husk biochar into Brazilian Oxisols resulted 
in a 100% increase of the cation exchange capacity (CEC) 
of the soil (Ndoung et  al. 2021a, b). Research has also 
demonstrated that biochar reduces fertilizer require-
ments by 60% (Nepal et  al. 2023). Moreover, biochar 
application enhances organic chemical bioavailability in 
polluted soils (Kapoor and Zdarta 2024), as the applica-
tion of biochar immediately stimulates soil microbiota, 
enhancing soil quality and health (Singh et  al. 2018). 
Furthermore, the activation and surface functionaliza-
tion of biochar using acid and alkali solutions, oxidizing 
agents, microbes, and chemicals to produce engineered 
biochar with specific adsorption characteristics plays 
a crucial role in eco-restorations and pollution mitiga-
tion. Recently, Munir et al. (2024) reviewed the potential 
applications of biochar in constructed wetlands for biore-
mediation of organic and inorganic contaminants. Also, 
Osman et  al. (2022) explained the utilization of biochar 
for enhancing micro-environment by supporting micro-
bial growth, reduction in contaminants dispersion, and 
accelerated rate of humification of composts, for effective 
degradation of pollutants. Xiao et  al. (2023), discussed 
adsorption principles while reviewing lignocellulosic 
material uses for water treatment. Additionally, Warren-
Vega et al. (2023) explored biochar as a potential solution 
for per/polyfluoroalkyl (PFAS) substances contamination 
in agricultural systems by analyzing the physicochemical 
properties of biochar, and its advantages and challenges. 
Moreover, Saeed et al. (2024) reviewed the use of PGPR-
biochar-based remediating systems to manage hazardous 
PAHs in soil, focusing on the combined PGPR mecha-
nism and biochar’s impact on organic pollutant degrada-
tion. On the other hand, there are reviews available that 
explain the prospects of rhizoremediation for degrada-
tion of organic pollutants (Gerhardt et al. 2009), without 
exploring the prospects of biochar application. Further-
more, Kotoky et  al. (2018) reviewed the rhizoremedia-
tion technique for removing PAHs from plants through 
synergistic interactions with their microbiome. They 
also provided reports on modern omics methodologies, 
like metagenomics, metatranscriptomics, metabolomics, 
and metaproteomics, to understand these plant–microbe 
activity patterns for efficient organic pollutant degra-
dation. Therefore, the need of a review for application 
of biochar in rhizoremediation process has been real-
ized. ‌Given all the advantages of biochar in contaminant 
degradation and plant-growth promotion, this review 
elaborates an integrated approach which involves rhi-
zoremediation of organic contaminants such as crude oil, 
PAHs, pesticides and antibiotics, along with the applica-
tion of biochar to accelerate rhizoremediation process, 
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and plant growth, during the ecorestoration of contami-
nated soil.

Furthermore, the global biochar market is experienc-
ing significant growth, driven by increasing demand for 
sustainable agricultural practices, waste management 
solutions, and environmental remediation technologies. 
Biochar market size is estimated at USD 2.05 billion in 
2023, and is projected to grow 3.99 billion by 2032 at a 
compound annual growth rate (CAGR) of 13.9% from 
2024 to 2032 (Mandaokar et al., 2021). The biochar mar-
ket is anticipated to undergo substantial expansion, with 
its beginning worth of US $444.2 thousand predicted to 
escalate to a valuation of US $14,751.8 thousand by 2025 
(Persistence Market Research 2024).

In 2023, North America dominated the market 
accounting for over 80.0% of large-scale and medium-
sized manufacturers and holding a market share of 58.5% 
(Global Biochar Market Report 2024). In 2023, the agri-
culture sector was identified as the dominant applica-
tion segment for biochar, contributing over 77.0% of the 
total revenue, highlighting its pivotal role in driving the 
biochar market (Global Biochar Market Report 2024). 
The global biochar market classifies the type of materials 
used for biochar production into various categories, such 
as agricultural waste, manure from animals, wood-based 
biomass, and various other sources (Amalina et al. 2022). 
The category of woody biomass dominates the market, 

representing approximately 50% of the overall demand 
(Popp et  al. 2021), highlighting the utilization of ligno-
cellulosic biomass for biochar production, driven by its 
favorable properties and widespread availability. Figure 1 
illustrates the global distribution of some organic pollut-
ants and global biochar market size.

This review provides a comprehensive mechanism of 
the impact of environmental applications of biochar-
combined rhizoremediation for soils contaminated with 
organic contaminants, as well as the interactions between 
plants and biochar throughout the remediation pro-
cess. This study investigates the potential of biochar as 
a catalyst to enhance the rhizoremediation of polluted 
soil and promote the growth of microbial communities. 
Additionally, this review highlights several bioengineered 
techniques used during biochar production to enhance 
the functionality of these compounds and supporting 
sustainable environmental management. It also outlines 
potential omics approaches to assessing the impact of 
biochar applications on microbial community dynamics 
and its role in the elimination of organic pollutants, pro-
viding a field for future research on using biochar in soil 
remediation. The findings of this comprehensive analy-
sis and the insights derived from this review have the 
potential to greatly influence the progress made in tack-
ling global environmental issues, while also paving the 
way for a more sustainable rhizoremediation approach to 

Fig. 1  Map showing the global biochar market size alongside the distribution of environmental contamination caused by pesticides, microbial 
antibiotic resistome (MAR), TPHs, PAHs, and pharmaceuticals in soil (Delgado-Baquerizo et al. 2022; Pesticide Atlas, 2022; Wilkinson, et al. 2022; 
Singha and Pandey 2021)



Page 6 of 37Das and Pandey ﻿Biochar           (2025) 7:101 

managing organic contaminants. Figure 2 illustrates dif-
ferent applications of engineered biochar and its role in 
the circular economy.

2 � Different remediation techniques for organic 
pollutants

Organic pollutants negatively impact soil by affecting 
microbial populations, disturbing enzyme activity, dis-
torting the composition and structure of organic mat-
ter (Sun et  al. 2023a, b). These chemicals adhere to soil 
constituents and are often difficult to remove or degrade, 
resulting in the contamination of both surface and 
groundwater systems (Al-Hashimi et al. 2021). The physi-
cal remediation approach employs physical and mechani-
cal barriers to separate, and remove contaminants from 
the soil, including capping, soil replacement, soil wash-
ing, and thermal desorption (Rajendran et al. 2022). Soil 
replacement involves removing contaminated soil and 
replacing it with uncontaminated soil, while soil wash-
ing is a method to isolate pollutants, and thermal des-
orption uses heat to remove volatile pollutants in soil 
(Ossai et  al. 2020). Chemical remediation involves aug-
mentation, leaching, and oxidation by using phosphoric 
acid, potassium phosphate, sulfuric acid, nitric acid, and 
hydrogen chloride (Wang et  al. 2024a, b). In the pro-
cess of chemical leaching, contaminated soil undergoes 

treatment involving water, chemicals, and various fluids 
that facilitate the extraction of contaminants through 
mechanisms such as ion exchange, precipitation, adsorp-
tion, and chelation (Wang et al. 2024a, b). Although these 
remedies can be effective, they often require substantial 
energy and infrastructure, along with high toxicity and 
costs, which limit their practicality (Azuazu et  al. 2023; 
Yao et al. 2012a, b).

The biological method encompasses remediation tech-
niques that utilize living organisms, including plants and 
microorganisms, to degrade contaminants present in the 
soil (Enyiukwu et  al. 2021). Bioaugmentation, biostimu-
lation, vermiremediation, and phytoremediation are 
biological techniques used to enhance the degradation 
of contaminants (Adewoyin et  al. 2023). Bioaugmenta-
tion involves incorporating supplementary microbes to 
boost the native population, such as bacteria, fungi, and 
earthworms (Ameen and Al-Homaidan 2024). Biostimu-
lation, on the other hand, modifies the environment to 
encourage native microbial activity by the incorporation 
of oxygen, nitrogen, carbon, and phosphorus to boost 
bioremediation process (Bhuyan et al. 2023).

Furthermore, rhizoremediation can effectively reduce 
the majority of pollutants without disrupting natural soil 
activities and reduces the costs by 60–80% compared to 
conventional physicochemical remediation techniques 

Fig. 2  a Major sources of organic pollution, b harmful impact of xenobiotics in ecosystem, c engineering of biochar through chemical, physical 
and biological methods, d application of engineered biochar in remediation processes, and the feedstock used in the remediation can further be 
used in biochar production to contribute to circular economy



Page 7 of 37Das and Pandey ﻿Biochar           (2025) 7:101 	

(Mwegoha et al., 2016). Moreover, rhizoremediation has 
other advantages, including carbon sequestration, soil 
erosion management, fuelwood production, biodiversity 
preservation, and enhancement of landscape aesthetics, 
alongside contamination removal (Hu et  al. 2012; Pan-
dey et al. 2015). Additionally, indigenous microbes facili-
tate the degradation of contaminants in the rhizosphere, 
thereby reducing the risk of contaminant accumulation 
in plant tissues (Kotoky and Pandey, 2018). Furthermore, 
the plant growth-promoting attributes of these microbes 
enhance plant growth in contaminated soils while miti-
gating the oxidative stress caused by pollutants (Singha 
et  al. 2018). Comparison of different remediation tech-
niques and their cost effectiveness is listed in Table  2. 
A detailed mechanism of rhizoremediation for several 
organic contaminants is presented in the section below.

3 � Rhizoremediation as a nature based 
eco‑restoration process

Rhizoremediation involves the application of specific 
synergistic action of plants and microbes to metabolize 
and degrade contaminants in soil (Baboshin and Golov-
leva 2012). Plants employ various mechanisms such as 
phytoextraction, phytostabilization, phytovolatilization, 
rhizodegradation, rhizoextraction, and rhizofiltration 
to remove and degrade different organic pollutants (Das 
et al. 2024a, b; Das and Dash 2014). Moreover, the bac-
terial community near the rhizosphere can catabolize 
various contaminants directly due to their diverse physi-
ological attributes (Kotoky et  al. 2018). Plants such as 
Lioum multiflorum (Ryegrass) can degrade TPH pollut-
ants by up to 90% when augmented with efficient organic 
pollutant -degrading microorganisms (Das et  al. 2024a, 
b). Plant growth promoting rhizobacteria including Aci-
dobacter, Mycobacterium, Alteromonas, Pandoraea, 
Burkholderia, Dietzia, Arthrobacter, Staphylococcus, 
Streptobacillus, Kocuria, Marinobacter, Pseudomonas, 
Streptococcus, and Rhodococcus play a crucial role in pol-
lutant degradation along with supporting plant health by 
producing phyto-hormones, and protecting plants from 
pathogens (Das et al. 2024a, b; Shah et al. 2024).

3.1 � Root exudates as a key ecological driver of rhizosphere 
microbial community modulation

Root exudates are chemical substances secreted by plants 
to interact with microorganisms in the rhizosphere (More 
et al. 2020). More than 20% of the carbon sequestered by 
plants through photosynthesis is released into the rhizo-
sphere along with other compounds such as amino acids, 
phenolic compounds, organic acids, vitamins, second-
ary metabolites, polysaccharides, proteins and mucilagi-
nous substances in the form root exudates (Heuermann 
et  al. 2023). These highly complex substances can serve 

as nutrient sources for microbes establishing beneficial 
association, modulate soil structure and reduce competi-
tion from neighboring plants.

Corgié et  al. (2003) reported  that Lolium perenne L. 
cultivated in soil contaminated with petroleum hydrocar-
bons showed 86% phenanthrene biodegradation within 
3 mm from the roots, 48% in the 3–6 mm interval, and 
36% in the 6–9  mm range. The parallel bacterial gradi-
ent indicated the elevated abundances of PAH-degrad-
ing bacteria near the roots, with the highest rates of 
organic pollutant degradation and the dominant micro-
bial degraders primarily located within 3 mm of the root 
surface. Upon the introduction of root exudates from 
ryegrass, there was a notable shift in the population for 
phenanthrene degraders, predominantly towards the Act-
inobacterium, Arthrobacter spp., Pseudomonas stutzeri 
and Pseudoxanthomonas mexicana (Rohrbacher and St-
Arnaud 2016). Similarly, Medicago sativa root exudates 
promoted microbial-mediated petroleum hydrocarbon 
biotransformation, exceeding 90% in the rhizosphere 
compared to less than 50% in bulk soil and unplanted 
control soils (Eze and Amuji 2024).

Compounds like terpenoids and flavonoids released by 
plant-roots are structurally similar to aromatic hydrocar-
bons (Das et al. 2024a, b; Bisht et al. 2015). Consequently, 
structural analogy enhances the degradation of organic 
pollutants by promoting co-metabolic processes, involv-
ing the oxidation and mineralization of petroleum hydro-
carbon molecules (Eze and Amuji 2024). Also, plants 
secrete malic and citric acids acting as co-metabolites to 
enhance the bioavailability of organic contaminants (Wu 
et  al. 2017a, b). Buckner (2018) reported a significant 
reduction in TPH levels from 4330 mg kg−1 to less than 
120 mg  kg−1 over a 22-week period in soil planted with 
ryegrass.

A recent study by Hu et  al. (2018) demonstrated that 
benzoxazinoids (BXs) altered the composition of root-
associated fungal and bacterial communities while 
enhancing jasmonate signalling to strengthen plant 
defence mechanisms. Similarly, root exudates attract 
beneficial microorganisms that enhance nitrogen uptake 
by enriching diazotrophs for nitrogen fixation, improv-
ing nitrogen bioavailability, and conserving soil nitrogen. 
Phomopsis liquidambaris boosts phenolic and flavonoid 
synthesis in Arachis hypogaea (peanuts),  and stimulated 
nodulation gene expression in Bradyrhizobium, causing 
increased crop yields (Xie et al. 2022).

Volatile organic compounds (VOCs), such as acetoin 
and 2,3-butanediol, facilitate communication among 
plant-associated microbes, triggering induced systemic 
resistance (ISR) as bioprotectants (Ryu et al. 2004). More-
over, plants possess the capability to improve degrada-
tion processes via the root exudation of various enzymes, 
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such as laccases, phenol oxidases, and peroxidases. These 
enzymes promote the oxidation of different organic pol-
lutants, resulting in their decomposition into intermedi-
ate products. The enzymatic breakdown derived from 
microbial activity is acknowledged as the primary mech-
anism responsible for the degradation of different organic 
pollutants (Das et al. 2024a, b).

3.2 � Microbial mechanisms in the rhizosphere 
for contaminant removal

Bacterial sp. such as Pseudoxanthomonas, Burkholderia, 
Mycobacterium, Prevotella, Cellulomonas, Actinobacillus, 
Anaeromyxobacter, Paraburkholderia, Sphingomonas, 
Novosphingobium, Acetivibrio, Acetobacter, Cycloclasti-
cus, Microbulbifer, Gordonia, and Micrococcus, are the 
most abundant rhizospheric community involved in 
organic compound degradation (Das et al. 2024a, b; Das 
et  al. 2023; Kumari and Das 2023; Kotoky and Pandey 
2020; Singha et al. 2018). However, the majority of bac-
terial species lack the requisite enzymes for the degrada-
tion of all organic pollutants; thus, it is typically achieved 
through the application of a bacterial consortium pos-
sessing diverse enzyme systems (Kebede et  al., 2021). A 
study by Sampaio et  al. (2019) demonstrated that two 
bacterial strains, Bacillus sp. and Pseudomonas aerugi-
nosa,  successfully colonized Rhizophora mangle roots, 
enhancing plant protection, propagule germination, and 
degraded over 80% of PAHs in sediment. Similarly, Zea 
mays plants amended with bacterial consortium (Bacillus 
thuringiensis SG4 and Bacillus sp. SG2), resulted in 85% 
degradation of Cypermethrin (insecticide) in rhizosphere 
(Bhatt et  al. 2022). Additionally, during a 3-day treat-
ment period, bacteria such as Sporohalobacter orenetal, 
Oscillospira sp., and Clostridium prazmowski were able 
to break down paraquat by 86.22%, 79.35%, and 80.26%, 
respectively (Han et al. 2014).

Plant growth-promoting microorganisms (PGPMOs) 
significantly impact on the rhizosphere environment, 
enhancing the production of growth-promoting hor-
mones, enzymes, siderophores, and biosurfactants. For 
example, consortium comprising Acidocella aminolytica 
and Acidobacterium capsulatum, applied through Med-
icago sativa L., degraded up to 91% of diesel fuel in soil 
and increased plant growth by 66% within 60  days (Eze 
et  al. 2022). Organic acids produced by microorgan-
isms decreased soil pH and increased PAH solubility 
(Yesankar et al. 2023). These beneficial rhizobacteria pro-
tect the plants against diseases, provide essential nutri-
ents, and promote plant development (Oleńska et  al. 
2020). Biosurfactants, amphiphilic substances, are syn-
thesized by microorganisms to create micelles in the 
presence of PAHs, enhancing their bioavailability and 
biodegradation. Additionally, the formation of biofilms 

by the bacteria allows them to aggregate within a self-
generated adhesive material, enhancing their ability to 
thrive and adhere to contaminated surfaces (Das et  al. 
2023). Liu et al. (2015) observed an increase in the bio-
mass of Festuca arundinacea L. and the degradation of 
PAHs during phytoremediation treatments utilizing bac-
teria with plant growth-promoting traits and the ability 
to produce biosurfactants in oil-contaminated soil.

The main catabolic pathways in bacteria for break-
down of the aromatic compounds start with the ortho 
and meta-cleavage of catechol molecules (Yong et  al. 
2015). Aerobic degradation involves the activation of 
hydrocarbon molecules by the incorporation of one or 
two oxygen atoms (Boll and Heider, 2020). This process 
is facilitated by substrate-specific terminal oxygenases or 
subterminal oxidation. Four categories of enzymes are 
implicated in aromatic hydrocarbons: Rieske non-heme 
iron oxygenases (RNHO), flavoprotein monooxygenases 
(FPM), soluble di-iron multicomponent monooxygenases 
(SDM), and CoA ligases (Kumari and Das 2023). The 
activation enhances the hydrocarbon solubility in water, 
designates a reactive site, and adds an additional reac-
tive site for future reactions (Sun et al. 2022). In aliphatic 
hydrocarbons, the activated molecule is transformed into 
an alkanol, then oxidized to an aldehyde, and ultimately 
turned into a fatty acid. A fatty acid is conjugated to CoA, 
resulting in the formation of acyl-CoA, which is then 
processed by β-oxidation to produce acetyl-CoA. The 
ultimate result is acetyl-CoA, which undergoes catabo-
lism in the Krebs cycle and is completely oxidized to CO2 
(Das et al. 2023).

Enzymes, including alkane 1-monooxygenase, alco-
hol dehydrogenase, cyclohexanol dehydrogenase, and 
cyclohexanone 1,2 monooxygenase, facilitate the bac-
terial breakdown of organic chemicals found in crude 
oil-contaminated soils (Das et  al. 2023). The non-heme 
integral membrane alkane monooxygenase, which is 
encoded by alkB, plays a crucial role in the initial activa-
tion of aerobic aliphatic hydrocarbon metabolism (Gar-
rido-Sanz et  al. 2019). The genes todC, bedC, and bph 
are responsible for encoding the subunits of benzene-, 
toluene-, and biphenyl- 2,3-dioxygenase, respectively 
(Liu et  al. 2024). The ring-hydroxylating dioxygenase 
α-subunit (RHDα), which is encoded by the nah gene, 
plays a crucial role in the hydroxylation of PAHs. This 
process is followed by decarboxylation, which is facili-
tated by enzymes encoded by the dmp/xyl genes (Song 
et al. 2021).

Additionally, the Pseudomonas sp. strain ADP utilizes 
atrazine as its sole carbon source, with three key enzymes 
driving the initial stages of atrazine degradation. The 
first enzyme, AtzA, mediated the hydrolytic dechlorina-
tion of atrazine, producing non-toxic hydroxyatrazine, 
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which plays a vital role in its biological breakdown. Sub-
sequently, AtzB facilitates the deamination of hydroxy-
atrazine, forming N-isopropyl cyanuric amide. Finally, 
AtzC converts N-isopropyl cyanuric amide into cyanuric 
acid and isopropylamine. Through this pathway, atra-
zine is ultimately broken down into CO2 and ammonia 
(Roychoudhury et al. 2024). Similarly, antibiotics can be 
directly degraded by the method of antibiotic inactiva-
tion, specifically via hydrolysis, group transfer, and redox 
processes. Hydrolysis is therapeutically significant, espe-
cially for β-lactam antibiotics; however, group transfer 
methods are more varied and include modifications such 
as acyltransfer, phosphorylation, glycosylation, nucleoti-
dylation, ribosylation, and thiol transfer (Vera-Baquero 
et al. 2024).

The effectiveness of rhizoremediation is significantly 
dependent both on the optimal selection of plant species 
and genotypic varieties, which play crucial role for devel-
oping effective remediation strategies (Chaturvedi et  al. 
2023). Several biotic and abiotic parameters, including 
type of soil, pollutants concentration, pH and tempera-
ture of the soil, available organic matter and nutrients 
content, soil moisture, porosity, water holding capacity, 
available soil oxygen, solubility of contaminants, abun-
dance of indigenous microflora, and their metabolic abil-
ity, act as determining factors for variations in organic 
compound degradation (Das et  al. 2024a, b). Addition-
ally, the release of carbon and nitrogenous substances in 
the form of root exudates also plays major role in shap-
ing the microbial diversity in rhizosphere (Bhuyan et al. 
2022). Thus, the application of biochar is emerging as a 
promising strategy to address soil limitations associated 
with the rhizoremediation process during organic deg-
radation (Kumar et  al. 2024). Its high porosity, superior 
adsorption capacity, and potential for climate change 
mitigation make biochar an effective catalyst for acceler-
ating rhizoremediation processes (Ghadirnezhad Shiade 
et al. 2024). Section 4 provides a concise overview of bio-
char applications aimed at enhancing its efficiency for 
contaminant removal.

4 � Biochar as a catalyst for rhizoremediation 
of organic contaminants

Biochar, a byproduct of pyrolysis, is widely used to 
improve soil quality and treat soils contaminated with 
organic and inorganic substances (Rizwan et  al. 2023). 
Biochar is rich in nutrients like potassium, magnesium, 
calcium, and phosphorus, and can also produce dis-
solved organic material, potentially providing plants 
and microbes with accessible nutrients (Ndoung et  al. 
2021a, b). Wang et  al. (2017a, b), showed that biochar 
application significantly increased the microbial popula-
tion upto 7.5 log10 CFU  g−1. The application of biochar 

has been shown to enhance the cation exchange capac-
ity of soil (15.5–16.1 cmol kg−1), increasing proliferation 
of nitrogen-fixing bacteria (Lawson et  al. 2019; Bolan 
et  al. 2024a, b). A 6-month study found a significant 
increase in nitrogen cycling gene (nirS) in soil amended 
with biochar (10%) derived from Switchgrass pyrolyzed 
at 350 °C (Ducey et al. 2013). Biochar has been found to 
have positive effects on crop yield and productivity, with 
a reported increase of 10% in crop yield (Zhang et  al. 
2021a, b, c, d; Ren et  al. 2020). Moreover, in contami-
nated environments with low carbon content and acidic 
pH, the application of biochar, characterized by its labile 
carbon content and alkaline pH, can significantly enhance 
the relative abundance of microorganisms (Zhang et  al. 
2019). The micro- and meso-porous structures of biochar 
create an appropriate and secure habitat for microor-
ganisms. The surfaces of biochar are characterized by a 
variety of functional groups, such as carbonyls (COO−), 
carbonates (CaCO3), phosphates (PO4

3−), and additional 
alkaline compounds. These components contribute to 
an increase in soil pH, thereby fostering a more condu-
cive environment that improves nutrient bioavailability 
for both plants and microorganisms (Geng et  al. 2022). 
Biochar has considerable potential to enhance rhizore-
mediation of environmental contaminants. However, its 
effectiveness depends on various characteristics, such as 
the raw materials used and the pyrolysis temperatures, 
which can influence soil microbial responses and pollut-
ant removal efficiency in the rhizosphere (Narayanan and 
Ma 2022; Murtaza et al. 2023). The application of biochar 
in rhizoremediation for various organic contaminants 
has been discussed below.

4.1 � Application of biochar in rhizoremediation of PAH
The adsorption of PAHs onto the porous structure of bio-
char occurs due to π-π interactions between the benzene 
rings of the PAH compounds and the aromatic structures 
present in the biochar (Anyika et al., 2015) The degrada-
tion of PAHs in soil greatly affected its bioavailability, the 
activity of soil microorganisms, and the exudates released 
by plants (Singha et al. 2020; Kotoky et al. 2020; Das et al. 
2024a, b). Further the application of biochar stimulates 
microbial activity and plant growth, thereby enhancing 
PAH bioremediation process (Kong et al. 2018).

It has been reported that even the application of 2% 
biochar significantly enhances rhizoremediation by 
Lolium perenne, demonstrating the highest efficacy in 
PAH removal (Li et al. 2020a, b, c, d, e, f ). Beesley et al. 
(2011) demonstrated that the use of hardwood-derived 
biochar reduced the levels of accessible PAHs by more 
than 50%. In a study, maize and wheat straw biochars 
pyrolyzed at 300  °C and 500  °C were applied to PAH-
contaminated soils, followed by a 90-day growth period 
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of Lolium multiflorum L. The results suggested that 
500  °C wheat straw biochar, with its greater surface 
area and nutrient content, significantly enhanced PAH 
rhizoremediation, reducing PAHs by 62.5% (Guo et  al. 
2024). Additionally, rhizoremediation of PAHs spiking 
polluted soil using 5% biochar and 5% compost and a 
consortium of Actinobacter bouvetii, Stenotrophomonas 
rhizophila, and Pseudomonas poae, and Pseudomonas 
rhizosphaerae, resulted in the removal of 85% PAHs in 
raygrass rhizosphere (Hussain et  al. 2018). Moreover, 
the health risks associated with PAHs in vegetables were 
assessed by growing Brassica chinensis L. (Chinese cab-
bage) in both biochar-amended soil (derived from wal-
nut shells and corn cobs) and control soil. The biochar 
amendments significantly reduced the dissipation of 
Σ16PAHs up to 73.59–77.01%, which primarily immo-
bilized the PAHs within biochar micropores (Yang et al. 
2022). Additionally, Li et  al. (2020a, b, c, d, e, f ), evalu-
ated the combined use of biochar and ryegrass for the 
degradation of PAHs, including Ph (phenanthrene), Py 
(pyrene), and B[a]P (benzo[a]pyrene), in a root box. Sub-
sequently after 100  days, the biochar-rhizosphere zone 
exhibited greater PAHs removal (49–51%) as compared 
to the rhizosphere alone (41–49%) and biochar alone 
(39–44%). Similarly, biochar derived from sewage sludge 
significantly enhanced lettuce biomass and lowered PAH 
concentrations in soil by 58–63%, as well as reduced the 
uptake of 16 PAHs by 56–67% (Zhang et al. 2021a, b, c, 
d). Biochar applications also decreased the PAH uptake 
in cucumbers by 44–57% (Brennan et al. 2014). In addi-
tion, biochar synthesized from pine needles lessened the 
PAH uptake in rice, due to a decrease in freely available 
PAHs in the soil after the application (Zhu et al. 2018).

4.2 � Application of biochar in rhizoremediation of crude oil
Petroleum constitutes a multifaceted amalgamation pre-
dominantly consisting of saturated and aromatic hydro-
carbons, resins polymers, and asphaltenes (Liu et  al. 
2014). The utilization of biochar in contaminated soils 
demonstrates advantages in the removal of petroleum 
hydrocarbons when compared to control conditions 
(Dike et  al. 2021; Dike et  al. 2022a, b; Wei et  al. 2024). 
Aziz et al. (2020) and Wang et al. (2017a, b) reported that 
biochar treatment resulted in higher removal of total 
petroleum hydrocarbon (TPH), ranging from 47% to 
76%, compared to the control treatment (28–36%).

Petroleum contaminants in soil adversely impact 
microbial activity and diversity, as well as reduce plant 
growth, development of root, stem, and grain produc-
tion (Ullah et  al. 2021). In a study the application of 
sugarcane bagasse (SB) biochar along with Bacillus sp. 
MN54, showed higher growth of maize (Zea mays L.) in 
diesel-contaminants soil. Co-supplementation increased 

physiological (25–48%) and agronomical (38–47%) traits 
and 77% of the petroleum hydrocarbons were removed 
in biochar treated plants as compared to the control (Ali 
et  al. 2021). Additionally, the effects of biochar amend-
ment with ryegrass resulted  in enhanced removal of 
TPHs and increased microbial counts, with total n-alkane 
removal rate of 45.83% (Han et  al. 2016). Hussain et  al. 
(2022) reported that the combination of biochar and 
ryegrass for phytoremediation resulted in a 65% hydro-
carbon removal rate, significantly higher than the con-
trol (47%). Similarly, Hashmi et al. (2024) and Tammeorg 
(2017) observed that biochar-assisted phytoremediation 
increased hydrocarbon removal by 32–45% as compared 
to phytoremediation without biochar. Furthermore, Hus-
sain et al. (2022) and Saeed et al. (2021) noted that treat-
ments incorporating both biochar and plants significantly 
enhanced hydrocarbon removal relative to phytoremedi-
ation alone. Yousaf et al. (2022) assessed biochar-assisted 
phytoremediation using white maize, clover, ryegrass, 
alfalfa, and wheat in combination with wood-chip bio-
char. The study found that hydrocarbon degradation 
was higher in the biochar-assisted treatments (34–68%) 
compared to treatments using only biochar (27%) or phy-
toremediation (9–60%) (Barati et al. 2017). The reduction 
in TPHs and the average microbial metabolic rate were 
elevated in soils amended with biochar, with increases 
of 21.76% and 37.73% for barley biochar and 20.36% and 
45.18% for oat biochar (Barati et  al. 2017). In another 
study, remediation of aged TPH-contaminated soil was 
conducted using Italian ryegrass with 5% compost and 
5% biochar with an immobilized microorganism. The 
results demonstrated that the highest TPH removal (40%) 
was achieved with the combined application of these 
amendments (Curiel-Alegre et  al. 2024). This enhanced 
TPH removal was associated with increased rhizospheric 
activity, as evidenced by substantial increases in root bio-
mass (85–159%) and bacterial counts (Yuan et al. 2023). 
Rhizoremediation of petroleum-contaminated soil using 
Vetiveria zizanioides L. combined with Acinetobacter 
venetianus and biochar resulted in 50–70%TPH removal 
within 6 months (Lin et al. 2022).

4.3 � Application of biochar in rhizoremediation 
of pesticides

Pesticides are harmful chemicals extensively used to 
manage, eliminate, repel, or control pests as well as 
unwanted plants and animals, or microorganisms in agri-
culture cultivation systems (Hashmi 2021). Biochar appli-
cation enhances pesticide sorption in soil and increases 
its bioavailability for soil microorganisms (Khalid et  al. 
2020). Deng et  al. (2014) demonstrated that increas-
ing the concentration of biochar to 5% significantly 
reduces atrazine concentrations in soil. Yang et al. (2010) 
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observed that application of biochar derived from cotton 
straw led to decreased levels of chlorpyrifos and fipronil 
in soil and lowered pesticide accumulation in Allium 
tuberosum (Chinese chives). Additionally, biochar pro-
moted the polymerization of organic molecules, and 
potentially increased soil organic carbon and productiv-
ity (Han et al. 2020; Awad et al. 2012). Maize plants cul-
tivated in soil contaminated with 100 and 200 mg kg⁻1 of 
chlorpyrifos (CP) experienced substantial toxicity, with 
an 84% reduction in growth at 200  mg  kg⁻1 CP. Never-
theless, the application of compost and biochar at 0.50% 
increased the fresh weight of maize by 2.8-fold and four-
fold, respectively (Gray et al. 2023). The effectiveness of 
metribuzin (MB) remediation using a bacterial consor-
tium (Rhodococcus rhodochrous, Bacillus tequilensis, 
Bacillus aryabhattai and Bacillus safensis) immobilized 
on biochar demonstrated 96% MB degradation, while 
only 29.3% degradation was observed in untreated soil 
(Wahla et  al. 2019). Karthikeyan et  al. (2021) provided 
comprehensive insights into the use of trees, shrubs, and 
grasses, for the degradation of pesticides in soils. Specific 
plants, such as certain Cucurbitaceae cultivars, exhibited 
higher uptake of DDE, attributed to their elevated exu-
dation of LMW (low molecular weight) organic acids 
(Chandra et al. 2017). Similarly, results were obtained for 
lindane (Abhilash et al. 2013), and cypermethrin (Dubey 
and Fulekar 2013). Further, another study investigated the 
impact of Sudan grass root exudates on organochlorine 
pesticide (OCP) degradation and soil microbial charac-
teristics and results exhibited that root exudates signifi-
cantly enhanced OCP removal, achieving up to 79.32% 
degradation (Zhou and Pan 2023). Yu et  al. (2009), 
reported that adding 1% biochar to soil led to a signifi-
cant reduction in plant absorption rates of carbofuran 
and chlorpyrifos, measured at 25% and 10%, respectively, 
compared to soil without biochar.

4.4 � Application of biochar in rhizoremediation 
of antibiotics

Antimicrobial resistance is a global health concern, exac-
erbated by horizontal gene transfer driven by mobile 
genetic elements (MGEs), which increases the transmis-
sion rate of antibiotic resistance genes among microbial 
communities (Pai et  al. 2023). A study found that bio-
char pyrolyzed at temperatures above 500 °C was signifi-
cantly more effective at absorbing antibiotics (ceftiofur 
and florfenicol) compared to biochar pyrolyzed at lower 
temperatures (Zaman et al. 2023). Additionally, research 
revealed that a single-stage system can achieve a 75% 
removal of tetracycline by utilizing 63.0  g of magnetic 
chicken-bone biochar over a period of 12  h. However, 
in a  two-stage stirred adsorber, magnetic chicken-bone 
biochar could effectively eliminate 96% of the targeted 

tetracycline (100 mg L⁻1 solutions) within 180 min (Olad-
ipo et al. 2018). A recent study combined waste-fungus-
chaff-biochar (WFCB) with Herbaspirillum huttiense to 
degrade the antibiotics enrofloxacin (ENR) and oxytet-
racycline (OTC). The results showed that this combined 
material effectively removed OTC by 41.9% and ENR by 
40.7% (Katiyar et al. 2022).

A recent study showed that the presence of 131 ARGs 
was significantly reduced by 0.5% (w/w) rice straw bio-
char in unplanted soil. However, the effectiveness of this 
reduction was less noticeable in soil containing Brassica 
chinensis L. plants (Hashem et  al. 2020). Additionally, a 
study showed that the bacterium Microbacterium sp. 
WHC1 was able to remove 98% of ciprofloxacin (CIP) 
in the presence of root exudates from Eichhornia cras-
sipes (Xue et al. 2022). The incorporation of biochar into 
the soil was found to significantly reduce the frequency 
of gene transfer (conjugation) between bacteria, thereby 
effectively inhibiting the replication of ARGs. This high-
lights the strong inhibitory effect of biochar on ARGs 
through its interaction with bacteria (Shah, 2024). Wang 
et al. (2024a, b) found that microbial degradation intensi-
fied closer to plant roots, as rhizomes enhanced the levels 
of dissolved organic carbon and dissolved oxygen, which 
in turn increased microbial abundance and improved 
sulfonamide degradation. Brassica juncea and Lolium 
multiflorum were able to remove 28.00–92.89% of tetra-
cycline and 88.80–99.50% of sulfonamides, respectively 
(Cui et  al. 2021). Guo et  al. (2020) showed Myriophyl-
lum aquaticum removed 88% and 99% of tetracycline at 
a concentration ranging from 100 to 10,000 μg L⁻1 over 
a short growth period of 7  days. Adesanya et  al. (2020) 
investigated the sorption of sulfamethoxazole onto the 
roots of cattail and switchgrass in a laboratory-scale 
study. Additionally, Arabidopsis thaliana was observed 
to metabolize a significant portion of sulfamethoxazole, 
leaving just 1.1% of the original compound after 10 days 
(Huynh and Reinhold 2019).

Figure 3 depicts the applications of biochar in organic 
contaminant degradation and plant growth promotion 
along with microbial growth. Table  3 shows the appli-
cation  of different biochar amendments used in reme-
diation of different organic contaminants and their 
remediation efficiencies.

5 � Impact of biochar application on soil microbial 
community structure and their functional 
diversity

To analyze various enzyme activities and gain a com-
prehensive understanding of the genetic and metabolic 
factors related to the impact of biochar application in 
bioremediation studies, some omics approaches are 
described below.
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5.1 � Metagenomics analyses
Metagenomics is an innovative approach to studying 
microorganisms in specific environments by analyzing 
their functional genes (Kouselya et  al. 2022). Cui et  al. 
(2024) conducted metagenomic analyses of field-aged 
biochar within the soybean rhizosphere. The findings 
demonstrated an elevated abundance of Bradyrhizobium, 
suggesting that aged biochar improves nitrogen availabil-
ity and modifies nitrogen-cycle microbial communities, 
presenting a feasible strategy for enhancing nitrogen sup-
ply in continuous soybean cropping systems.

However, Zhao et al. (2022a, b) explored the effects of 
rape straw biochar (1, 2, and 4% w/w) on the rhizore-
mediation of PAH-contaminated soil using ryegrass. 
Application of biochar altered the rhizosphere bacterial 
community, increasing α-diversity and the abundance of 
Pseudomonas and Zeaxanthinibacter. The bacterial com-
munity showed strong correlation with PAH degrada-
tion. Further, a 150-day pot experiment was conducted 
utilizing rice husk biochar to facilitate the remediation 
of soils that are co-contaminated with PAHs and heavy 
metals employing alfalfa (Li et al. 2024a, b, c, d, e, f ). The 
application of biochar resulted in a progressive increase 
in the population of PAH-degrading microorganisms, 

demonstrating a positive correlation with the reduction 
of PAHs. The intervention led to a decrease in bacterial 
richness and diversity; however, it promoted the pro-
liferation of significant genera including Steroidobac-
ter, Bacillus, Mycobacterium and Sphingomonas, which 
played a role in the degradation of PAHs and the immo-
bilization of heavy metals.

Hydrocarbon pollutant soil sites can further act as res-
ervoirs for antibiotic resistance genes (ARGs) (Das et al. 
2021a, b). Field trials with Brassica juncea and Lolium 
multiflorum demonstrated that biochar application sig-
nificantly altered the distribution ARGs and effectively 
restricted their transmission from the rhizosphere to the 
root, leading to a 1.2–2.2% reduction in ARG abundance. 
Microbial community composition played a crucial role 
in this process, with bacterial communities account-
ing for 43% of the observed ARG variation. Further-
more, metagenomic analysis of antibiotic-contaminated 
agricultural soil indicated that certain bacterial taxa, 
including Steroidobacter (Proteobacteria), Iamia, Parvi-
terribacter, and Gaiella (Actinobacteria), exhibited strong 
positive correlations with sulfonamide degradation, con-
tributing to an 8–26% reduction in antibiotic residues fol-
lowing biochar application (Zhang et al. 2021a, b, c, d). In 

Fig. 3  Applications of biochar in enhancing the degradation of organic contaminants, improving bioavailability, promoting plant growth and stress 
management, supporting microbial proliferation and biofilm formation, enhancing nutrient availability, capturing carbon, and contributing 
to geochemical cycling
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another investigation, the addition of 5% biochar derived 
from maize showed the enhancement of Proteobacteria 
abundance 73.54% ± 3.11 and 67.26% ± 1.48%, respec-
tively, in the rhizosphere of Thalassia hemprichii (Zhang 
et  al. 2021a, b, c, d). Additionally, biochar derived from 
rice straw (500 °C) in a biostimulation treatment resulted 
in a substantial increase in the presence of various bac-
terial phylum/classes, including Gammaproteobacteria, 
Actinobacteria, Sphingomonadales, and Alphaproteobac-
teria, in crude oil contaminated soil, with a degradation 

rate of 71.0% (Tang et al. 2021). The presence of biochar 
can lead to higher populations of certain bacteria, like 
Clostridium, Bacillus, Sporomusa, Desulfosporosinus, and 
Alicyclobacillus, which belong to the Firmicutes and Bac-
teroidetes in plants rhizosphere (Sarma et al. 2024).

5.2 � Transcriptomics analyses
Transcriptomics involves the use of all RNA sequences 
corresponding to DNA from gene coding regions. This 
is achieved through various technologies like RNA-seq, 

Table 3  Biochar amendments used in remediation of different organic contaminants

Pesticides

Contaminants Biochar Feedstock Remediation (%) Reference

Carbofuran and chlorpyrifos Wood chip residues 51.00 and 44.00 Yu et al., (2009)

Deisopropyl atrazine Poultry litter 23.31 Uchimiya et al., (2010)

Simazine and atrazine Green waste 58.75 and 34.25 Zheng et al., (2010)

Pentachlorophenol Rice straw 96.25 Lou et al., (2011)

Dibromochloropropane Almond shell 100 Klasson et al., (2013)

Simazine Hardwood residues 85.65 Jones et al., (2011)

Pentachlorophenol Bamboo residues 42.00 Xu et al., (2012)

Bentazone and aminocyclopyrachlor Hardwood chip 50.00 Cabrera et al., (2014)

Sulfamethazine Plant bur cucumber 86.00 Rajapaksha et al., (2014)

MCPA Wooden box residues 150.00 Muter et al., (2014)

Antibiotics residues

Sulfamethazine Wood chip residue 27 Teixidó et al., (2011)

Tetracycline Rice straw 71.18 Liu et al., (2012)

Sulphamethoxazole Bamboo biomass 76 Yao et al., (2012a, b)

Methyl-pyrimidine Sugarcane bagasse 97 Qin et al., (2019)

Naproxen Agriculture residues 95 Mojiri et al., (2019)

Diclofenac Agriculture residues 96 Mojiri et al., (2019)

Ibuprofen Agriculture residues 98 Mojiri et al., (2019)

Thiazole Sugarcane bagasse 61.94 Qin et al., (2019)

Tetracycline Rape stalk residues 37.97 Tan et al., (2019)

Levofloxacin Maize residues 67.55 Chen et al., (2019)

Norfloxacin, Pine residues 50.34 Pan, (2020)

Aromatic hydrocarbons

Phenanthrene, 2–4-dichlorophenol Wood Chip residue 43.70% and 84.7% Gu et al., (2016)

PAHs Wheat straw 74.81% Cao et al., (2016)

PAHs Coconut waste residues 
and orange waste residues

34.88–72.32% De Jesus et al., (2017)

PAHs Sawdust and wheat straw 3-ring PAHs by 69.95% and 4-, 5-, 
and 6-ring PAHs by 45.96%, 37.92%, 
and 30.66%

Kong et al., (2018)

PAHs Maize straw and bamboo residues 84.31% Rombolà et al., (2019)

Di-chlorophenyl-dichloroethylene (DDE), 
pyrene and polychlorinated biphenyl

Wood Chip residue 37% and 41% Li et al., (2019)

PAHs Maize straw 82.71% Li et al., (2019)

PAHs Sludge derived residue 87% Hung et al., (2020)

Crude oil Walnut shell and pine wood chip 75 Mukome et al., (2020)

PAHs Wood chip residues 97 Ukalska-Jaruga et al., (2020)
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microarray, or real-time PCR (Hrdlickova et  al. 2017). 
Plants exposed to the herbicide atrazine (ATZ) undergo 
significant transcriptomic changes to detoxify and 
degrade the compound. RNA sequence analysis of Med-
icago sativa growing in aztrazine contaminated soil, 
revealed upregulated genes linked to oxidation–reduc-
tion, conjugation, hydrolysis, and cysteine biosynthe-
sis (Zhang et al. 2016). Additionally, Hewitt et al. (2023) 
demonstrated that biochar-amended soils enhance 
microbial and plant root gene expression, promoting 
soil and plant health. Beneficial microbial genes, includ-
ing those involved in nitrogen fixation (nifH), nutrient 
cycling (amoA, narG), and biodegradation (PAH-RHDα), 
were upregulated. Gene ontology analysis revealed 
enrichment in nitrogen metabolism, organic compound 
metabolism (PAH), biosynthesis of peptides, and other 
organic macromolecules, and oxidoreductase activ-
ity, suggesting the potential application of biochar to 
improve rhizoremediation and soil health sustainably. 
Thereafter, Yang et al., (2024) showed that the transcrip-
tome analysis of tobacco leaves at 60 and 100  days in a 
pesticide-contaminated environment identified 6561 dif-
ferentially expressed genes (DEGs) in response to differ-
ent biochar application rates (0, 600, and 1800 kg ha–1). 
KEGG pathway analysis revealed that essential path-
ways, such as carbon fixation (ko00710), photosynthesis 
(ko00195), and starch and sucrose metabolism (ko00500), 
exhibited significant upregulation at the optimal biochar 
dosage (600  kg ha–1) while showing downregulation at 
the elevated dosage (1800 kg ha–1).

A biochar-intensified phytoremediation experiment 
assessed maize and wheat straw biochars (pyrolyzed 
at 300  °C and 500  °C) for PAH removal from ryegrass 
(Lolium multiflorum L.)-polluted soil. KEGG analysis 
showed upregulation of key PAH degradation pathways, 
including benzoate (ko00362) and PAH degradation 
(ko00624), highlighting biochar’s role in enhancing rhizo-
sphere-mediated bioremediation (Guo et al. 2024). Addi-
tionally, Wu et al. (2024) utilized high-throughput qPCR 
and sequencing to study the rhizosphere of pakchoi 
(Brassica chinensis) treated with biochar derived from 
composted pig manure. Their analysis demonstrated a 
significant reduction in the total abundances of ARGs 
and mobile genetic elements (MGEs) in soils amended 
with biochar compared to those treated with compost. 
This finding highlights the potential of biochar as an 
effective strategy for mitigating the spread of antibiotic 
resistance within agricultural ecosystems. Addition-
ally, the biochar-treated plants exhibited upregulation of 
pathways related to plant-pathogen interactions, unsat-
urated fatty acid biosynthesis, fatty acid metabolism, 
tryptophan metabolism, GnRH signalling, and antigen 
processing and presentation (Zhu et al. 2021).

5.3 � Proteomics analysis
Proteomic analysis, also referred to as proteomics, 
involves the systematic process of identifying and quan-
tifying all the proteins present in a biological system at 
a specific condition (Al-Daffaie et al. 2024a, b; Pan et al. 
2024). The metaproteomic examination of the microbial 
community in soils contaminated with 2,4-dichlorophe-
noxy (2,4-D) reveals that a minimum of two species are 
associated with the biodegradation of chlorobenzene. 
Furthermore, it was observed that 2,4-dichlorophe-
noxyacetate dioxygenase, which plays a role in the deg-
radation of 2,4-D, is expressed by indigenous bacterial 
populations (Mishra et  al. 2021). A recent study utiliz-
ing culture-dependent community proteomics investi-
gated alterations in the microbial assemblages present 
in soil contaminated with organic pollutants. The find-
ings indicated that the soil microbial community exhib-
its increased complexity in contaminated soils relative to 
untreated soil (Stefani et al. 2015). Bacillus sp. was preva-
lent in both communities, while other species, including 
Ralstonia solanacearum, Synechococcus elongatus, and 
Clostridium sp., were absent in the non-contaminated 
soil (Stefani et al. 2015). A subsequent investigation into 
the bioremediation of organic pollutants revealed that 
compost-assisted bioremediation was primarily facili-
tated by Sphingomonadales and uncultured bacteria. 
These microorganisms exhibited significant expressions 
of catabolic enzymes, including catechol 2,3-dioxygenase, 
cis-dihydrodiol dehydrogenase, and 2-hydroxymuconic 
semialdehyde dehydrogenase. A comparable metapro-
teomic analysis of toluene-amended soil and enriched 
cultures containing toluene and soil extracts indicated 
that numerous proteins are common between the two 
toluene-amended communities. In comparison to the 
glucose-amended soil serving as the control, there was 
a notable increase in the expression of glutamine syn-
thetase, ABC transporters, extracellular solute-binding 
proteins, and outer membrane proteins within the tolu-
ene-amended communities, suggesting their potential 
role in the removal of toluene from bacterial cells (Wil-
liams et al. 2010).

5.4 � Metabolomics analysis
Metabolomics involves the study of metabolome, which 
encompasses all the metabolites produced by cells 
(Rathore and Shakya, 2024). Li et al. (2023) observed that 
oil pollution markedly altered the composition of soil 
microorganisms and metabolites, leading to an increase 
in the relative abundance of organic pollutant biodeg-
radation and metabolism. Another study analyzed the 
changes in the metabolome of ryegrass in petroleum 
hydrocarbon contaminated soil in presence of biochar 
and urea amendments. Results indicated that biochar 
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and urea activated the putative petroleum hydrocarbon 
catabolic pathway, involving naphthalene and anthracene 
degradation (Li et al. 2020a, b, c, d, e, f ). Another study 
highlighted the positive effects of sewage sludge biochar 
(SSBC) on wheat growth and its role in enhancing toxic 
tolerance processes. Metabolome analysis identified key 
pathways involved in the metabolism of proteins, fatty 
acids, and carbohydrates, and noted significant upregu-
lation of glyoxylate and dicarboxylate metabolism, naph-
thalene and anthracene degradation, as well as butanoate, 
pyruvate, and glycolysis/gluconeogenesis pathways. This 
heightened metabolic activity facilitated a more efficient 
microbial response to petroleum hydrocarbons, resulting 
in a substantial 78.6% reduction of these contaminants in 
the soil (Kong et  al. 2019). The combination of biochar 
and plant roots had a significant impact on the metabo-
lism of sucrose and starch, leading to an enhancement in 
the diversity of soil metabolites which improves bacterial 
resilience to stress caused by PAHs and its elimination 
from the soil (Li et al. 2020a, b, c, d, e, f ).

Similarly, Li et  al. (2020a, b, c, d, e, f ) conducted a 
root-box experiment using ryegrass in combination with 
maize-straw-derived biochar to examine the PAH deg-
radation network and its integration with soil carbon 
cycling. The metabolomic analysis demonstrated that 
biochar application significantly upregulated upstream 
functional genes associated with PAH degradation, such 
as PAH dioxygenase large-subunit, estradiol-dioxygenase, 
aldehyde dehydrogenase, naphthalene 1,2-dioxygenase 
subunit alpha, 1,2-dihydroxy naphthalene dioxygenase, 
2-hydroxy chromene-2-carboxylate isomerase, and trans-
o-hydroxy benzylidene pyruvate hydratase-aldolase. 
Additionally, low-molecular-weight metabolites gener-
ated during the degradation of PAH (phthalate, benzoate, 
salicylaldehyde, and 4-hydroxy-benzoate) were incorpo-
rated into the soil carbon metabolic network, serving as 
carbon and energy substrates for microbial growth. The 
combined effects of biochar and plant roots modulated 
key downstream metabolic pathways, including that of 
carbohydrate, amino acid, and lipid metabolism (Shu 
et al. 2022; Badejo et al., 2014; Menezes et al., 2017). Lipid 
metabolism was identified as a microbial strategy to miti-
gate pollution stress (Shu et  al. 2022), while amino acid 
metabolism, particularly glutathione metabolism, con-
tributed to detoxification and stress tolerance within the 
rhizosphere (Badejo et al., 2014). Carbohydrate metabo-
lism, essential for energy production and molecular 
transformation, was notably stimulated under the com-
bined influence of biochar and rhizosphere interactions, 
counteracting the inhibitory effects of pollution and fur-
ther facilitating efficient PAH degradation (de Menezes 
et al. 2017; Li et al. 2020a, b, c, d, e, f ). Figure 4 illustrates 
the different applications of biochar in plant–microbe 

interactions, microbial organic contaminant degradation 
pathways and several omics approaches to determine the 
microbial community and metabolic pathways and their 
related genes.

6 � Biochar production processes and advanced 
engineering strategies for enhanced 
degradation of organic pollutants

The production of biochar from diverse feedstocks relies 
on a range of thermochemical conversion processes, 
with pyrolysis, torrefaction, hydro-thermal carboniza-
tion, gasification, and flash carbonization being the most 
prominent methods (Muh et al. 2021; Singh Yadav et al. 
2023). These thermochemical processes, in combination 
with engineering techniques, enable the manufacture of 
biochar with functional and beneficial attributes, which 
make it efficient for application in various environmen-
tal and industrial settings (Zou et  al. 2022). Biochar 
engineering involves enhancing its substance adsorption 
capacity through physical, chemical, and morphological 
techniques (Whitman et al. 2015). These techniques can 
improve surface area, pore volume, aromaticity, oxygen-
containing functional groups, and ion exchange capabili-
ties (Chen et  al. 2024). Physical techniques like gas and 
steam activation, pressure application, electrochemi-
cal processes, ultraviolet treatment, ultrasound, plasma 
exposure, and thermal treatment improve physicochemi-
cal properties (Sajjadi et  al. 2019). Chemical alteration 
procedures, such as acids, metal salts, oxides, and alkalis, 
can be executed independently or combined with physi-
cal methods (Gao et al. 2023). Biological alteration of bio-
char can improve microbial or enzymatic activity on its 
surface (Kong et al. 2023a, b). Figure 5 shows the differ-
ent biochar feedstocks and their preparation mechanism.

6.1 � Biomass selection
The intrinsic properties of biomass significantly impact 
the production and characteristics of biochar through 
catalytic mechanisms during pyrolysis (300–900 °C) (Lee 
et  al. 2022). Consequently, biomass with high lignocel-
lulosic and non-lignocellulosic content exhibits distinct 
attributes in the resulting biochar (Elsaddik et al. 2024). 
The main sources of potential lignocellulose biomass for 
biochar formation include agronomic waste, wood lefto-
vers, and forest biomass (Rangabhashiyam and Balasu-
bramanian 2019). Such feedstocks are commonly utilized 
to produce nano-biochar (Bhandari et al. 2023), owing to 
its potential applications in carbon capture and storage, 
energy production, and the remediation of organic con-
taminants (agrochemicals, pharmaceuticals, and various 
inorganic and organic substances) (Senthil Rathi et  al. 
2024). The dominant constituents of these biomasses 
are cellulose (25–50 wt%), hemicellulose (15–40 wt%), 
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lignin (10–40 wt%), and minerals (1–15 wt%) (Deng 
et al. 2023). Cellulose is utilized for the removal of anti-
biotics, and other pharmaceutical pollutants from water 
and soil (Chandel et al. 2023). Chemical modifications to 
cellulose enhance adsorption capacity for contaminants, 
but source and extraction procedure significantly impact 
lignocellulosic biomasses’ adsorption characteristics, 
hydrophilicity, functionality, and reactivity (Agustin et al. 
2022; Kumar et  al. 2024). Moreover, biochar produced 
from herbaceous and agro-industrial feedstocks showed 
the highest CO₂ capture efficiency at 600–700  °C, with 
sono-aminated Miscanthus and switchgrass achieving 
a 200% improvement due to large surface area (303–
325 m2  g–1), high carbon content (82–84%), and low 

ash content (4–5%), optimizing its adsorption capacity 
(Chatterjee et al. 2019).

Nano-biochar obtained from oak wood exhibited a 
specific surface area of 305 m2  g−1 and demonstrated 
effective adsorption of acetone, cyclohexane, chloro-
form, ethanol, and toluene, achieving an adsorption rate 
ranging from 23.4 to 103.4 mg g−1 (Sani et al. 2023). The 
biochar material subjected to ball milling demonstrated 
adsorption abilities of 100.3 and 57.9  mg  g−1 over the 
elimination of the antibiotic sulfamethoxazole and sul-
fapyridine, respectively (Huang et  al. 2020). Similarly, 
peanut shell nano-biochar treated with goethite showed 
enhanced hetero-aggregation  and increased adsorption 
rates, and demonstrated 99.4% trichloroethylene removal 

Fig. 4  Different applications of biochar in plant–microbe interactions, microbial organic contaminant degradation pathways and several omics 
approaches to determining the microbial community and metabolic pathways and their related genes



Page 18 of 37Das and Pandey ﻿Biochar           (2025) 7:101 

Fig. 5  Biochar production through several feedstocks, preparation processes and their mechanism of production
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efficiency in just 5 min (Xiao et al. 2020). Additionally, the 
viability of supplying plants with slow-release basic micro 
and macronutrients was investigated using biochar-based 
nanocomposites generated from maize waste (Ghassemi-
Golezani and Rahimzadeh 2022). Moreover, utilizing 
these biomasses for biochar production, which are oth-
erwise lignocellulosic wastes, can contribute to achiev-
ing several SDGs goals, including Objective 3 (Optimal 
Health and Well-being), Objective 6 (Uncontaminated 
Water and Sanitation), Objective 7 (Affordable and clean 
energy), Objective 13 (Climate Action), and Objective 
15 (Sustainable Life on Earth) (Chaubey et al. 2023). The 
detailed overview of biochar application, aligned to sev-
eral SDG objectives, are listed in Table 4.

6.2 � Effect of pyrolysis temperature on biochar 
for enhanced removal of contaminants

Pyrolysis is the thermal breakdown of organic substances 
in an oxygen-deprived atmosphere, specifically within 
the temperature range of 250–900 °C (Puppa et al. 2020). 
In addition to flash and vacuum pyrolysis, the pyrolysis 
process has been categorized into slow, intermediate, and 
rapid modes (Al-Rumaihi et al. 2022). Fast pyrolysis is a 
rapid thermal processing method used to rapidly pulver-
ize biomass with a moisture level below 10%, maintaining 
temperatures between 850 and 1250 °C. Slow pyrolysis is 
distinguished by a significantly lower heating rate, typi-
cally around 5–7  °C/min, at temperatures ranging from 
450 to 500 °C. Slow pyrolysis, a process with an extended 
residence time and gaseous vapor release, reduces harm-
ful emissions, making it eco-friendly and beneficial for 
soil restoration and effluent adsorption (Harussani and 
Sapuan 2024; Zhang et al. 2018). High-temperature bio-
char offers several advantages, including a large surface 
area, high cation exchange capacity, and elevated pH lev-
els. Rafiq et al. (2016), investigated the influence of pyro-
lytic temperatures on the carbon level in maize stover 
biochar, revealing that increasing temperatures lead to a 
rise in carbon content from 45.5 to 64.5%. The specific 
surface area analysis found that date palm biochar pro-
duced at 700 °C had an SBET of 249.130 m2/g, 122 times 
higher than biochar produced at 300  °C (SBET = 2.04 
m2/g) (Elnour et  al. 2019). High temperatures during 
pyrolysis enhances microporosity by releasing volatile 
compounds, opening surface centers, and creating new 
pores (Yaashikaa et al. 2020). Paul et al. (2024) reported 
that rice straw biochar, produced through thermal pyrol-
ysis with Fe(NO3)3, significantly adsorbs guaiacol, ani-
sole, and phenol due to its larger pore volume and surface 
area (3–35  mg/L for 0.009  g of biochar). Zhang et  al. 
(2023), utilized magnetic functionalized biochar (MF-
BC) from rice trash to eliminate tetracycline antibiotics 
and achieved a 96.02% adsorption rate on the adsorbent 

surface. Additionally, the alkali-active porous biochar 
was prepared at a high temperature of 850 °C using corn-
cob xylose residue, which showed adsorption capabili-
ties of 1492 mg g−1 for sulfamethoxazole with a removal 
capacity of 98.52% (Li et al. 2022a, b).

However, when biochar is produced at lower tempera-
tures with an oxygen concentration of 20%, it is crucial to 
enhance its properties by incorporating additional active 
sites and ensuring a stable carbon–oxygen structure. 
Moreover, one of the key characteristics of biomass feed-
stock is the moisture content, which influences bio-char 
synthesis (Tomczyk et al. 2020). Thus, the importance of 
maintaining low moisture content in biomass is preferred 
for biochar production (Das et  al. 2021a, b; Yaashikaa 
et  al. 2020). Mohamed et  al. (2021) reported that bio-
char produced from microwave pyrolysis (300  °C) using 
switchgrass biomass with K3PO4 exhibited a robust nega-
tive net global warming potential (GWP) ranging from 
159 to 223 kg CO2-eq/1000 kg. However, slow pyrolysis, 
at a low heating rate, proved to minimize the need for 
secondary pyrolysis and thermal cracking, thereby maxi-
mizing the formation of biochar as the primary product 
(Tan et al. 2023). Zhang et al. (2020) studied the biochar 
made from rice straw pyrolyzed at 600  °C achieved bio-
degradation rates ranging from 40.00% to 58.84% for 
some PAHs with 3–6 rings. Similarly, Yoon et al. (2021) 
evaluated grape pomace biochar (GP-BC) produced at 
350  °C with a surface area of 0.25 m2  g–1, an H/C ratio 
of 0.905, 1.94% K content, and an adsorption capacity for 
cymoxanil (CM) of 161  mg  g–1. Similarly, low-tempera-
ture sugarcane biochar achieved ~ 70% thiamethoxam 
removal within 60 min.

6.3 � Gasification methods for enhanced removal 
of contaminants

Biomass gasification is a technique involving the partial 
oxidation of biomass at elevated temperatures, typically 
ranging from 700 to 900 °C (Giglio et al. 2021). The gasi-
fication procedure yields a mixture of products, including 
10% biochar, 5% bio-oil, and 85% syngas (Adeniyi et  al. 
2024). In general, the gasification process involves four 
sequential stages: drying, pyrolyzing, partially oxidiz-
ing, and reducing (Alves et al. 2023; Chhiti et al., 2013). 
Biochar generated through gasification at temperatures 
above 500  °C is usually non-polar and aromatic since it 
has loose functional groups having oxygen and hydrogen 
(Canché-Escamilla et  al. 2022). This property enhances 
its effectiveness in removing organic contaminants via 
sorption (Ahmad et  al. 2014). A significant removal of 
trichloroethylene was achieved using soybean stover 
biochar produced at 700  °C (Ahmad et  al. 2014). Com-
pared to pyrolyzed biochar, gasification char typically 
has smaller particle sizes. Although gasification chars 
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have a lower carbon content, ranging from 20 to 60 wt%, 
their stability is enhanced by the presence of condensed 
aromatic rings, which confer significant resistance to 
chemical oxidation and microbial mineralization (You 
et al. 2017; Fryda and Visser 2015). Although, their sur-
face structure is limited due to the reduced number of 
functional groups. The gasification of straw and wood 
is often performed through a two-stage process that 
separates pyrolysis and gasification into distinct reac-
tors, operating at approximately 730 °C (You et al. 2018; 
El-Shafay et al. 2019). This method produces chars with 
high porosity and a specific surface area of 418 m2g−1, 
making them promising candidates for soil restoration 
(Amer et al. 2024). According to Azeem et al. (2023), the 
introduction of microorganisms with biochar facilitates 
their higher rates of survival, which in turn improves 
the integration and growth of microorganisms within 
the soil and the plant root zone. The self-immobilization 
technique facilitated the attachment of Arthrobacter sp. 
ZXY-2 and Aspergillus niger Y3 onto charcoal, leading 
to a notable enhancement in the removal of atrazine via 
both adsorption and degradation mechanisms. Ha et al. 
(2022) utilized cell-immobilized biochar techniques to 
immobilize Pseudomonas putida onto coconut shell fiber 
biochar, with the aim of effectively adsorbed Paraquat 
at a rate of 16.79 mg  g–1 in 48 h, and remove 95.79% of 
Paraquat from water with a concentration of 30 mg L–1. 
Similarly, Xiong et al (2017) showed that a composite of 
Mycobacterium gilvum-modified rice-straw biochar was 
more effective in breaking down soil PAHs compared to 
unmodified biochar.

6.4 � Torrefaction methods for enhance contaminant 
removal

Torrefaction involves the thermal degradation of organic 
matter in a nitrogen or other inert atmosphere, typi-
cally at temperatures between 200 and 300  °C (Eling 
et  al. 2024). Torrefaction can be categorized into two 
types based on the characteristics of biomass: dry and 
wet processes (Yang et al. 2024). In dry torrefaction, bio-
mass undergoes controlled heating in an oxygen-free 
environment, such as N₂ or CO₂. This method leads to 
partial degradation rather than combustion, enhancing 
the resistance of biomass to temperature fluctuations 
and its ability to absorb water vapor (Tumuluru et  al. 
2021; Chen et  al. 2021). In contrast, wet torrefaction 
involves controlled heating of the material in hot water 
or steam at high pressures, resulting in partial degrada-
tion (Çetinkaya et  al 2024). Generally, dry torrefaction 
requires higher temperatures (200–300  °C) compared 
to wet torrefaction (150–260  °C) (Bach et al. 2016). The 
solid product generated through torrefaction is typi-
cally carbon-enriched, porous, and characterized by low 

density (Mukhtar et  al. 2023). It also exhibits a reduced 
oxygen-to-carbon ratio and moisture content, along 
with a higher energy density, storage and transportation 
(Kuwata et  al. 2012). De Jesus (2017) showed torrefied 
biomass materials from coconut and orange waste, which 
were able to eliminate BkF (benzo[k]fluoranthene), B[a]A 
(benzo[a]anthracene), BbF (benzo[b]fluoranthene), B[a]P 
(benzo[a]pyrene), and DBahA (dibenzo[a,h]anthracene) 
from a solution, ranging from 47.09% to 83.02% and 
23.84–84.02%, respectively.

6.5 � Hydrothermal carbonization methods for enhanceing 
contaminant removal

Hydrothermal carbonization is widely recognized as a 
highly efficient technique for producing biochar due to 
its ability to operate at temperatures that are compara-
tively low, generally between 180 and 250 °C (Seow et al. 
2022). According to Pavkov et  al. (2022), hydrothermal 
carbonization is achieved by dissolving biomass sources 
in water in a hermetically sealed system, which is subse-
quently heated to 300 °C for around 16 h. Under the spec-
ified operating conditions and in the presence of water, 
biochar is formed with a higher concentration of oxygen-
containing functional groups (OFGs). Hydrothermal 
carbonization is a natural process that simultaneously 
releases thermal energy, resulting in the incorporation 
of carbon from the starting material into the final prod-
uct called hydrochar (Zhao et al. 2018; Wang et al. 2018a, 
b). Flash carbonization is a highly efficient method of 
producing biochar compared to traditional carboniza-
tion techniques. It offers a significant increase in biochar 
yield (28–32%) and a remarkably short reaction time of 
just 30 min (Lee et al. 2024). Hou et al. (2022) reported 
that biochar carbonized at 800 °C had an optimal balance 
of adsorption capacity, reaction kinetics, and recyclabil-
ity, with a surface area of 693 m2  g–1 and a maximum 
removal capacity of 449 mg g–1.

Liu et al. (2014) observed that the adsorption capacity 
of hydrochar for triclosan and tetracycline was markedly 
improved by the alkali activation of a magnetized hydro-
char composite containing iron oxide. The main catego-
ries of biochar composites consist of nano zero valent 
iron (nZVI)-biochar, iron oxide-biochar, and iron sul-
phide-biochar composites. The combination of iron and 
biochar composites enhanced the process of adsorption 
and immobilization of organic contaminants by improv-
ing surface complexation, precipitation, and electrostatic 
interactions (Shaheen et al. 2022). Iron-biochar compos-
ites, including nZVI-biochar and FeS-biochar, demon-
strated an enhanced capacity for the reduction of organic 
pollutants as a result of their capability to produce Fe(0), 
Fe(II), and S(II) species (El-Naggar et al. 2022).
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In another study, biochar modified with magnesium 
(Mg) and the biosurfactant rhamnolipid (RL) demon-
strated a substantial ability to adsorb phosphate, with a 
capacity of 118  mg  g⁻1, and significantly reduced TPH 
with an adsorption capacity of 44.4  mg  g⁻1 (Wei et  al. 
2023). Zhang et  al. (2023) utilized magnetic functional-
ized biochar (MF-BC) from rice trash, which showed 
absorption of tetracycline by 96.02%. Additionally, the 
alkali-active porous biochar was prepared at a high tem-
perature of 850  °C using corncob xylose residue, which 
showed adsorption capabilities of 1492  mg  g−1 for sul-
famethoxazole, with a removal capacity of 98.52% (Li 
et  al. 2022a, b). Nevertheless, cobalt-gadolinium-modi-
fied biochar, derived from Camellia oleifera shells, with 
a surface area of 169.79–370.73 m2  g⁻1 and a pore vol-
ume of 0.09–0.199 cm3 g⁻1, proved to be a highly effec-
tive solution for addressing ciprofloxacin and tetracycline 
contamination (Oni et al. 2019). The utilization of an iron 
oxide-biochar composite reduced chlorpyrifos uptake 
by Allium fistulosum (Welsh onion) and enhanced atra-
zine breakdown by Acinetobacter lwoffii DNS32, leading 
to the production of biofilms on iron biochar compos-
ites (Tang et al. 2022; Tao et al. 2019). Magnetic biochar 
demonstrates the capacity to efficiently remove various 
organic contaminants, including pesticides, phenols, 
organochlorines, and hormones, with adsorption capa-
bilities ranging from 3.46  mg  g–1 to 169.7  mg  g–1 (Qu 
et al. 2022). Figure 6 depicts different functional and ben-
eficial attributes of engineered biochar. Application of 
modified biochar for removal of different contaminants is 
listed in Table 5.

7 � Ecotoxicological impact and challenges 
of biochar application in organic pollutants 
remediation process

Concerns have been raised regarding the presence of 
metals and aromatic compounds in biochar, emphasiz-
ing the need to integrate chemical analysis with eco-
toxicological evaluation. This is particularly important 
given the limited information available on the eco-
toxicological impact of biochar in contaminated soil. 
Although the use of biochar demonstrates efficacy in 
soil remediation, its application within the soil presents 
certain challenges. The application of biochar to soil can 
lead to nitrogen and nutrient immobilization due to its 
elevated carbon to nitrogen (C:N) ratio, which is a con-
sequence of the substantial carbon content present in 
biochar. The elevated carbon-to-nitrogen ratio was docu-
mented by García-Delgado et  al. (2015), as a contribut-
ing factor to the limited growth of bacterial and fungal 
populations, which in turn affects the degradation of 
PAHs. The observed imbalance in the carbon to nitrogen 
ratio can be increased through the addition of nitrogen 

to biochar treatments, potentially leading to improved 
TPHs removal (Saum et al. 2018). Other researchers have 
observed that the removal of TPH was more pronounced 
in soil treated with both biochar and nutrients, compared 
to cases where biochar was applied alone (Lawson et al. 
2019; Wang et al. 2017a, b; Wei et al., 2023). Kuppusamy 
et al. (2017) highlighted the potential risk of heavy met-
als and PAHs leaching from biochar into the soil after its 
application. In contrast, Freddo et  al. (2012) suggested 
that the environmental impact of biochar is likely mini-
mal, as their findings indicated that the concentrations of 
PAHs, metals, and metalloids were below the acceptable 
limits for sewage sludge and either lower than or within 
the regulatory limits for compost. However, it is impor-
tant to exercise caution when considering this conclu-
sion, as the biochar studied was derived from feedstock 
deemed less toxic (Freddo et al. 2012).

Therefore, it is recommended that before applying bio-
char to soil, its physicochemical properties should be 
carefully considered, as it may contain hazardous sub-
stances such as heavy metals and organic pollutants (Li 
et al. 2018). Furthermore, the presence of VOCs in bio-
char used on soil can have negative effects on micro-
organisms. The presence of VOCs in biochar can be 
influenced by the pyrolysis temperature used during 
production. Further, higher temperatures (300–600  °C) 
tend to volatilize these compounds, while some semi-vol-
atilized organic compounds may still be retained in the 
biochar (Lian and Xing 2017). PAHs are produced when 
biomass is incompletely combusted. However, if the 
pyrolysis conditions are appropriate, the production of 
biochar can help decrease the levels of PAHs. Addition-
ally, the process of biochar pyrolysis leads to the forma-
tion of a unique type of environmental pollutant called 
environmental persistent free radicals (EPFRs) (Bi et  al. 
2022). EPFRs are radicals containing oxygen that are pro-
duced during the pyrolysis of biochar. Thus, it is essential 
to implement appropriate precautions, to minimize the 
production of secondary contaminants during the pyrol-
ysis process of biochar.

8 � Conclusion and future perspectives
Rhizoremediation has been recognized as an effective 
natural strategy to address environmental pollution, 
mitigate climate change and restore ecosystem func-
tionality (Su et  al. 2022). The amendment of biochar 
offers significant potential to influence the rhizoreme-
diation process particularly through its effects on the 
sorption/desorption dynamics, biodegradation, and 
leaching of contaminants (Hale et al. 2015). Despite the 
potential role of biochar as a tool for rhizoremediation, 
the full scope of biochar impact on microbial commu-
nity composition in organic pollutants contaminated 
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soils require more research. Existing studies indicate 
that biochar can improve soil physiochemical proper-
ties, enhance microbial activity, and promote biodeg-
radation. Nonetheless, these studies are predominantly 
limited to controlled laboratory environments or 
green house setting, which need to be validated for 
their applicability to real world scenario. Field studies 
addressing the long-term effect of biochar amendments 
on rhizoremediation of contaminated are limited, leav-
ing critical knowledge gaps regarding the stability and 
efficiency in diverse environments.

Furthermore, while engineered biochar offers several 
advantages for environmental applications and circular 
economy applications, its production and implemen-
tation face significant challenges. These include the 
optimization of manufacturing methods to enhance 
sustainability, ensuring its cost effectiveness and miti-
gating potential environmental risks associated with its 
application. Moreover, the successful advancement of 
biochar-based circular economy technology depends 
significantly on collaborative research efforts involving 
producers, consumers, and policymakers to overcome 

Fig. 6  Different mechanisms of biochar engineering and their beneficial attributes towards environmental clean-up
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these barriers. Such collaboration is essential to drive 
innovation, address existing research gaps, and refine 
biochar-based technologies for the effective and sustain-
able application of biochar in the future. Given the evolv-
ing market conditions, it is crucial to focus on enhancing 
biochar research, fostering innovation, and promoting its 
production.

The relationship between the biochar and rhizospheric 
microbiome is a complex phenomenon, while advanced 
omics technologies provided valuable insights related 
to microbial community dynamics. However, there is 
a need for more comprehensive research focusing on 
the bacterial community response, enzymatic activity 
and functional gene expression associated with biochar 
application. Advanced DNA technologies such as stable 
isotope probing (SIP) could also be used, which is a pow-
erful tool offering deeper insights for specific microbial 
populations involved in rhizoremediation process in syn-
ergy with biochar applications.

Finally, the limited number of in-situ studies evaluat-
ing the long-term impacts of biochar amendments in 
organic pollutants -contaminated ecosystems under-
scores a critical research gap. Addressing this requires 
shifting the focus from short-term laboratory studies 
to robust field trials that assess biochar’s environmen-
tal and functional efficacy over extended period. These 
efforts will be essential in determining the practicality 
and sustainability of biochar as a rhizoremediation tools 
in diverse environmental settings. In conclusion, the use 
of biochar, engineered and meticulously designed for the 
rhizoremediation of complex organic pollutants -con-
taminated soil, holds immense potential as a sustainable 
technology for eco-restoration. Its application offers sig-
nificant prospects for promoting environmental recovery 
and advancing sustainable practices.
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