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Abstract

Soil salinity severely impairs crop productivity by inducing osmotic stress, ionic toxicity,
and oxidative damage. This study investigated the mechanisms by which foliar-applied
wood vinegar (WV), a biomass pyrolysis byproduct rich in organic acids and minerals,
alleviates salt stress (100 mM NaCl) in hydroponically grown wheat (Triticum aestivum L.).
Three WV dilutions (100x, 300x, 500x) were tested to evaluate their effects on growth,
antioxidant systems, chlorophyll metabolism, and ion homeostasis. The results demon-
strated that 300 x-diluted WV (WV3) most effectively mitigated salt stress, increasing
shoot biomass by 81% and root length by 75% compared to salt-stressed controls. WV3
restored antioxidant enzyme activities to non-stressed levels, reduced lipid peroxidation,
and normalized chlorophyll overaccumulation induced by salinity. Elemental profiling
revealed that WV3 enhanced shoot K* and Ca?* uptake while reducing Na* accumulation,
thereby improving ion homeostasis. Additionally, WV3 promoted Fe translocation to
shoots, supporting chlorophyll synthesis. However, 100x WV (WV1) exhibited phytotox-
icity due to excessive organic acids, while 500x (WV5) showed limited efficacy. These
findings highlight a 300-fold diluted solution of WV as an optimal dilution for enhancing
wheat salt tolerance through coordinated ROS scavenging, photosynthetic protection, and
ion regulation. This study provides a scientific basis for integrating WV into sustainable
strategies to combat salinity in wheat cultivation.

Keywords: salt stress; wood vinegar; wheat (Triticum aestivum L.); antioxidant enzymes;
ion homeostasis; foliar application

1. Introduction

Soil salinity is a global agricultural challenge; the global area of saline—alkali soil
amounts to 1.381 billion hectares, accounting for 10.7% of the total global land area. Addi-
tionally, approximately 10% of irrigated farmland and 10% of rain-fed farmland are affected
by salinization (FAO, www.fao.org, accessed on 5 May 2025). Excessive sodium chloride
(NaCl) in soils imposes osmotic stress, ionic toxicity, and nutritional imbalance on plants,
leading to reduced photosynthesis, oxidative damage, and stunted growth, which severely
threaten crop productivity [1-3].

Wheat (Triticum aestivum L.), as the staple food crop that sustains billions of people
worldwide, plays a crucial role in maintaining global food security and social stability [4,5].
However, soil salinity has emerged as a major threat to wheat, severely impacting growth,
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yield, and quality, particularly during the highly sensitive seedling stage [6], which is
critical for establishing subsequent development and final yield [7]. During this rapid-
growth phase, characterized by active cell division and high environmental sensitivity,
excess soluble salts like NaCl impose multiple stresses on seedlings. High NaCl concen-
trations cause osmotic stress by increasing soil osmotic pressure, restricting water uptake
and inhibiting root growth, thereby limiting nutrient acquisition [8-12]. Furthermore,
they cause ion toxicity, particularly from Na* interfering with essential K* uptake and
Cl™ accumulation damaging cellular structures; both disrupt physiological functions and
significantly impair photosynthesis, leading to leaf chlorosis, stunted growth, and poten-
tially plant death [13-15]. Salt stress also disrupts ion homeostasis, leading to cellular
Na* accumulation and K*/Ca?* depletion, compromising membrane stability and enzyme
activity [16-18]. Concurrently, excess reactive oxygen species (ROS) accumulation causes
oxidative damage to lipids, proteins, and DNA [19,20]. While plants activate antioxi-
dant defenses to counter ROS, key components like photosynthetic pigments are often
compromised, further reducing photosynthetic efficiency under salt stress [21,22].

Plant growth-promoting substances, such as biochar, humic acids, and plant extracts,
have gained attention for their potential to alleviate abiotic stresses [23—-25]. Wood vinegar
(WYV, also known as wood distillate under EU regulatory frameworks such as Regulation
(EU) 2017/419), a byproduct of biomass pyrolysis typically produced from agricultural and
forestry wastes such as crop straw, branches, and fruit tree residues, is a complex aqueous
solution containing organic acids (e.g., acetic acid, formic acid), phenolic compounds, and
mineral elements [26-28]. Previous studies have demonstrated that WV can enhance plant
growth, improve stress tolerance, and regulate soil microbial communities [29,30]. The
organic acids in WV, such as acetic acid and phenolic compounds, may act as antioxidants
to scavenge reactive oxygen species (ROS) and modulate ion transport, while mineral ele-
ments like potassium (K*) and calcium (Ca®*) can restore ionic homeostasis by competing
with sodium (Na*) uptake [31]. WV’s multifunctional components suggest that it may
address multiple aspects of salt stress. For example, acetic acid in WV can chelate Na*
ions, reducing their availability for uptake, while phenolic compounds may enhance the
expression of antioxidant enzymes [32-34]. Mineral elements in WV, such as Fe, K, and
Ca, could supplement nutrient requirements and promote osmoregulation [35]. Treatment
with an appropriate concentration of WV enhances photosynthetic efficiency by increasing
chlorophyll content in plant leaves, thereby improving light energy capture and conver-
sion [36-38]. Additionally, components in WV regulate stomatal conductance and elevate
the intercellular CO, concentration, providing more substrates for photosynthetic carbon
assimilation [39,40]. However, the efficacy of WV is highly concentration-dependent; low
dilutions may exert phytotoxic effects due to high organic acid content, while excessive di-
lution might reduce bioactive component availability [41,42]. Previous studies on WV and
salt stress have primarily focused on soil application or limited physiological parameters.
However, in this study, foliar spraying and hydroponic systems were selected for several
potential advantages. Foliar application allows for a more direct and rapid uptake of active
components by the plant, bypassing the soil or root system limitations; for example, the or-
ganic acids and trace elements in the wood vinegar can be rapidly absorbed through the leaf
surface, and the phenolic substances regulate the opening and closing of stomata [42,43]. In
hydroponic systems where roots are directly exposed to stress, foliar application provides
timely protection and supplementation to the shoot, thereby enhancing the plant’s overall
stress resistance. Compared to soil-based cultivation, hydroponics offers a more direct
assessment of WV ‘s effects on the plant itself (rather than on the soil), since substantial
evidence already demonstrates WV’s efficacy in ameliorating saline—alkali soils.
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This study aims to investigate the physiological and biochemical mechanisms by
which foliar-applied WV alleviates salt stress in hydroponically grown wheat seedlings.
Specifically, we hypothesized that WV modulates antioxidant enzyme activities, chlorophyll
metabolism, and mineral element uptake to mitigate salt-induced damage. Based on prelim-
inary studies by our research group and previous work by Afsharipour et al. [35,42,44] on
WV-enhanced salt tolerance, we selected a dilution range of 100x to 500 for assessment.
Specifically, three WV dilutions (100, 300, 500 x) were tested under 100 mM NaCl stress,
with evaluations encompassing growth parameters, chlorophyll content, lipid peroxidation,
antioxidant enzyme activities, total protein content, and the elemental composition in
shoots and roots. By identifying the optimal WV concentration and underlying mecha-
nisms, this research seeks to provide a scientific basis for integrating WV into salt-stress
management strategies in wheat cultivation.

2. Materials and Methods
2.1. Characterization of Wood Vinegar

The WV used in this study, sourced from the raw solution of Tangshan Jinhai New
Materials Co., Ltd. (Tangshan, China), complies with the Chinese National Standard for
wood vinegar (T/CNFPIA 3024-2022 [45]). The concentrations of elements in the WV were
determined using ICP-MS (DRCII, PerkinElmer and Norwalk, Waltham, MA, USA). The
composition and content of the WV were determined by using a gas chromatography—
mass spectrometry instrument (GC-MS 6800, Skyray Instrument, Kunshan, China). The
composition and element contents of the WV solution are shown in Table 1. Functionally,
acetic acid may enhance osmotic adjustment and ion chelation under stress; phenols
typically act as antioxidants and signaling modulators; Fe is essential for chlorophyll
synthesis and redox catalysis [46-49]. These components collectively contribute to WV’s
bioactivity, though their individual roles require further isolation and validation.

Table 1. The composition and element contents of the wood vinegar solution.

Component Component Content Element Concentration (mg/L)
Water 89.0-91.0% Fe 205.19
Formic Acid 0.1-0.2% Si 63.387
Acetic Acid 5.5-6.5% K 40.085
Succinic Acid 0.05-0.07% Ca 8.8788
Propionic Acid 0.8-1.0% Na 23.609
Methanol 1.0-2.0% Mg 3.637
Acetone 0.0156% Cr 1.9426
Methyl Acetate 0.0954% Mn 1.8255
Methyl Propionate 0.0225% Zn 1.6998
1-Hydroxy-2- 0.0200% Ni 0.9202

Butanone

Phenol 0.0506% Cu 0.4978

2.2. Experimental Design

A hydroponic experiment was conducted to evaluate the alleviating effects of WV on
salt stress in wheat seedlings (Triticum aestivum L., var. “AiKang58’, obtained from TaoBao).
Prior to the experiment, seeds underwent the following pre-treatment procedures:

@ The seeds were surface-sterilized by soaking them in 10% (v/v) HyO, for 10 min,
followed by thorough rinsing with deionized water.

€ The seeds were placed in a constant-temperature and -humidity incubator and kept
in darkness at a temperature of 25 + 1 °C for 2 days to germinate.
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¢ The seedlings were placed in the seedling trays and allowed to grow for 5 days
(25 £1°C, 18 h light, 8 h darkness).

Wheat seedlings with similar growth conditions (the plant height and weight were
similar) were selected for the hydroponic experiment. The experiment was conducted
in a constant-temperature and -humidity incubator (25 & 1 °C, 18 h light, 8 h darkness).
The experiment comprised five treatments with four replicate containers per treatment,
each container holding five seedlings, resulting in 20 plants per treatment group. The
groups were designed as follows: CK: Control (no NaCl, no WV). CK2: Salt-stressed
control (100 mM NaCl, no WV). WV1, WV3, and WV5: Salt-stressed seedlings (100 mM
NaCl) treated with WV diluted 100-, 300-, and 500-fold, respectively. The pH and electrical
conductivity (EC) values of the diluted wood vinegar are presented in Table 2. A nutrient
solution prepared according to Table 3 was used. Initially, the seedlings were grown
in a half-strength nutrient solution for 7 days, and then, they were grown in the full-
concentration solution until harvest (a total of 20 days). The nutrient solution was changed
every 4 days. To prevent osmotic shock, salinity stress was gradually induced in the
nutrient solution through incremental additions of NaCl: Starting from Day 7, we increased
the NaCl concentrations in the nutrient solution by 25 mM daily until they reached 100 mM.
WYV was applied via foliar spraying at specified dilutions (100x, 300x, 500x) on days 7
and 14 of the salt stress treatment until the leaves were fully wetted. WV was applied via
foliar spraying at specified dilutions (100x, 300, 500 x) until the leaves were fully wetted
on day 7. After harvesting, the fresh weight of plant shoots and roots, along with their
lengths, were determined immediately. Shoot and root tissues (0.2 g) were excised from
plants, immediately flash-frozen in liquid nitrogen, pulverized, and suspended in 1.8 mL
of phosphate-buffered saline (PBS) to prepare tissue homogenates for subsequent analyses.

Table 2. The character of Wood Vinegar.

Raw Solution 100 x 300 x 500 x
pH 2.83 3.05 3.23 3.33
EC (mS/cm) 3.30 0.20 0.13 0.08

Table 3. The composition of the nutrient solution.

Chemical Concentration Chemical Concentration
Ca(NO3),-4H,O 5 mmol L~! MnSO4-H,O 10 pmol L1
KNO; 5 mmol L~! ZnSO4-7H,O 1 umol L1

KH,PO, 1 mmol L1 (NHy4)Mo;0p4-4H,0  0.05 pumol L1

MgSO4-7H,0 2mmol L~! CuSO4-5H,0 0.95 umol L1
H3BO;3 29.6 pmol L1 Fe (III)-EDTA 50 pmol L1

2.3. Chlorophyll Content

The chlorophyll content was quantified using a commercial assay kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China). Briefly, 0.1 g of powdered plant
tissue was homogenized in 1 mL of distilled water and 50 mg of extractant under dark
conditions. The homogenate was thoroughly mixed with acetone and incubated in the dark
for 3 h (until the tissue residue at the bottom of the tube turned completely white). The
absorbance of the extract was measured at 645 nm and 663 nm using a microplate reader
(EPOCH-SN, BioTek, Winooski, VT, USA) [50].
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2.4. Lipid Peroxidation Analysis and Antioxidant Enzyme Activities

Following centrifugation of the homogenates at 8000 g for 10 min at 4 °C, the super-
natants were assayed to determine the malondialdehyde (MDA) levels and the enzymatic
activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) using
commercial assay kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) [51,52].

The SOD activity was determined using a xanthine/xanthine oxidase system (kit
protocol), with the absorbance recorded at 560 nm to quantify nitroblue tetrazolium (NBT)
reduction [53].

The POD activity was assayed by monitoring the oxidation of guaiacol to tetraguaiacol
at 470 nm. Absorbance measurements were taken at 0 and 10 min to calculate reaction
rates [54].

The CAT activity was measured based on the decomposition of H,O,, where residual
peroxide formed a yellow complex with ammonium molybdate. The absorbance at 405 nm
was inversely correlated with enzyme activity [55].

The MDA content was determined via the thiobarbituric acid (TBA) reaction. The
absorbance at 532 nm (corrected at 600 nm for background interference) was used to
quantify the MDA concentration, calculated using a molar extinction coefficient [56].

2.5. Total Protein Content

The total protein content was quantified using the Coomassie Brilliant Blue (CBB)
G-250 method with rigorous quality controls. Homogenates were centrifuged (8000% g,
10 min, 4 °C), and the supernatants were mixed with CBB reagent for 10 min incubation
at 25 £ 1 °C. The absorbance was measured at 595 nm (EPOCH-SN microplate reader,
BioTek, Winooski, VT, USA). Technical precision was confirmed by a <3% inter-assay
RSD (n = 6 replicates per plate), while accuracy (95-102% recovery) was validated through
spiked BSA samples. A BSA standard curve (0-1.0 mg/mL, R? > 0.998) enabled concentra-
tion calculation [57].

2.6. Elemental Composition Analysis

The elemental composition of the wheat shoot and root was analyzed following the
protocol of Zhou [58]. Dried plant samples were subjected to a two-stage dehydration
process: initial drying at 105 °C for 30 min, followed by 75 °C until they reached a constant
weight. Approximately 0.2 g of the dried sample was transferred to a digestion tube
containing 8 mL of high-purity concentrated HNO3, and dark-incubated overnight with a
vented stopper. Microwave-assisted digestion (MARS6, CEM, Matthews, NC, USA) was
then performed in three phases: Phase 1: 120 °C for 30 min; Phase 2: 140 °C for 3 h; Phase
3: 170 °C until acid evaporation reduced the volume to 1 mL. The digestate was diluted to
50 mL with ultrapure water, filtered through a 0.25 um PTFE membrane, and further diluted
prior to analysis. The elemental concentrations were quantified using inductively coupled
plasma mass spectrometry (ICP-MS; Elan DRC-e, Perkin Elmer, Waltham, MA, USA).

2.7. Statistical Analysis
Values represent mean + SD (n = 4). Differences among groups were analyzed using
one-way ANOVA (SPSS 27.0), followed by Tukey’s test. Asterisks (*) indicate statistically

significant differences compared to the control group: * p < 0.05, ** p < 0.01, *** p < 0.001,
% p < 0.0001.
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3. Results and Discussion
3.1. Growth Modulation

To evaluate the alleviating effects of WV on salt stress in wheat, this study systemati-
cally analyzed morphological and biomass variations in both shoot and root tissues under
different WV dilution treatments. The WV5 and WV3 treatments significantly alleviated the
salt stress-induced inhibition of shoot growth in wheat seedlings (Figure 1A,C), with the
WV3 group showing the most pronounced effects. Compared to the salt-stressed control
(CK2), the shoot length increased by 18% and 35% in the WV5 and WV3, showing milder
improvements, and the shoot biomass rose by 52% and 81% in the WV5 and WV3, respec-
tively. However, both values remained lower than those in the unstressed control (CK),
indicating partial but incomplete recovery. Notably, the WV3 treatment also mitigated
root growth suppression under salt stress (Figure 1B,D). Relative to CK2, the root length
and biomass in the WV3 group increased by 75% and 51%. Despite these improvements,
the root parameters in WV3 were extremely significantly lower than the CK values, sug-
gesting persistent salt-induced damage to the root architecture. Foliar application of WV
significantly alleviated the salt stress-induced inhibition of shoot growth, but exhibited
limited efficacy in restoring root morphology and biomass. This disparity suggests that
foliar spraying preferentially protects aerial tissues, while roots remain vulnerable to direct
ion toxicity and osmotic stress in the rhizosphere.

WV1, contrary to expectations, failed to alleviate salt stress. The shoot and root biomass
in this group showed no significant difference from CK2, likely due to phytotoxicity from
excessive organic acids or phenolic compounds in undiluted WV. Only moderate dilutions
(e.g., WV3) balance bioactive molecule efficacy and toxicity.

3.2. Impact of Wood Vinegar on Chlorophyll Content

The salt-stressed group (CK2) exhibited significantly higher chlorophyll a and b
contents compared to the plants subjected to other treatments (Figure 2), likely due to
the activation of protective mechanisms in plants to sustain photosynthetic efficiency
under stress. Such mechanisms may involve the transient enhancement of chlorophyll
biosynthesis or delayed degradation as an adaptive strategy to counteract salinity-induced
damage [59-61].

In contrast, WV treatments significantly reduced the chlorophyll content relative to
CK2 (salt-stressed control). This reduction indicates that foliar-applied WV mitigates the
stress-induced dysregulation of chlorophyll metabolism, potentially through phenolic
compounds and organic acids that stabilize photosynthetic complexes and attenuate ox-
idative damage. Among WV treatments, the 300x dilution (WV3) demonstrated optimal
efficacy—effectively restoring chlorophyll homeostasis while maximizing shoot biomass.
This concentration balances stress alleviation with minimal phytotoxicity, avoiding the
growth inhibition observed at higher WV doses.

3.3. Impact of Wood Vinegar on Antioxidant System

Salt stress disrupts cellular ion homeostasis, leading to reactive oxygen species (ROS)
accumulation. Excess ROS cause lipid peroxidation, protein denaturation, and membrane
damage, reflected in increased MDA content [62,63]. To counteract this, plants activate their
antioxidant system, including POD, SOD, and CAT, which scavenge ROS and alleviate
oxidative damage [64-66].

The application of WV at varying dilutions (WV1-100x, WV3-300x, WV5-500x) exhib-
ited distinct regulatory effects on antioxidant enzyme systems and membrane lipid peroxi-
dation in salt-stressed wheat seedlings (Figure 3). Compared with the non-stressed control
(CK), salt stress (CK2) significantly induced oxidative damage as evidenced by extremely
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significantly elevated MDA levels (Figure 3D,H) in both shoots and roots, accompanied by
the differential modulation of antioxidant enzymes: the SOD and POD activities in the shoots
significantly increased, but the SOD activity in the roots significantly decreased.
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Figure 1. Wheat shoot length (A). Wheat root length (B). Wheat shoot raw weight (C). Wheat root
raw weight (D). Asterisks (*) indicate statistically significant differences compared to the control
group: * p < 0.05, ** p < 0.01, ** p < 0.001, *** p < 0.0001.



Agronomy 2025, 15, 2078 8 of 16

>

*ekkk

Chlorophyll a (mg/g)

=
T T T T |
CK WV5 WV3 WV1 CKz2

W

*%
*%xk%k
B 1.5 -
[=7]
E
o
z
a 1.0
<)
|
£ | =
=
(&)
0.5 I 1 } I 1
CK WV5 WV3 WV1 CK2
kkik
Py Ch *kk
= Bk
T
(o]
E
= 4+
>
L
=3
<)
)
= 37 %
U
2 I 1 1 | 1

CK WV5 WV3 WV1 CK2
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Asterisks (*) indicate statistically significant differences compared to the control group: * p < 0.05,
**p <0.01, ** p <0.001, *** p < 0.0001.
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Figure 3. Impact of wood vinegar on wheat seedlings antioxidant enzyme system. Shoot POD activity
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(E). Root SOD activity (F). Root CAT activity (G). Root MDA content (H). Asterisks (*) indicate
statistically significant differences compared to the control group: * p < 0.05, ** p < 0.01, *** p < 0.001,
3+ p < 0.0001.
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Notably, applying different concentrations of vinegar solution significantly reduced
the MDA content in the shoots. WV3 and WV5 demonstrated the most pronounced
alleviation effect. They restored the shoot POD and SOD activity to the same level of CK.
Although WV1 significantly reduced the MDA content in the shoots, its restorative effects on
peroxidase POD and superoxide dismutase SOD activities were less pronounced compared
to those of WV3 and WV5. In contrast, WV1 treatment even significantly enhanced shoot
CAT activity relative to CK2. The application of WV at different dilutions exhibited
significant mitigation effects on salt-stressed wheat roots (Figure 3E-H). Compared with
the salt-stressed control (CK2), all the WV treatments (WV1-WV5) demonstrated dose-
dependent regulation of antioxidant enzyme activities and lipid peroxidation levels. The
roots appeared to be more responsive to WV treatment in terms of CAT activity, showing a
more pronounced increase compared to the shoots. The differential responses of shoots
and roots to salt stress and WV treatment suggests that the antioxidant systems in these
two plant parts may be regulated differently. Roots, being in direct contact with salt stress,
may have a more active or sensitive antioxidant response.

The inverse correlation between antioxidant enzyme activities and MDA levels indi-
cates that WV enhances ROS-scavenging capacity. Notably, shoot and root tissues exhibited
differential antioxidant responses to WV dilutions under salt stress. In shoots, the inter-
mediate dilution (WV3, 300x) optimally restored POD and CAT activities (Figure 3A,C),
correlating with reduced photooxidative damage. In roots, higher dilutions (WV5, 500 )
sustained SOD activity and attenuated lipid peroxidation (Figure 3FH). These tissue-
specific adaptation patterns suggest distinct ROS management strategies in aerial versus
subterranean organs. The differential dilution efficacy between shoots (300x) and roots
(500x) informs precision biostimulant design. For instance, integrating WV with root-
targeting amendments like biochar could synergistically optimize whole-plant stress re-
silience [67-69]. As a pyrolysis byproduct from agricultural waste (e.g., crop straw), WV ex-
emplifies circular agriculture by converting residues into value-added agro-inputs [70-72],
simultaneously mitigating crop stress and open-field burning pollution.

3.4. Impact of Wood Vinegar on Total Protein

Salt stress can lead to dynamic changes in protein metabolism within wheat, and it
is a sensitive indicator reflecting the physiological damage caused by salt stress [10,73,74].
Violin plots (Figure 4) revealed a dose-dependent restoration of the total protein content
in salt-stressed wheat seedlings treated with WV. The foliar application of wood vinegar
significantly increased the total protein content in the shoots relative to the salt-stressed
control (CK2), with the 300x dilution (WV3) demonstrating optimal restoration efficacy
under salinity. The 500 dilution (WV5) led to the strongest recovery in the roots, while
higher concentrations (WV1, 100 x) showed diminished efficacy, likely due to phytotoxicity
from excessive organic acids/phenolics, as evidenced by unimodal distributions reflecting
enhanced physiological stability compared to CK2. Physiologically, this restoration may
occur through attenuated protein degradation, mediated by phenolic-induced protease
inhibition in WV, thereby preserving cellular integrity.

3.5. Effects of Wood Vinegar on Nutrient Elements

This study utilized inductively coupled plasma mass spectrometry (ICP-MS) to quan-
tify elemental profiles, thereby assessing the regulatory effects of WV on mineral nutrient
uptake and spatial distribution in wheat under salt stress. Raw ICP-MS concentrations
(provided in Supplementary Table S1) were normalized using z-score transformation to
eliminate batch effects, enabling comparative analysis of relative elemental abundance
trends across treatment groups.
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terisks (*) indicate statistically significant differences compared to the control group: ** p < 0.01,
% p < 0.0001.

The standardized mineral element profiles in wheat shoots and roots (Figure 5A,B)
revealed distinct organ-specific responses to WV treatments under salt stress. Compared to
the salt-stressed control (CK2), the 100x diluted WV treatment (WV1) exhibited the most
significant mitigation effect, particularly in shoot tissues. In shoots, WV1 enhanced K* and
Ca?* absorption, two cations critical for counteracting Na* toxicity through competitive
uptake and membrane stabilization. Root Zn?* absorption, however, displayed a dose-
dependent suppression. The 300x diluted WV (WV3) induced Fe accumulation in shoots,
potentially enhancing chlorophyll synthesis, while root Fe decreased, suggesting improved
root-to-shoot translocation efficiency. Phosphorus partitioning also varied: WV1 increased
shoot P but reduced root P, implying that WV modulates phloem-mediated redistribution
under stress. Higher dilutions (WV5, 500 x) showed limited efficacy, with shoot Mg and
Cu remaining below CK2 levels, indicating a threshold for organic acid-mediated chelation.
The boron dynamics diverged between organs: shoot B increased with WV concentration,
whereas root B peaked with WV3.

The alleviation of salt stress by WV may stem from multifactorial interactions, driven
by the bioactive properties of wood vinegar components. Organic acids (e.g., acetic acid)
could potentially chelate Na™ or compete for root absorption sites, which might reduce
ionic toxicity and facilitate K* /Ca?* uptake. Phenolic compounds are postulated to regulate
ion transporter gene expression, possibly enhancing Na* efflux and vacuolar compart-
mentalization. Acidification of the rhizosphere by WV organic components could further
solubilize micronutrients, enhancing their bioavailability. These mechanisms collectively
explain the dose- and organ-dependent efficacy of WV, with higher concentrations bal-
ancing chelation capacity and phytotoxicity. Future studies integrating transcriptomics
and rhizosphere metagenomics could elucidate WV-regulated transporter networks and
microbial synergies, advancing precision strategies for salinity mitigation.
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Figure 5. The distribution of standardized contents of major elements in seedlings under different
treatments. Shoot (A). Root (B).

3.6. Agricultural Practice of Wood Vinegar

The field deployment of WV could leverage existing precision agriculture
infrastructure—foliar spraying via drone/boom systems enables uniform delivery while
minimizing labor costs. For saline soils, drip irrigation with WV may concurrently
improve rhizosphere microenvironments and nutrient availability; this indicates the
various effects of the WV. As agricultural waste, WV can be mixed with organic fertiliz-
ers or nano-materials (such as ferrophosphorus). Research shows that the combined
use of FeP-NMs and WV can reduce the amount of phosphate fertilizer by 80%, while
increasing soybean yield [35]. Synergistic integration with organic amendments (e.g.,
biochar for cation exchange) could further reduce WV dosage requirements while en-
hancing soil health [72]. The development and utilization of wood vinegar liquid align
with the goals of sustainable development, offering significant potential for economic,
social, and environmental benefits.

4. Conclusions

This study reveals that foliar-applied WV mitigates salt stress (100 mM NaCl) in
hydroponic wheat through dose-dependent physiological and biochemical mechanisms.
Moderate dilutions (WV3: 300x, WV5: 500 x ) significantly alleviated salt-induced growth
inhibition, with WV3 extremely significantly increasing shoot biomass and root length com-
pared to salt-stressed controls. In contrast, concentrated WV (WV1: 100x) induced phyto-
toxicity, emphasizing the need for optimal dilution. WV3 balanced antioxidant responses by
restoring shoot SOD/POD activities to non-stressed levels while reducing MDA, whereas



Agronomy 2025, 15, 2078 13 of 16

roots exhibited CAT-dependent H,O, detoxification. Notably, WV treatments normal-
ized stress-induced chlorophyll overaccumulation, likely through the phenolic-mediated
stabilization of photosynthetic machinery, and restored protein synthesis efficiency.

Elemental profiling demonstrated WV3’s dual role in ion homeostasis: reducing
shoot Na* while enhancing K* and Ca?* uptake. It also improved Fe translocation to
shoots, supporting chlorophyll synthesis, and modulated boron/zinc partitioning between
organs. These effects stem from WV’s organic acids (e.g., acetic acid) chelating toxic ions
and its phenolics enhancing antioxidant capacity. The tissue-specific responses—shoots
prioritizing ROS scavenging and roots optimizing nutrient uptake—highlight WV’s ability
to coordinate whole-plant stress adaptation.

These findings suggest the potential of 300x-diluted WV as an eco-friendly bios-
timulant for salt-affected agriculture, demonstrating improved wheat resilience through
integrated antioxidant activation, ion homeostasis, and photosynthetic protection under
controlled conditions. Future research must prioritize elucidating molecular mechanisms
(e.g., ion transporter gene regulation) and field validation to assess WV’s efficacy in sus-
tainable crop management. This work contributes exploratory evidence for employing
plant-derived amendments to mitigate salinity challenges in intensive agriculture, though
their large-scale applicability requires further verification.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390 /agronomy15092078 /s1. Table S1: Raw ICP-MS concentrations.
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