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Introduction
Measurement error must always be 
considered when planning a research 
project and interpreting its results. The 
accuracy of some data collected during 

a study can often be confidently assured, 
but more than one measurement or observer 
is needed to assess exposure and outcomes 
status in the case of a clinical measurement 
that is prone to measurement error. 

Abstract
Background Measurement error must always be considered when planning a research project 
and interpreting its results. The accuracy of some data collected during a study can often be 
confidently assured, but more than one measurement or observer is needed to assess exposure 
and outcomes status in cases where clinical measurement is prone to measurement error. Little 
attention is paid in nursing research to misclassification and measurement error. Bias is often 
discussed in nursing research education, but not its potential consequences or measures that 
can be taken to improve the study’s quality. 
Aim To present examples of random measurement error – misclassification of a binary outcome – 
in a continuous exposure and outcomes variable, to address this gap in nurses’ research training. 
Discussion The article discusses the relationship between exposure and outcome in the absence 
and presence of measurement error using risk (relative risk) and association using correlation. 
It provides methods to estimate the true value of these measures of risk and association, when 
only given the clinical measurements with errors. 
Conclusion If the assumption of random error holds, attenuation of risk or association towards 
the null will occur. 
Implications for practice Understanding the effect of measurement error including 
misclassification will enable researchers to interpret the results of their studies, and to take into 
consideration this potential error when planning and conducting a study.
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Why you should read this article:
	● Measurement error must always be considered when planning a research project and interpreting its results

● Little attention has been given in nursing research training to misclassification and measurement errors
● Ignoring measurement error will result in flawed interpretation and application of study results

to clinical practice
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Little attention is paid in nursing research 
to misclassification and measurement 
error. Bias is often discussed in nursing 
research education, but not its potential 
consequences or measures that can be 
taken to improve the study’s quality. 

This article will provide a brief 
background and use clinical examples 
to show the effects of misclassification 
and measurement errors in the results 
obtained from a study.

Misclassification of exposure status
To demonstrate misclassification, we 
will present a fictional example that uses 
delirium as an exposure and a fall as 
the outcome, both of which are binary 
variables: yes or no. All acute hospitals 
across our local health district use 
the ‘Confusion Assessment Method’ 
(CAM) (Inouye et al 1990) to identify 
acute episodes of delirium in patients 
who appear to be disorientated or 
confused or whose behaviour or level of 
consciousness changes. 

The CAM was developed using the 
Diagnostic and Statistical Manual of 
Mental Disorder (DSM III) (American 
Psychiatric Association 1980) as 
the gold standard, so we have good 
information about how well it identifies 
individuals with confirmed delirium 
(‘sensitivity’) and what proportion of 
people without delirium it will correctly 
classify as delirium-free (‘specificity’). 
Shi et al’s (2013) large meta-analysis 
estimated that it has a sensitivity of 
0.80 and a specificity of 0.99, so most 
errors are false negatives, while few are 
false positives. 

Table 1 shows the results of 
a hypothetical study investigating the 
relationship between delirium and the 
risk of fall. The study involved 300 
participants, 20% (n=60) of whom were 
observed to have a fall and 33% (n=100) 
of whom were classified using CAM 
as having had an episode of delirium. 
The observed rate of falls among those 
with delirium was 40% (n=40) and was 

10% (n=20) among those without delirium 
(n=200). That means the relative risk was 
4.0 (95% CI: 2.48, 6.48).  

As we have a gold standard 
measurement, we can estimate the true 
rate of delirium (P) from the rate observed 
with CAM (p) by using Kelsey et al’s 
(1986) formula, P = (p + specificity - 1) 
/ (sensitivity + specificity - 1). In cases 
where such a gold standard measurement 
is unavailable, repeated tests of reliability 
and agreement – usually with at least 
two blinded independent raters to assess 
interrater reliability – can be used to 
determine an estimated true rate using 
a Kappa statistic (Cohen 1960).

In the case of this study, P = (p – 0.01)/
(0.79), so we can see that among fallers, 
the estimated true rate of delirium is 83% 
(0.67-0.1/0.79) and among non-fallers is 
30% (0.25-0.01/0.79); overall, it is 41% 
(0.33-0.01/0.79), with 123 estimated to 
have delirium. The estimated true rate of 
falls among those with delirium is therefore 
50/123 (41%) and 10/177 (5.6%) among 
those without delirium (Table 2). That 
means the estimated true relative risk is 
7.20 (95% CI: 3.80-13.63).

Key points 
	● Measurement error 
and misclassification 
is almost unavoidable 
during any 
study project

	● Non-differential 
or random error 
will underestimate 
observed effects 
and bias results 
toward the null

	● The effect of systematic 
error or non-random 
error can bias observed 
effects away or toward 
the null 

Table 1. Observed rates of delirium 
among faller and non-fallers

Delirium Fallers Non-fallers Total

n % n % n %

Yes 40 67 60 25 100 33

No 20 33 180 75 200 77

Total 60 20 240 80 300 100

Table 2. Estimated true rates of delirium 
among faller and non-fallers

Delirium Fallers Non-fallers Total

n % n % n %

Yes 50 83 73 30 123 41

No 10 17 167 70 177 59

Total 60 20 240 80 300 100
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Measurement error of 
a continuous variable
Most clinical measurements will 
demonstrate some within-individual 
variation (error), typically estimated using 
repeat measurements over a short period 
of time to avoid any underlying biological 
variation. Measurement error usually 
assumes a normally distributed clinical 
variable and an associated similar random 
error, with a mean of zero and a standard 
deviation or variance obtained from repeat 
measurements within-an-individual. 

Example 1
The following example uses a subset 
of the Framingham Heart study data 
(Dawber et al 1951, National Heart, 
Lung, and Blood Institute 2010) to show 
the association between total serum 
cholesterol (TC) (mg/dL) and systolic blood 
pressure (SBP) (mmHg). Figure 1 shows 
the correlation between the observed TC 
and SBP without errors – the correlation 
is 0.20, and the associated ordinary least 
squares (OLS) slope is 0.10. 

Figure 2 shows the correlation when 
random error is added to TC with mean 
0mg/dL (SD 25mg/dL) and to SBP with 
mean 0mmHg (SD 15mmHg) – the 
correlation becomes 0.13 and the OLS 
slope becomes 0.07. 

The true correlation can be estimated 
based on the measurements without 
error using the following formula 
(Kelsey et al 1986):

rhotrue= rhoobserved /(rhoxX X rhoyY)

where, rhotrue is the estimated Pearson 
correlation coefficient between the 
measurements (X, Y) without error, rhoobserved 
the Pearson correlation coefficient between 
(x, y) with error, and rhoxX and rhyY are 
the correlations between the measurements 
without and with errors. In this case, x=TC 
and y=SBP, rhoobserved is 0.13, rhoxX is 0.88 
and rhoyY 0.83, the latter two values being 
obtained by estimating the correlation 
between the respective measurements with 
and without error. Therefore, the estimated 
true correlation rhotrue is 0.18.

Example 2
To further show the effect of random 
measurement error, we will examine the 
relationship between TC, while adjusting 
for age and sex, and the risk of systolic 
hypertension (SH) – that is, of having an SBP 
greater than 150mmHg. For simplicity, we 
present the case where the error is random.

Table 3 shows the risk of SH based on 
age, being male and each 18mg/dL increase 
in TC, for TC and SBP without error; 
Table 4 shows the same information with 
error. Without error, after adjusting for age 
and being male using a Poisson regression 
(Breslow and Day 1980), an 18mg/dL 
increase in TC increases the relative risk 
of SH by 6% (95% CI: 0%, 11%); when 
random error is added to SBP and TC, the 
increase is only 1% (95% CI: -3%, +5%).

Discussion
We have given examples of the effect of 
measurement error and misclassification 
of the results of assessing the relationship 

Figure 1. Association between total cholesterol and systolic blood pressure 
measurements without errors
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Figure 2. Association between total cholesterol and systolic blood 
pressure measurements with errors
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between an exposure and an outcome 
of interest. If the error is random, the 
movement of estimates of effect towards 
the null is obvious. 

This effect of error not just in the 
exposure factor but also in the outcome 
of interest should always be considered 
when interpreting the results of a study. 
Importantly, in the context of random 
measurement error and misclassification, 
the effect of an exposure will be 
underestimated – this has implications for 
the sample size needed and the approach 
used to collect data.

The potential effect of measurement 
error on the estimation of the relationship 
between an exposure and outcome 
has been explored to a great extent in 
epidemiological studies of risk, particularly 
nutritional epidemiology (Greenland and 
Kleinbaum 1983, Willett 1989, Rosner 
1996). In many cases, measurement error 
can be quantified by repeated within-
individual measurements and will give 
a good guide of the precision of a given 
measurement (Irwig et al 1991).

Our examples highlight the effect 
of random error and its common 
consequences on measures of effect. 
Importantly, careful planning has enabled 
researchers to address measurement error 
during pilot phases, by developing good 
estimates of the precision of exposure 
measures that often involve very detailed 
data collection with a small subset of the 
study population (Bingham et al 1997, 
Day et al 1999), allowing the results of 
the final study’s outcomes to be corrected 
for measurement error (Riboli et al 2002).

Many clinical measurements have been 
extensively explored, using repeated, 
within-individual measurements, to identify 
the magnitude of precision, which is 
presented in many cases as the coefficient 
of variance: the ratio of the standard 
deviation of within-individual repeated 
measures and the population mean. The 
estimated precision of bone mineral 
density (BMD) is less than 2%; it is of 
the order of 10% for serum cholesterol 

Table 3. Estimates of relative risk of SH without error

Crude CI 95% P-value Adjusted CI 95% P-value

Age (10+ years) 2.14 1.84, 2.48 <0.001 2.05 1.76, 2.40 <0.001

Male 0.73 0.57, 0.94 0.015 0.79 0.61, 1.02 0.069

18mg/dL TC 
increase

1.13 1.08, 1.18 <0.001 1.06 1.00, 1.11 0.044

Table 4. Estimates of relative risk of SH with error

Crude CI 95% P-value Adjusted CI 95% P-value

Age (10+ years) 1.85 1.62, 2.10 <0.001 1.83 1.60, 2.09 <0.001

Male 0.72 0.58, 0.90 0.004 0.75 0.60, 0.93 0.010

18mg/dL TC 
increase

1.05 1.01, 1.09 0.009 1.01 0.97, 1.05 0.773

(Irwig et al 1991). The attenuation of the 
risk of fracture and BMD would therefore 
be small when compared to that of an 
increase in serum cholesterol level and 
risk of stroke.

Importantly, researchers must 
acknowledge when it is known there is 
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error in a given clinical measurement that 
this could lead to an underestimation of 
risk. Measurement error can also increase 
the risk of Type II error, so a greater sample 
size may be needed for a given trial.

When error is not random, it is difficult 
to estimate the direction of bias. This is 
why it is imperative when planning a study 
to consider measurement error and ask: 
is the error random or nondifferential 
between exposure and outcomes groups? 
Ways to reduce the potential effect of 
measurement error include blinding of 
exposure status when assessing outcome 
and blinding of outcome status when 
assessing exposure in a case-control study. 
Randomisation will assign error evenly 
between intervention and control groups, 
and is the most obvious approach to reduce 
bias. However, measurement error will 

need to be carefully mitigated in some 
cases, using repeated measurements or 
multiple raters, or direct estimation using 
a small (random) subset of participants. 
Once the level of within-individual error 
has been estimated, this can be used to 
correct measures of effect (Willett 1989).

Conclusion
We have presented some examples of 
the effects of measurement error and 
the estimates of risk or association. 
Importantly, if the assumption of random 
error holds, the attenuation of risk or 
association will move toward the null. 
Understanding the effect of measurement 
error including misclassification will 
enable researchers to interpret the results 
of a study and consider this potential error 
when planning and conducting research.
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