C-130J-30 Wing Fatigue Test - Test Interpretation

AASC
Mr Ross Stewart

July 2018
Agenda

1. History of C-130J WFT
2. Type Certification Basis (TCB)
3. Test Interpretation
4. TI Tools/ Data
5. Verification and Validation
6. Selection of Locations
7. Spectrum
8. Spectrum
9. Section
10. Section
History of C-130J WFT

• The WFT primary objective was to:
 – Maximise the Structural Life of Type (SLOT) of primary wing structure
 – Maximise aircraft availability throughout the defined SLOT

• Combined RAAF and RAF test
 – Test at MA in UK
 – Teardown by AIRBUS at Richmond
 – Separate Test Interpretation (TI)

• Test Spectrum OLM based
 – Selection of RAF and RAAF flights
 – Super block 1500 flights (3100 flying hours)
 – 5 x standard block 250 flights
 – 1 x 250 flights with higher amplitude cycles
 – i.e. few more severe flights
History of C-130J WFT

• Test at MA in UK

• Test article
 – Centre and outer wings
 – No TE or LE
 – Fuselage support structure
 – Nacelle structure

• Loading
 – 40 actuators
 – Vertical, lateral and torque loads applied to each engine
 – Airbag for Fuselage pressurisation
 – 600 gauges to assist TI, confirm loads and compare to OLM
History of C-130J WFT

- Damage tolerance testing
 - 9 cracks introduced cracks late in test

- Reached durability goal

- Residual Strength Test (RST)
 - 1.2 DLL

- Accelerated testing + additional RST

- Failed past limit load on 6th RST
 - Wing root
 - Failure location expected

- Teardown
 - By AIRBUS at Richmond
 - CW
 - 1 OW
 - 2nd OW past engines
Type Certification Basis (TCB)

- For C-130J-30 Service Entry - MIL-S-5700 series standards supplemented by
 - Aeroelasticity requirements of MIL-A-8870
 - Durability guidelines of AFGS 87221A
 - Damage tolerance requirements of MIL-A-83444
 - Gust requirements of DEF-STAN 00-970

- For WFT TI
 - JSSG 2006
 - EN-SB-08-001 and EN-SB-08-002
 - Interpretation by Authority
 - Convert specification into suitable requirements
 - Difficulty in retrospectively applying these to a designed aircraft
Test Interpretation

• TI undertaken by QinetiQ and DST Group
 - QinetiQ - Standard locations
 - DST Group – Some complex MSD/MED locations

• QinetiQ Part 21 Designs
 - ICA
 - ASIMP Vol 2 Updates
 - ADF MAwL and ICA
 - Implementation impact considered
 - Fleet status compared to ICA
 - Time for implementation
 - Alignment with major servicing’s

• LOT
 - Preliminary estimates for individual TI locations
 - TDLL
 - Probability Risk Assessments later TI stages
Test Interpretation

- Replace current ICA
 - OEM based ASIMP Vol 2

- TI Process documented within guides

- Specific Tools / data developed

- V&V of Data, tools and process
 - TCB
 - Data integrity
 - Robust
 - Process documentation

- Authority approval before process starts
TI Tools/ Data

- DADTA template
 - FASTRAN
 - Retardation crack growth model
 - FAMS
 - Strain life model
 - Generates crack growth curve
 - Calculates Intervals
 - Includes
 - Spectra
 - Material data
 - Accounts for multiple phase crack growth
 - Continuing damage
TI Tools/ Data

• Geometry Factors
 – Stress check & classical solutions into generic tabulated data
 – Allows build up of locations
 – Developed for each situation
 – Significant compounding to develop solutions
 – Up to 12 crack phases for some locations
• Geometry Factors
 - For calibration
 - Beta at fractographic recorded point
 - Same point on the crack face
 - Not at 5 and 80 degrees
 - Crack aspect ratio
 - Test crack progression
 - Crack interaction
 - For DTA
 - Fixed aspect ratio a/c = 1.00
 - Nominal blueprint geometry
 - DTA crack progression
 - Consistent with calibration Beta
TI Tools/Data

- **Coupon testing**
 - Da/DN data
 - short and long crack lengths
 - Fatigue test spectrum clipping

- **OEM Fracture toughness**

- **Handbook yield strength**
TI Tools/ Data

- **IMSst**
- **Data repository**
 - Test defects
 - Fragments
 - Findings
 - All test reports
 - NDI
 - Fracto
 - Repair decisions
 - Defect reports
- **Assists in data quality**
- **Web based**
Verification and Validation

• DADTA template
 – FASTRAN
 – FAMS
 – Outputs comply with TCB
 – In particular continuing damage

• Confirm TIRS

• Material
 – Da/DN data
 – Other data

• Transfer factors
 – TIRS to EFH
 – Converting outputs to match individual tracking program (IATP)
Verification and Validation

- WFT loading
 - OLM to WFT gauge results
 - Along / across the span
 - Over time
 - Ensure loading remains constant

- Comparison of WFT cracking with DTA

- Authority sign off
 - When DaDTA tools used correctly ICA will be compliant with TCB
Selection of Locations

• 1400 findings
 – Most findings will not undergo fractography and DTA

• Extant SSI from LM Aero

• Critical test cracking
 – Size and density of findings
 – Criticality of failure

• Priority
 – Test crack size
 – Time of cracking
 – Extant maintenance program impacts
Spectrum

• Seven AP spectra
 – ATS & TIRS

• Stress Transfer Factor (STF)
 – Strain gauge
 – OEM data
 – FEM

• Test Representivity Factor (RF)

• Applied Test Spectrum
 – ATS = AP ATS x STF x RF
 – For fatigue test cracking

• Calibration Factor (CF)

• Test Interpretation Spectrum
 – TIRS = AP TIRS x STF x CF
Calibration Factor

• Factor on overall stress
 – CF x ATS

• DTA of cracking

• Compare with qualitative Fractography results

• Overcomes deficiencies
 – STF
 – Beta
Calibration Factor

- Iterative process
- Simple beta
 - Refined if required
 - Account for other geometry
 - Account for crack interaction
 - Load redistribution
- Similar CF for adjacent cracks
- May have multiple CFs if local failure allowed
 - Accounts for local stress transfer
DTA

• Cracking Scenario
 – Worst of test cracking
 – LM DTA
 – Or other?

• Multiple test cracks not necessarily the worst case
 – TCB requires only a single 0.05” flaw
 – TCB continuation damage flaw

• Multi phase crack growth

• Intervals derived from crack growth curve as per TCB
Interpretation

• TIRS intervals converted to EFH
• EFH intervals for ICA
 – Allows IATP
• Configuration differences between the test article and the fleet
• Comparison of derived crack growth curves with relevant in-service and test cracking data
 – Account for all findings in control area
• Sense checks for comparable programs
• Implementation urgency
Interpretation

• Need for modifications
 – Low recurring interval
 – High access cost
 – Planned change vs Repair when found

• Suitability of NDI procedures
 – Extant OEM procedures
 – Would service cracks be found
 – Alter a_{ndi} or alter NDI type
Implementation

- EFH intervals tracked by IATP
- ASIMP Vol 2 updates
- Ensure adequate time for implementation
 - Escalate if any immediate safety issue present
 - Reduced Threshold Interval
 - Reduced Recurring Interval
- Provide aircraft specific ICA if needed
- Aim to align with major routine servicing’s
- All may need refinement of analysis (not 100% on what this is)
- Suggestions for CAMO
Summary

• By end of TI
 – 1400+ findings
 – 55+ Fractography reports will be required
 – 46 CF curves
 – 57 DTAs
 – 91 Locations
 – locations covered DTA at more critical points
 – 11 areas were MSD
 – Just started to well advanced
 – 6 locations with developed MED
 – 4 locations for PRA

• Currently Completed
 – 22 locations
 – 13 DTAs
 – 19 CF curves
Summary

• Increase in thresholds and recurring intervals
 – Can be aligned with routine servicing's
 – Increased aircraft availability
 – Less chance of inspection damage

• Improvements believed to be due to more advanced tools
Lessons Learned

• Fracto excellent
 – used to account for load changes due to crack interaction
 – Provides confidence

• Usefulness of strain gauge locations
 – Not ideal for STF (local strain effects)
 – Great for OLM comparisons
 – Identify if load redistributes during course of testing

• Confidence in TI Process is dependent on V&V at multiple stages of development

• Full understanding of Test outcome gives confidence in ICA outcome

• Next stage LOT
 – Probabilistic Risk Assessments