Thank you to all organisations who took part in the NSW Water Modelling Survey and made this overview of water modelling in NSW Government possible.

Please note that some values contained in this summary report have been rounded for simplicity.

© State of New South Wales through Manly Hydraulics Laboratory 2019. You may copy, distribute, display, download and otherwise freely deal with this publication for any purpose, provided that you attribute Manly Hydraulics Laboratory as the owner. However, you must obtain permission if you wish to charge others for access to the publication (other than at cost); include the publication in advertising or a product for sale; modify the publication; or republish the publication on a website. You may freely link to the publication on the Manly Hydraulics Laboratory website.

Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (March 2019) and may not be accurate, current or complete. The State of New South Wales (including Manly Hydraulics Laboratory), the author and the publisher take no responsibility, and will accept no liability, for the accuracy, currency, reliability or correctness of any information included in the document (including material provided by third parties). Readers should make their own inquiries and rely on their own advice when making decisions related to material contained in this publication.
What is the NSW modelling and monitoring hub (MaMH)?

- The MaMH is a knowledge network established to coordinate and aid information sharing across government agencies, state owned corporations and local government in relation to water modelling and monitoring.

Why did the MaMH conduct a survey of water modelling in NSW Government?

- Provide a state-wide snapshot of water modelling assets, knowledge and capabilities spread across multiple government agencies in NSW.
- Inform of the present-day use of water models¹ and water modelling expertise across NSW Government.
- Identify opportunities and hurdles to improving the management, sharing and collaboration of water modelling assets and capabilities across NSW Government.

What is the MaMH working to achieve?

- More efficient water related services.
- Improved operations, planning and management of water assets.
- Strategic and coordinated investment in water modelling

---

¹ In this survey a water model is defined as an application, instance or use of a water modelling program (or software) for a specific location, modelling task and/or objective/s.
27% RESPONSE RATE
41 OF 150 TOTAL INVITED ORGANISATIONS

1100 - 2400 WATER MODELS IDENTIFIED
WATER MODELS IDENTIFIED ACROSS 41 NSW GOVERNMENT AGENCIES

WATER MODELS UPDATED IN LAST 5 YEARS:
50%

WATER MODELS WITH METADATA AVAILABLE TO SHARE:
36%

Respondents:
- Local Government
- DoI Water
- WaterNSW
- State Agencies
- Commonwealth Agencies
- Irrigation Corps
- Local Land Services
- Water Utilities
- OEH
- MHL
- Sydney Water
- Power Utilities

NSW GOVERNMENT COLLABORATIVE TOOLS
79% OF RESPONDANTS SAID ‘YES’ THERE IS A BENEFIT TO ADOPTING THE TOOLS

OBSTACLES TO SHARING WATER MODEL METADATA:
- Resourcing
- Funding
- Metadata systems
- Sensitivities
- Complexities

PURPOSES FOR USING WATER MODELS ARE DIVERSE
WATER MODELLING EXPERTISE VARIES SUBSTANTIALY ACROSS NSW GOVERNMENT AGENCIES
Total number of water models identified:

~1700 (1080 – 2450)

- Approximately 50% updated in last 5 years.
- Approximately 36% with metadata available to share.
Regions where water modelling was undertaken by survey respondents:

- Sydney Metropolitan: 22%
- Riverina Murray: 12%
- South-Eastern: 11%
- North West Metropolitan: 10%
- North Coast: 8%
- Hunter – Central Coast: 7%
- Illawarra – South Coast: 7%
- Central West: 7%
- New England: 7%
- Far West: 5%
- South West Metropolitan: 4%
Various types of water modelling undertaken in NSW Government.
Figure adapted from:

Although physical modelling is an important tool for water modelling it has not been included in the survey results.
The multi-faceted roles and purposes of water modelling in supporting decision-making in NSW Government.

Figure adapted from: eWater, 2018. https://ewater.org.au/products/ewater-source/
### COMMON PROGRAMS USED FOR WATER MODELLING

<table>
<thead>
<tr>
<th>Water Modelling Type</th>
<th>Key Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrology, Flood and Estuary</td>
<td>TUFLOW, MIKE HYDRO, MIKE FLOOD, DRAINS, XPRAFTS, eWater Source, HEC-RAS, RMA2/10</td>
</tr>
<tr>
<td>Water Quality &amp; Ecological</td>
<td>MUSIC, eWater Source, RMA11</td>
</tr>
<tr>
<td>Groundwater</td>
<td>MODFLOW, eWater Source, Bespoke Programs</td>
</tr>
<tr>
<td>Coastal</td>
<td>MIKE21, WW3, S-Beach, X-Beach, Bespoke Programs</td>
</tr>
<tr>
<td>Urban Water</td>
<td>TUFLOW, MIKE URBAN, DRAINS, MUSIC, XPSTORM, InfoWorks</td>
</tr>
<tr>
<td>Water Balance</td>
<td>eWater SOURCE, IQQM, WATHNET, Bespoke Programs</td>
</tr>
</tbody>
</table>

### KEY CUSTODIANS OF WATER MODELS BY TYPE

<table>
<thead>
<tr>
<th>Water Modelling Type</th>
<th>Key Model Custodians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrology, Flood &amp; Estuaries</td>
<td>Local Government (Metropolitan &amp; Regional), DoI Lands &amp; Water, OEH, MHL, WaterNSW, Other State &amp; Commonwealth Agencies</td>
</tr>
<tr>
<td>Water Quality &amp; Ecological</td>
<td>Local Government (Metropolitan), MHL, Sydney Water, DoI Lands &amp; Water,</td>
</tr>
<tr>
<td>Groundwater</td>
<td>DoI Lands &amp; Water, Local Government (Regional)</td>
</tr>
<tr>
<td>Coastal</td>
<td>Local Government (Metropolitan), OEH, MHL</td>
</tr>
<tr>
<td>Urban Water</td>
<td>Sydney Water, OEH, Water Utilities, Local Government (Metropolitan)</td>
</tr>
<tr>
<td>Water Balance</td>
<td>DoI Lands &amp; Water, WaterNSW</td>
</tr>
<tr>
<td>Other</td>
<td>OEH (Climate Modelling)</td>
</tr>
</tbody>
</table>
WATER MODELLING CAPABILITIES AND EXPERIENCE
- OVERALL CAPABILITY RATING BY TYPE

a) Local Government (Metropolitan & Regional x24)

b) State Government & Other Agencies (x13)
### WATER MODELLING CAPABILITIES AND EXPERIENCE - SKILLS BREAKDOWN

#### a) Local Government (Metropolitan & Regional: x22)

<table>
<thead>
<tr>
<th>Skill</th>
<th>Limited Skills</th>
<th>Adequate Skills</th>
<th>High Level Skills</th>
<th>Expert Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model selection and application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical process understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input data collation, review and preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determining boundary, conditions and constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model setup and configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model simulation and error resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model calibration and validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results interpretation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity and uncertainty analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical analysis for evaluating model performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting and communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model specific skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Links to external service providers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### b) State and Other Government Agencies (x10)

<table>
<thead>
<tr>
<th>Skill</th>
<th>Limited Skills</th>
<th>Adequate Skills</th>
<th>High Level Skills</th>
<th>Expert Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model selection and application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical process understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input data collation, review and preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determining boundary, conditions and constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model setup and configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model simulation and error resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model calibration and validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results interpretation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity and uncertainty analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical analysis for evaluating model performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting and communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model specific skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Links to external service providers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WATER MODELLING CAPABILITIES AND EXPERIENCE
- EXTERNAL VS IN-HOUSE

a) Local Government (Metropolitan & Regional: x24)

b) State and Other Government Agencies (x12)

No. of Organisations

Hydrology, Flood & Estuaries
Water Quality
Groundwater & Ecological
Coastal
Urban Water
Water Balance
Other

Predominantly Externally
Predominantly In-house

No. of Organisations

Hydrology, Flood & Estuaries
Water Quality
Groundwater & Ecological
Coastal
Urban Water
Water Balance
Other

Predominantly Externally
Predominantly In-house
73% of respondents noted having management systems for water modelling metadata that are not yet fully developed, not up-to-date or non-existent.

Suggestions to better update and manage water modelling metadata:

- Provision of a federated inventory and common standards across agencies
- GIS integration
- Automated linking of model components (inputs, outputs, configuration and software version)
- Shared web-portal design
- Qualified/experienced staffing and resources to manage metadata
Top ranked obstacles to use of collaborative tools:
- Lack of Resourcing
- Lack of Funding

Other barriers to sharing water modelling metadata
- Management systems for water modelling metadata not yet fully developed, not up-to-date or non-existent.
- 33% of respondents raised concerns over sensitivities to sharing metadata related to licensing, IP protections, metadata quality & confidentiality.
- The findings also highlight the need for leadership in overcoming obstacles and facilitating collaboration and sharing.

Findings noted additional complexities to the sharing of water models themselves.
Suggestions to further improve IT infrastructure to better support water modelling requirements:

- Provision of shared high-speed computers dedicated to modelling purposes across government
- Provision of cloud computing and storage infrastructure dedicated to modelling purposes
- Modelling platform integration of water models and supporting datasets
- Sharing arrangements for modelling IT resources across government agencies
- Additional staffing resources to develop and maintain IT infrastructure support water modelling
MaMH’s strategic conclusions from the survey results:

- Water model assets are numerous, widespread and support a wide range of decision making purposes in NSW Government. There are opportunities for improved collaboration and management of water modelling resources across Government.

- Water modelling expertise varies across NSW Government. Collaboration efforts should address indifferences between Local and State Government expertise.

- There are obstacles and complexities involved in sharing water modelling metadata that would benefit from case studies piloting a sharing framework.

- There is a close dependency between water modelling and monitoring with opportunities to better inform water management decision making.

The MaMH’s 2019/20 recommendations include:

- Develop water modelling and monitoring metadata guidelines and tools to enable a consistent approach for sharing information.

- Case studies to pilot data sharing through Data.NSW, and a framework that facilitates the management and sharing of water model metadata.

- Develop business cases to enable water information collaboration to quantify resources, costs and potential benefits.